
0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2723956, IEEE
Transactions on Automatic Control

1

A Dynamic Game Model of Collective Choice
in Multi-Agent Systems

Rabih Salhab, Roland P. Malhamé and Jerome Le Ny

Abstract—Inspired by successful biological collective decision
mechanisms such as honey bees searching for a new colony or
the collective navigation of fish schools, we consider a scenario
where a large number of agents engaged in a dynamic game have
to make a choice among a finite set of different potential target
destinations. Each individual both influences and is influenced
by the group’s decision, as represented by the mean trajectory
of all agents. The model can be interpreted as a stylized version
of opinion crystallization in an election for example. In the most
general formulation, agents’ biases are dictated by a combination
of initial position, individual dynamics parameters and a priori
individual preference. Agents are assumed linear and coupled
through a modified form of quadratic cost, whereby the terminal
cost captures the discrete choice component of the problem. Fol-
lowing the mean field games methodology, we identify sufficient
conditions under which allocations of destination choices over
agents lead to self replication of the overall mean trajectory
under the best response by the agents. Importantly, we establish
that when the number of agents increases sufficiently, (i) the
best response strategies to the self replicating mean trajectories
qualify as epsilon-Nash equilibria of the population game; (ii)
these epsilon-Nash strategies can be computed solely based on
the knowledge of the joint probability distribution of the initial
conditions, dynamics parameters and destination preferences,
now viewed as random variables. Our results are illustrated
through numerical simulations.

Index Terms—Mean Field Games, Collective Choice, Discrete
Choice Models, Multi-Agent Systems, Optimal Control.

I. INTRODUCTION

Collective decision making is a common phenomenon in
social structures ranging from animal populations [3], [4] to
human societies [5]. Examples include honey bees searching
for a new colony [6], [7], the navigation of fish schools [8], [9],
or quorum sensing [10]. Collective decisions involve dynamic
“microscopic-macroscopic” or “individual-social” interactions.
On the one hand, individual choices are socially influenced,
that is, influenced by the behavior of the group. On the other
hand, the collective behavior itself results from aggregating
individual choices.

In elections for example, an interplay between individual
interests and collective opinion swings leads to the crystal-
lization of final decisions [5], [11]. Our model may be an
abstract representation of this process where: i) individual
opinion dynamics are described in a state-space form [11];
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ii) changing one’s opinion requires an effort but deviation
from the majority’s opinion involves a discomfort; and iii)
a choice must be made before a finite deadline. The classical
voter model [12] describes the evolution of opinions in an
election. It considers a group of agents choosing between two
alternatives. At each instant, the probability that an individual
switches from one alternative to the other depends on its
current choice, the others’ states, as well as the communication
graph. In this paper, we consider a game theoretic approach to
a limited randomness version of this problem, whereby agents,
given enough deterministic or probabilistic information on
the initial spatial distribution and preferences of other agents,
crystallize at the outset what their final choices will be, through
anticipation of the group behavior over the control horizon.
Movement in opinion space towards a final choice requires
costly efforts from voters. At the same time, they experience
discomfort whenever their individual state differs from the
mean population state.

“Homing” optimal control problems, first introduced by
Whittle and Gait in [13] and studied later in [14]–[17] for
example, are concerned with a single agent trying to reach one
of multiple predefined final states. Here we consider a similar
fundamental issue but in a multi-agent setting. A large number
of agents initially spread out in Rn need to move within a
finite time horizon to one of multiple possible home or target
destinations. They must do so while trying to remain tightly
grouped and expending as little control effort as possible. Our
goal is to model situations in which the choice made by each
agent regarding which destination to reach both influences and
depends on the behavior of the population. For example, when
honey bees determine their next site to establish a colony they
must make a choice between different alternatives based on
the information provided by scouts, who are themselves part
of the group. Even though certain colonies can be easier to
reach and are more attractive for some bees, following the
majority is still a priority to enhance the foraging ability [6],
[7]. In animal collective navigation [18], [19] , discrete choices
must be made regarding the route to take, but at the same
time, staying with the group offers better protection against
predators [8].

Similarly, consider a situation as in [20]–[22] where a
collection of robots is exploring an unknown terrain and
should choose between multiple potential sites of interest
to visit. The robots can possibly split, but each subgroup
should remain sufficiently large to carry out collective tasks
of interest [23]–[26]. Our framework allows modeling such a
situation and provides parameters indicating for each robot the
attractiveness of the sites and the cost of deviating from the
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population’s centroid. Moreover, we look for a coordination
strategy that requires a limited amount of communication, thus
increasing the robustness of our solution against intermittent
loss of connectivity within the group for example. We do so
by relying on the law of large numbers and the Mean-Field
Games (MFG) methodology, where the agents only need to
learn the initial distribution of the group [27] (for example,
through a consensus-like algorithm), in order to compute an
optimal decentralized control strategy. In practice in a finite
group the agents would also have to communicate their states
periodically in order to compensate for the prediction error
due to the fact that the MFG methodology assumes an infinite
population.

A related topic in economics is discrete choice models
where an agent makes a choice between multiple alternatives
such as mode of transportation [28], entry and withdrawal
from the labor market, residential location [29], or a physician
[30]. In many circumstances, these individual choices are
influenced by the so called “Peer Effect”, “Neighborhood
Effect” or “Social Effect”. In particular, Brock and Durlauf
[31] use an approach similar to Mean Fied Games (MFG)
[32], [33] and inspired by statistical mechanics to study a
static binary discrete choice model with a large number of
agents, which takes into account the effect of the agents’
interdependence on the individual choices. In their model,
the individual choices are influenced by the mean of the
other agents’ choices, while for an infinite size population,
the impact of an isolated individual choice on this mean is
negligible. The authors show that in an infinite size rational
population, each agent can predict this mean as the result of a
fixed point calculation, and makes a decentralized choice based
upon its prediction. Moreover, multiple anticipated means may
exist. Our analysis leads to similar insights for a dynamic non-
cooperative multiple choice game including situations where
the agents have limited information about the dynamics of
other agents.

II. PROBLEM STATEMENT AND CONTRIBUTIONS

In this section, we formulate our problem, state our main
contributions and provide an outline for the rest of the paper.

A. Deterministic Initial Conditions

We consider a dynamic non-cooperative game involving N
players with identical linear dynamics

ẋi = Axi +Bui ∀i ∈ {1, . . . , N}, (1)

where xi ∈ Rn is the state of agent i and ui ∈ Rm its control
input. Player i is associated with an individual cost functional

Ji(ui, x̄, x
0
i ) =

∫ T

0

{q
2
‖xi − x̄‖2 +

r

2
‖ui‖2

}
dt

+
M

2
min

j∈{1,...,l}

(
‖xi(T )− pj‖2

)
, (2)

where x̄(t) , 1/N
∑N
i=1 xi(t), pj ∈ Rn (for j ∈ {1, . . . , l})

are the destination points, q, r are positive constants and M
is a large positive number. The running cost requires the

agents to develop as little effort as possible while moving
and to stay grouped around the mean of the population x̄.
Moreover, each agent should reach before final time T one
of the destinations pj , j ∈ {1, . . . , l}. Otherwise, it is strongly
penalized by the terminal cost. Hence, the overall individual
cost captures the problem faced by each agent of deciding
between a finite set of alternatives, while trying to remain close
to the mean population trajectory. It is sometimes convenient
to write the costs in a game theoretic form, i.e. Ji(ui, u−i),
where u−i = (u1, . . . , ui−1, ui+1, . . . , uN ). We seek ε-Nash
strategies, i.e. such that an agent can benefit at most ε through
unilateral deviant behavior, with ε going to zero as N goes to
infinity [34]. We assume that each agent can observe only its
own state and the initial states of the other agents.

Definition 1: Consider N players, a set of strategy profiles
S = S1 × · · · × SN and for each player i, a payoff function
Ji(ui, u−i), ∀(ui, u−i) ∈ S. A strategy profile (u∗i , u

∗
−i) ∈ S

is called an ε−Nash equilibrium with respect to the costs Ji
if there exists an ε > 0 such that for any fixed i ∈ {1, . . . , N}
and for all ui ∈ Si, we have Ji(ui, u∗−i) ≥ Ji(u∗i , u∗−i)− ε.

Inspired by the framework of MFG theory [23], [32]–[36]
discussed in Section II-C below, we develop in this paper
a class of decentralized strategies satisfying a certain fixed
point requirement. In particular, under the assumption of a
continuum of agents, the problem of computing an agent’s best
response to a given macroscopic behavior of the population
turns out to be an optimal control problem. Hence, the terms
“best response” and “optimal control law / strategy” of the
agents are used interchangeably in the paper. The fixed point
requirement originates from the fact that collectively, the
agents’ best responses must reproduce the assumed macro-
scopic behavior. Identification of the strategies requires only
that an agent knows its own state and the initial states of the
other agents. As we later show, when the number of agents N
is sufficiently large, these fixed point based strategies achieve
their meaning as ε−Nash equilibria.

B. Random Initial Conditions

As N goes to infinity, it is also convenient to think of the
initial states as realizations of random variables resulting from
a common probability distribution function in a collection of
independent experiments. Agent i is then associated with the
following adequately modified cost:

Ji(ui, x̄, x
0
i ) = E

(∫ T

0

{q
2
‖xi − x̄‖2 +

r

2
‖ui‖2

}
dt

+
M

2
min

j∈{1,...,l}

(
‖xi(T )− pj‖2

)∣∣∣x0
i

)
. (3)

We establish that an agent needs only to know its own state
and the common probability distribution of initial states to
construct one of the decentralized fixed point based strategies
alluded to earlier. In this case, the only randomness lies in
the agents’ initial conditions, and the control strategies, while
expressed as state feedback laws, correspond in effect to open
loop policies [37].
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C. The MFG Approach and our Contributions

The MFG approach is concerned with a class of dynamic
non-cooperative games involving a large number of players
where the individual strategies are considerably affected by
the mass behavior, while the influence of isolated individual
actions on the group is negligible. Linear Quadratic Gaussian
(LQG) MFG formulations were developed in [32], [34], [35],
while the general nonlinear stochastic framework was con-
sidered in [33], [38]–[40]. To compute a Nash equilibrium,
one has to produce in general N fixed point trajectories
1
N

∑
i6=j xi, j ∈ {1, . . . , N} (the average of the population

without player j). As the size N of the population increases to
infinity, these trajectories become indistinguishable. The MFG
approach posits at the outset an infinite population to which
one can ascribe a deterministic although initially unknown
macroscopic behavior. Hence, one starts by assuming that
the mean field contributed term x̄ in the cost (2) or (3)
is given, denoted x̂. The cost functions being now decou-
pled, each agent optimally tracks x̂ (i.e. computes its best
response to x̂). The resulting control laws (best responses)
are decentralized. This analysis of the tracking problem is
presented in Section III. With the agents implementing the
resulting decentralized strategies, a new candidate average path
is obtained by computing the corresponding mean population
trajectory. Indeed, and it is a fundamental argument in MFG
analysis, asymptotically as the population grows, the posited
tracked path is an acceptable candidate only if it is reproduced
as the mean of the agents when they optimally respond to it.
Thus, we look for candidate trajectories that are fixed points of
the tracked path to tracked path map defined above. In Section
IV, these fixed points are studied for the deterministic initial
conditions with a finite population, and an explicit expression
is obtained by assuming that each agent knows the exact
initial states of all other agents. The alternative probabilistic
description of the agents’ initial states is explored in Section V.
In Section VI, we further generalize the problem formulation
to include initial preferences towards the target destinations.
Moreover, we consider that the agents have nonuniform dy-
namics and that each agent has limited information about the
other agents dynamic parameters in the form of a statistical
distribution over the matrices A and B. Section VII shows
that the decentralized strategies developed when tracking the
fixed point mean trajectories constitute ε−Nash equilibria in
all the cases considered above, with ε going to zero as N
goes to infinity. In Section VIII, we provide some numerical
simulation results, while Section IX presents our conclusions.

The main contributions of the paper include the following:

i. We introduce a novel class of linear quadratic non-convex
games aimed at characterizing solutions of collective
discrete choice problems in a variety of applications.

ii. We show that an agent with knowledge about the dynamic
parameters and initial preferences of the other agents can
make its choice by observing only the initial conditions of
the players (in the case of deterministic initial conditions),
or by knowing their initial probability distribution (in the
case of random initial conditions).

iii. In the uniform dynamics case, we characterize the way the

population splits between the destination points. In fact,
we construct a finite dimensional map, which we call the
“Choice Distribution Map” (CDM), such that the probabil-
ity distribution of the choices between the alternatives is a
fixed point of this map. In the probabilistic version of the
problem, this corresponds to a fixed point vector equation
of dimension l (total number of available destinations).
Thus the computation of the corresponding strategies can
be considerably simplified relative to that of the finite N
case, which requires comparing the performance of lN

possible deployments of the N agents over l destinations.
iv. We prove the existence of a decentralized ε−Nash equi-

librium, and in the uniform dynamics case, we develop
a method to compute it. In essence, this indicates that
our simplified and decentralized infinite population based
control policies induce Nash equilibria asymptotically as
N tends to infinity.

We further detail here some more technical aspects of our
contribution. Although we rely on the MFG methodology in
order to analyze the behavior of many agents choosing one
of the available destinations, our model is not standard with
respect to the LQG MFG literature. Specifically, our cost is
non-convex and non-smooth (the final cost is a minimum of
l quadratic functions), in order to capture the combinatorial
aspect of the discrete decision-making problem. Hence, the
existence proofs for a fixed point rely here on topological fixed
point theorems rather than a contraction argument as in [32].
One of the main contributions of this paper is also to show
that in case of a uniform population, the infinite dimensional
MFG fixed point problem [33], [38] has a finite dimensional
version that can be characterized via Brouwer’s fixed point
theorem [41]. For a nonuniform population, the existence of
a fixed point mean trajectory relies on an abstract fixed point
theorem, namely Schauder’s fixed point theorem [41]. In both
cases, to solve the MFG equation system, one needs to know
the initial probability distribution of the players, whereas in
the standard LQG MFG problems, it is sufficient to know the
initial mean to anticipate the macroscopic behavior. Thus, in
a nutshell, the theoretical tools needed to address this new
formulation are thoroughly different. Further highlighting the
differences between the two problems, the control laws when
extending the current formulation to the stochastic dynamics
case are entirely different from the LQG case [42].

Preliminary versions of our results appeared in the confer-
ence papers [1], [2]. Here we provide a unified discussion of
our collective choice model for the deterministic and stochastic
scenarios, as well as more extensive results. Many of the
proofs were omitted from the conference papers due to space
limitations and can be found here. The simulation section is
also expanded with respect to [1], [2] and provides additional
insight on the role of the different parameters in the model.

D. Notation

The following notation is used throughout the paper. We
denote by C(X,Y ) the set of continuous functions from
a normed vector space X to Y ⊂ Rk with the standard
supremum norm ‖.‖∞. We fix a generic probability space
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(Ω,F ,P) and denote by P(A) the probability of an event
A, and by E(X) the expectation of a random variable X . The
indicator function of a subset X is denoted by 1X and its

interior by
◦
X . We denote by |X| the size of a finite set X .

The transpose of a matrix M is denoted by MT . We denote
by Ik the identity k × k matrix. The subscript i is used to
index entities related to the agents, while the subscripts j and
k are used to index entities related to the home destinations.
We denote by [x]m the m-th component of a vector x.

III. TRACKING PROBLEM AND BASINS OF ATTRACTION

In this section, we compute the agents’ best responses
(tracking problem) to the mean field contributed term x̄. We
establish the existence of an x̄ dependent partition of the state
space into l basins of attraction, each associated with a distinct
destination for all agents initially situated in it.

A. Tracking Problem

Following the MFG approach, we assume the trajectory x̄(t)
in (2) and (3) to be given for now and call it x̂(t). The cost
functions (2) and (3) can be written as the minimum of l
linear quadratic tracking cost functions, each corresponding
to a destination point:

Ji(ui, x̂, x
0
i ) = min

j∈{1,...,l}
Jij(ui, x̂, x

0
i ), (4)

where

Jij(ui, x̂, x
0
i ) =

∫ T

0

{q
2
‖xi − x̂‖2 +

r

2
‖ui‖2

}
dt

+
M

2
‖xi(T )− pj‖2. (5)

Moreover, inf
ui(.)

Ji(ui, x̂, x
0
i ) = min

j∈{1,...,l}

(
inf
ui(.)

Jij(ui, x̂, x
0
i )
)
.

Assuming a full (local) state feedback, the optimal con-
trol law for (4) u∗i is the optimal control law of the less
costly linear quadratic tracking problem, that is u∗i = u∗ij
if Jij(u

∗
ij , x̂, x

0
i ) = min

k∈{1,...,l}
Jik(u∗ik, x̂, x

0
i ), where u∗ik is

the optimal solution of the simple linear quadratic tracking
problem with cost function Jik.

In the following, we partition the space Rn into l regions
(basins of attraction), each corresponding to a distinct desti-
nation point, such that if an agent is initially in one of these
basins, the linear tracking problem associated with the corre-
sponding destination point is the least costly. We recall the
optimal control laws [43], u∗ik(t) = − 1

rB
T
(

Γ(t)xi + βk(t)
)

,
∀k ∈ {1, . . . , l}, with the corresponding optimal costs

J∗ik(x̂, x0
i ) =

1

2
(x0
i )
TΓ(0)x0

i + βk(0)Tx0
i + δk(0),

where Γ, βk and δk are respectively matrix-, vector-, and real-
valued functions satisfying the following backward propagat-
ing differential equations:

Γ̇− 1

r
ΓBBTΓ + ΓA+ATΓ + qIn = 0 (6a)

β̇k =

(
1

r
ΓBBT −AT

)
βk + qx̂ (6b)

δ̇k =
1

2r
(βk)TBBTβk −

1

2
qx̂T x̂, (6c)

with the final conditions Γ(T ) = MIn, βk(T ) =
−Mpk, δk(T ) = 1

2MpTk pk. We define the basins of
attraction

Dj(x̂) = {x ∈ Rn|J∗ij(x̂, x) ≤ J∗ik(x̂, x),∀k ∈ {1, . . . , l}}
(7)

for j ∈ {1, . . . , l}. If an agent i is initially in Dj(x̂), then
the smallest optimal (simple) cost is J∗ij , and player i goes
towards the corresponding destination point pj .

Assumption 1: Conventionally, we assume that if x0
i ∈

∩km=1Djm(x̂), for some j1 < · · · < jk, then the player i
goes towards pj1 . Under Assumptions 2 and 5 (defined below
in Sections V and VI), this convention does not affect the
analysis in case of random initial conditions.
We summarize the above analysis in the following lemma.

Lemma 1: Under Assumption 1, the tracking problem (4)
has a unique optimal control law

u∗i (t) = −1

r
BT
(
Γ(t)xi + βj(t)

)
if x0

i ∈ Dj(x̂), (8)

where Γ, βj , δj are the unique solutions of (6a)-(6c).
The optimal control laws (8) depend on the local state xi and

on the tracked path x̂(t) via Dj and βj . As mentioned above,
each agent should reach one of the predefined destinations. We
show in the next lemma that for any horizon length T , M can
be made large enough that each agent reaches an arbitrarily
small neighborhood of some destination point by applying the
control law (8). The result is proved for tracked paths x̂(t) that
are uniformly bounded with respect to M , a property that is
shown to hold later in Lemma 9 for the desired tracked paths
(fixed point tracked paths).

Lemma 2: Suppose that the pair (A,B) is controllable
and for each M > 0, the agents are optimally tracking a
path x̂M (t). We suppose that the family x̂M (t) is uniformly

bounded with respect to M for the norm
( ∫ T

0
‖.‖2dt

) 1
2

. Then,
for any ε > 0, there exists M0 > 0 such that for all M > M0,
each agent is at time T in a ball of radius ε and centered at
one of the pj’s, for j ∈ {1, . . . , l}.

Proof: See Appendix A.
Given any continuous path x̂(t), there exist l basins of
attraction where all the agents initially in Dj(x̂) prefer going
towards pj . Therefore, the mean of the population is highly
dependent on the structure of Dj(x̂). In the next paragraph,
we provide an explicit form of these basins.

B. Basins of Attraction

We start by giving an explicit solution of (6b) and (6c). Let
Π(t) = 1

rΓ(t)BBT−AT and Φ(., η), for η ∈ R, be the unique
solution of

dΦ(t, η)

dt
= Π(t)Φ(t, η) Φ(η, η) = In, (9)

and Ψ(η1, η2, η3, η4) = Φ(η1, η2)TBBTΦ(η3, η4). Two main
properties of the state transition matrix Φ are used in this
paper, namely the matrix Φ(η1, η2) has an inverse Φ(η2, η1)
and the state transition matrix Φ̃(η1, η2) of −ΠT (i.e. solution
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of (9), where Π in the right hand side of (9) is replaced
by −ΠT ) is equal to Φ(η2, η1)T . For more details about the
properties of the state transition matrix, one can refer to [44].
The unique solution of of (6b)-(6c) is

βk(t) = −MΦ(t, T )pk + q

∫ t

T

Φ(t, σ)x̂(σ) dσ

δk(t) =
1

2
MpTk pk −

q

2

∫ t

T

x̂(σ)T x̂(σ) dσ

+
M2

2r
pTk

∫ t

T

Ψ(η, T, η, T ) dη pk

− Mq

r
pTk

∫ t

T

∫ η

T

Ψ(η, T, η, σ)x̂(σ) dσdη

+
q2

2r

∫ t

T

∫ η

T

∫ η

T

x̂(σ)TΨ(η, σ, η, τ)x̂(τ) dτdσdη.

(10)

By replacing (10) in the expression of Dj(x̂), (7) can be
written

Dj(x̂) =
{
x ∈ Rn|βTjkx ≤ δjk + αjk(x̂), ∀k ∈ {1, . . . , l}

}
,

(11)
where

βjk = MΦ(0, T )(pk − pj)

δjk =
1

2
MpTk pk −

1

2
MpTj pj

+
M2

2r
pTk

∫ 0

T

Ψ(η, T, η, T ) dη pk (12)

− M2

2r
pTj

∫ 0

T

Ψ(η, T, η, T ) dη pj

αjk(x̂) =
Mq

r
(pj − pk)T

∫ 0

T

∫ η

T

Ψ(η, T, η, σ)x̂(σ) dσdη.

Hence, we see from (11) that the regions Dj(x̂) for a given
x̂ are separated by hyperplanes.

IV. FIXED POINT - DETERMINISTIC INITIAL CONDITIONS

Having computed the best responses to an arbitrary x̂, we
now seek a continuous path x̂(t) that is sustainable, in the
sense that it can be replicated by the average of the agents
under their best responses to it. We start by analyzing a
finite size population where the initial state of each agent is
known to all agents. We exhibit a one to one map between
the sustainable paths and the fixed points of a CDM (Choice
distribution map), itself a finite dimensional operator, the fixed
points of which characterize the set of fractions of agents
going to each one of the possible destinations. An algorithm
is proposed to compute these fixed points and the associated
agent trajectories.

We start our search for the desired path x̂(t) by computing
the mean x̄(t) when tracking any continuous path x̂(t). The
dynamics of the mean when tracking x̂ ∈ C([0, T ],Rn)
satisfies

˙̄x = −ΠT x̄− q

r
BBT

∫ t

T

Φ(t, σ)x̂(σ) dσ

+
M

r
BBTΦ(t, T )pλ(x̂), (13)

where Φ is defined in (9), x̄(0) = 1
N

∑N
i=1 x

0
i , x̄0, pλ(x̂) =∑l

j=1
λj(x̂)
N pj and λj(x̂) is the number of agents initially in

Dj(x̂), which therefore pick pj as a destination. We obtain
(13) by substituting (10) in (8) and the resulting control law
in (1) to subsequently compute x̄ = 1/N

∑N
i=1 xi and its

derivative. Thus, the mean of the population x̄ when tracking
any continuous path x̂ is the image of x̂ by a composite map
G = G2 ◦G1, where

G1 : C([0, T ],Rn) −→C([0, T ],Rn)× Nl (14)

x̂ −→
(
x̂,
(
λ1(x̂), . . . , λl(x̂)

))
G2 : C([0, T ],Rn)× Nl −→C([0, T ],Rn) (15)

such that x̄ = G2

(
x̂,
(
λ1, . . . , λl

))
is the unique solution of

(13) in which λj(x̂) is equal to an arbitrary λj , j ∈ {1, . . . , l}.
The desired path describing the mean trajectory is a fixed

point of G. In the following, we construct a one to one map
between the fixed points of G and the fixed points of a finite
dimensional operator F describing the way the population
splits between the destination points. We define the following
quantities:

R1(t) = ΦP (t, 0) (16)

R2(t) =
M

r

∫ t

0

ΦP (t, σ)BBTΦP (T, σ)Tdσ (17)

θjk =
Mq

r
(pTj − pTk )

∫ 0

T

∫ η

T

Ψ(η, T, η, σ)R1(σ) dσdη (18)

ξjk =
Mq

r
(pTj − pTk )

∫ 0

T

∫ η

T

Ψ(η, T, η, σ)R2(σ) dσdη (19)

where P and ΦP (t, η) are the unique solutions of

Ṗ = −PA−ATP +
1

r
PBBTP, P (T ) = MIn

Φ̇P (t, η) = (A− 1

r
BBTP )ΦP (t, η), ΦP (η, η) = In.

(20)

We define the CDM F from {0, ..., N}l into itself, such that
for all λ ∈ {0, ..., N}l,

F (λ) = (
∣∣{x0

i |x0
i ∈ Hλ

1 }
∣∣, . . . , ∣∣{x0

i |x0
i ∈ Hλ

l }
∣∣), (21)

where Hλ
j = Dj(R1x̄0 + R2pλ) = {x ∈ Rn|βTjkx ≤

δjk + θjkx̄0 + ξjkpλ ∀k ∈ {1, . . . , l}
}
. The functions (16)-

(17) are defined to compute the family of paths in which
lies the set of fixed points. The regions Hλ

j are the basins
of attraction associated with this family and the function F
counts the number of initial conditions in each Hλ

j . We now
state the main result of this section.

Theorem 3: The path x̂ is a fixed point of G, defined in
(13), if and only if it has the following form

x̂(t) = R1(t)x̄0 +R2(t)pλ, (22)

where λ is a fixed point of F .
Proof: See Appendix A.

Theorem 3 states that there exists a one to one map between
the fixed points of G (sustainable macroscopic behaviors) and
the fixed points of the CDM F . As a result, one can compute
all the sustainable macroscopic behaviors and anticipate the
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corresponding distributions of the choices between the alterna-
tives. More precisely, for each λ = (λ1, . . . , λl) ∈ {0, . . . , N}l
satisfying

∑l
i=1 λ = N , one can define the l regions Hλ

j and
count the numbers ηj of initial positions inside each region.
If ηj = λj , for all j ∈ {1, . . . , l}, then λ is a fixed point of
F . The map F may have multiple fixed points. Hence, an a
priori agreement on how to choose λ should exist. For exam-
ple, although non-cooperative, the agents may anticipate that
their majority will look for the most socially favorable Nash
equilibrium if many exist and N is large. This λ corresponds
to minimizing the total cost 1

N

∑N
i=1 Ji

(
u∗i (xi, x̂), x̂, x0

i

)
=

1
N

∑N
i=1 min

k∈{1,...,l}

{
1
2 (x0

i )
TΓ(0)x0

i + βk(0)Tx0
i + δk(0)

}
,

which is also computable by just knowing the exact initial
conditions of all the agents. Once the agents agree on a λ, they
start tracking the corresponding fixed point defined by (22).
The fixed point vector λ describes the way the population splits
between the destination points. In fact, λj , j ∈ {1, . . . , l},
is the number of agents that go towards pj . When N is
large however, this algorithm is costly in terms of number of
counting and verification operations. In the next section, we
consider the limiting case of a large population with random
initial conditions.

In the binary choice case, the quantities βT12x
0
i , i ∈

{1, . . . , N}, can be used to compare the “attractiveness” of
p2 w.r.t. p1 for the different players. In fact, if going to p1 has
lower cost than going to p2 for player i and βT12x

0
j ≤ βT12x

0
i ,

then p1 is also more attractive than p2 for player j. Hence,
the agents’ indices can be reordered in such a way that the
agents that go towards p1 have indices lower than those going
towards p2, as follows

βT12x
0
1 ≤ βT12x

0
2 ≤ · · · ≤ βT12x

0
N . (23)

We then derive in the following theorem a necessary and
sufficient condition for the existence of a fixed point path.

Theorem 4: For l = 2, the following statements hold:
1) x̂ is a fixed point of G if and only if there exists a

separating α ∈ {0, ..., N} such that:

βT12x
0
α − δ12 − θ12x̄0 − ξ12p2 ≤

α

N
ξ12(p1 − p2)

< βT12x
0
α+1 − δ12 − θ12x̄0 − ξ12p2. (24)

For α = 0, 0 < βT12x
0
1 − δ12 − θ12x̄0 − ξ12p2, (25)

For α = N , βT12x
0
N − δ12 − θ12x̄0 − ξ12p2 ≤ 0, (26)

where β12, δ12, θ12 and ξ12 are defined in (12), (18)
and (19). In this case, α is the number of agents that go
towards p1.

2) For ξ12(p1 − p2) ≥ 0, there exists α ∈ {0, ..., N}
satisfying (24), (25) or (26).

3) For ξ12(p1 − p2) < 0, there exists at most one α ∈
{0, ..., N} satisfying (24), (25) or (26). Moreover, there
exist some initial distributions for which no such α exists.
Proof: See Appendix A.

If the agents are indexed in ascending order of attractiveness
of p2 with respect to p1 as in (23), then an α satisfying (24)-
(26) separates the population into two groups, the agents that

go towards p1 (with indices less or equal to α), and those that
go towards p2 (with indices greater than α).

Remark 1: For the scalar case (n = 1), Φ and ΦP are real
exponential functions, which implies ξ12(p1 − p2) ≥ 0.

V. FIXED POINT - RANDOM INITIAL CONDITIONS

In this section, we assume that the agents’ initial conditions
x0
i are random and i.i.d. on some probability space (Ω,F ,P)

with distribution P0 on Rn. We assume an infinite size
population. As in the deterministic case, we construct a one
to one map between the fixed point paths and the fixed points
of a finite dimensional CDM. The latter characterizes the
distribution of the choices between the alternatives. Moreover,
we prove the existence of a fixed point and propose several
methods to compute it.

We start our search for a fixed point path by considering x̄
in (3) given and call it x̂. By Lemma 1, there exist l regions
Dj(x̂) such that the agents initially in Dj(x̂) select the control
law (8) when tracking x̂. By substituting (10) in (8) and the
resulting control law in (1), we show that the mean trajectory
E(xi) of a generic agent satisfies:

E(xi) = Gs(x̂) , Φ(0, t)Tµ0 +
M

r

∫ t

0

Ψ(σ, t, σ, T )pλ(x̂) dσ

− q

r

∫ t

0

∫ σ

T

Ψ(σ, t, σ, τ)x̂(τ) dτdσ, (27)

where Ψ was defined below (9), Ex0
i , µ0, pλ(x̂) =∑l

j=1 λj(x̂)pj and λj(x̂) = P0(Dj(x̂)). Gs and its fixed
points, if any, depend only on the initial statistical distribution
of the agents.

We define the set ∆l = {(λ1, . . . , λl) ∈ [0, 1]l|
∑l
j=1 λj =

1} and the CDM Fs from ∆l into itself such that

Fs(λ1, . . . , λl) = [P0(H̄λ
1 ), . . . , P0(H̄λ

l )], (28)

with

H̄λ
i = {x ∈ Rn|βTijx ≤ δij + θijµ0 + ξijpλ, ∀j ∈ {1, . . . , l}}

(29)
and pλ =

∑l
k=1 λkpk, where βkj , δkj , θkj and ξkj are defined

in (12), (18) and (19).
Theorem 5 below, proved in Appendix B, shows the exis-

tence of a fixed point of Fs using Brouwer’s fixed point theo-
rem. The latter requires continuity of Fs, which is guaranteed
by the following assumption.

Assumption 2: We assume that P0 is such that the P0-
measure of hyperplanes is zero.
Assumption 2 is satisfied when P0 is absolutely continuous
with respect to the Lebesgue measure for example. We now
state the main result of this section.

Theorem 5: Under Assumption 2, the following statements
hold:

(i) x̂ is a fixed point of Gs if and only if there exists λ =
(λ1, . . . , λl) in ∆l such that

Fs(λ) = λ, (30)

for x̂(t) = R1(t)µ0 + R2(t)pλ, where R1 and R2 are
defined in (16) and (17).
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(ii) Fs has at least one fixed point (equivalently Gs has at
least one fixed point).

(iii) For l = 2, if ξ12(p1 − p2) ≤ 0, then Gs has a unique
fixed point.

In Theorem 5, (i) shows that computing the anticipated macro-
scopic behaviors is equivalent to computing all the vectors
λ satisfying (30) under the corresponding constraint on x̂.
To compute a λ satisfying (30), each agent is assumed to
know the initial statistical distribution of the agents. As in
the deterministic case, multiple λ’s may exist. Hence, an a
priori agreement on how to choose λ should exist. In that
respect, the agents may implicitly assume that collectively
they will opt for the λ (assuming it is unique!) that minimizes
the total expected population cost EJi

(
u∗i (xi, x̂), x̂, x0

i

)
=

E min
k∈{1,...,l}

{
1
2 (x0

i )
TΓ(0)x0

i + βk(0)Tx0
i + δk(0)

}
(Γ, βk and

δk are defined in (6a)-(6c)), which can be evaluated if the
agents know the initial statistical distribution of the population.

While in the deterministic case a fixed point of the CDM F
determines the number of players that go to each destination
point, in the stochastic case a fixed point of Fs is the vector
of probabilities that an agent chooses each of the alternatives.
The CDM F and Fs defined respectively in the deterministic
and stochastic cases have similar structures. In fact, in the de-
terministic case, if the sequence {x0

i }Ni=1 of initial conditions
is interpreted as a random variable on some probability space
(Ω,F ,P) with distribution P0(A) = 1/N

∑N
i=1 1{x0

i∈A}, for
all (Borel) measurable sets A, then F (λ) = NFs(λ/N).

The fixed points of the CDM Fs characterize the game in
terms of the number of what will be characterized in Section
VII as ε−Nash equilibria, whether there is a consensus or
disagreement and the distribution of the choices between the
alternatives. In Subsection V-A, we investigate the question of
computing these fixed points, while Subsection V-B treats the
problem of uniqueness and multiplicity of these fixed points
in the Gaussian binary choice case.

A. Computation of The Fixed Points

The map Fs is not necessarily a contraction. Hence, it is
sometimes impossible to compute its fixed points by the simple
iterative method λk+1 = Fs(λk).

1) Binary Choice Case: We give two simple methods to
compute a fixed point of Fs in the binary choice case. The
first method is applicable if ξ12(p1 − p2) > 0. We define in
[0, 1] a sequence αk such that α0 is an arbitrary number in
[0, 1] and

λk+1 = (αk+1, 1−αk+1) = Fs(αk, 1−αk) = Fs(λk). (31)

The sequence λk converges to a fixed point of Fs. In fact,
given that ξ12(p1 − p2) > 0,

[
Fs(t, 1− t)

]
1

increases with t.
We show by induction that αk is monotone. But αk ∈ [0, 1],
therefore, αk converges to some limit α. By the continuity
of Fs, (α, 1 − α) satisfies (30). Since in this case Fs may
have multiple fixed points, the λ = (α, 1− α) obtained using
this approach depends on the initial value λ0 = (α0, 1− α0).
Moreover, the sequence x̄k = R1(t)µ0 +R2(t)pλk converges
to a fixed point of Gs. The second method is applicable if

ξ12(p1 − p2) ≤ 0. In this case
[
Fs(α, 1− α)

]
1
− α decreases

with α. Hence, one can compute the unique zero of this
function by the bisection method.

2) General Case: In general (l ≥ 2), Fs is a vector
of probabilities of some regions delimited by hyperplanes.
Although a fixed point could be computed using Newton’s
method, this is computationally expensive as it requires the
values of the inverse of the Jacobian matrix at the root
estimates. Alternatively, one can compute a fixed point of
Fs using a quasi Newton method such as Broyden’s method
[45] (see Section VIII). Using this method, the inverse of
the Jacobian can be estimated recursively provided that Fs is
continuously differentiable; this will be the case if the initial
probability distribution has a continuous probability density
function.

B. Gaussian Binary Choice Case

We have shown in Theorem 5 that for the binary choice
case (l = 2), if ξ12(p1 − p2) < 0, then Gs defined in
(27) has a unique fixed point. We now prove that for the
binary choice case and Gaussian initial distributionN (µ0,Σ0),
irrespective of the sign of ξ12(p1 − p2), Gs has a unique
fixed point provided that the initial spread of the agents is
“sufficient”. For any n×n matrix Σ such that (β12)TΣβ12 <(
ξ12(p1 − p2)

)2
/2π, we define

a(Σ) = δ12 + ξ12p2 − c(Σ)
√

2(β12)TΣβ12

b(Σ) = δ12 + ξ12p1 + c(Σ)
√

2(β12)TΣβ12

c(Σ) =

√
log ξ12(p1 − p2)− 1

2
log 2π(β12)TΣβ12

S(Σ) = {µ ∈ Rn,
(
βT12 − θ12

)
µ ∈ (a(Σ), b(Σ))},

(32)

where β12, δ12, θ12 and ξ12 are defined in (12), (18) and (19).
Theorem 6: Gs has a unique fixed point if one of the

following conditions is satisfied
1) βT12Σ0β12 ≥

(
ξ12(p1 − p2)

)2
/2π.

2) βT12Σ0β12 <
(
ξ12(p1 − p2)

)2
/2π and µ0 /∈ S(Σ0).

Proof: See Appendix B.
Theorem 6 states that in the Gaussian binary choice case, if

the initial distribution of the agents has enough spread, then the
agents make their choices in a unique way. On the other hand,
if the uncertainty in their initial positions is low enough and
the mean of population is inside the region S(Σ0) (a region
delimited by two parallel hyperplanes), then the agents can
anticipate the collective behavior in multiple ways.

VI. NONUNIFORM POPULATION WITH INITIAL
PREFERENCES

Hitherto, the agents’ initial affinities towards different po-
tential targets are dictated only by their initial positions in
space. In this section, the model is further generalized by
considering that in addition to their initial positions, the
agents are affected by their a priori opinion. When modeling
smoking decision in schools for example [46], this could
represent a teenager’s tendency towards “Smoking” or “Not
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Smoking”, which is the result of some endogenous factors such
as parental pressure, financial condition, health, etc. When
modeling elections, this would reflect personal preferences that
transcend party lines. Moreover, we assume in this section that
the agents have nonuniform dynamics.

We consider N agents with nonuniform dynamics

ẋi = Aixi +Biui i ∈ {1, . . . , N}, (33)

with random initial states as in Section V. Player i is associated
with the following individual cost:

Ji(ui, x̄, x
0
i ) = E

(∫ T

0

{q
2
‖xi − x̄‖2 +

r

2
‖ui‖2

}
dt

+ min
j∈{1,...,l}

(Mij

2
‖xi(T )− pj‖2

)∣∣∣x0
i

)
. (34)

In the costs (34), a small Mij relative to Mik, k 6= j, reflects
an a priori affinity of agent i towards the destination pj .

As N tends to infinity, it is convenient to
represent the limiting sequence of (θi)i∈{1,...,N} =
((Ai, Bi,Mi1, . . . ,Mil))i∈{1,...,N} by a random vector
θ. We assume that θ is in a compact set Θ. Let us
denote the empirical measure of the sequence θi as
PNθ (A) = 1/N

∑N
i=1 1{θi∈A} for all (Borel) measurable sets

A. We assume that PNθ has a weak limit Pθ, that is, for all
φ continuous, limN→∞

∫
Θ
φ(x)dPNθ (x) =

∫
Θ
φ(x)dPθ(x).

For further discussions about this assumption, one can refer
to [47]. We assume that the initial states x0

i and θ are
independent, and that an agent i knows its initial position
x0
i , its parameters θi, as well as the distributions P0 and
Pθ. We develop the following analysis for a generic agent
with an initial position x0 and parameters θ. Assuming an
infinite size population, we start by tracking x̂(t), a posited
deterministic although initially unknown continuous path. We
can then show that, under the convention in Assumption 1,
this tracking problem is associated with a unique optimal
control law

u∗(t) = −1

r
(Bθ)T

(
Γθj (t)x+ βθj (t)

)
if x0 ∈ Dθ

j (x̂), (35)

where Γθj , βθj , δθj are the unique solutions of

Γ̇θj −
1

r
ΓθjB

θ(Bθ)TΓθj + ΓθjA
θ + (Aθ)TΓθj + qIn = 0 (36a)

β̇θj =

(
1

r
ΓθjB

θ(Bθ)T − (Aθ)T
)
βθj + qx̂ (36b)

δ̇θj =
1

2r
(βθj )TBθ(Bθ)Tβθj −

1

2
qx̂T x̂, (36c)

with the final conditions Γθj (T ) = Mθ
j In, βθj (T ) =

−Mθ
j pj , δ

θ
j (T ) = 1

2M
θ
j p

T
j pj . The definition of the basins of

attraction becomes

Dθ
j (x̂) =

{
x ∈ Rn such that

1

2
xTΓθjkx+ xTβθjk(x̂) + δθjk(x̂) ≤ 0, ∀k ∈ {1, . . . , l}

}
,

(37)

where Γθjk = Γθj (0) − Γθk(0), βθjk(x̂) = βθj (0) − βθk(0)

and δθjk(x̂) = δθj (0) − δθk(0). In this case, the solutions

of the Riccati equations (36a) depend on both the initial
preference vector Mθ and the destination points. Hence, the
basins of attraction are now regions delimited by quadric
surfaces in Rn instead of hyperplanes. This fact complicates
the structure of the operator that maps the tracked path to
the mean. The existence proof for a fixed point relies now on
an abstract Banach space version of Brouwer’s fixed point
theorem, namely Schauder’s fixed point theorem [41]. We
define Ψθ

j (η1, η2, η3, η4) = Φθj (η1, η2)TBθ(Bθ)TΦθj (η3, η4),
where Πθ

j (t) = 1
rΓθj (t)B

θ(Bθ)T − (Aθ)T , and Φθj is defined
as in (9), where Π is replaced by Πθ

j . The state trajectory of
the generic agent, on {x0 ∈ Dθ

j (x̂)}, is then equal to

x0θ(t) = Φθj (0, t)
Tx0 +

Mθ
j

r

∫ t

0

Ψθ
j (σ, t, σ, T )pj dσ

− q

r

∫ t

0

∫ σ

T

Ψθ
j (σ, t, σ, τ)x̂(τ) dτdσ, (38)

Assumption 3: We assume that E‖x0‖2 <∞.
The functions defined by (36a), (36b) and (36c) are con-

tinuous with respect to θ, which belongs to a compact set.
Moreover, θ and x0 are assumed to be independent. Thus, un-
der Assumption 3, the mean of the infinite size population can
be computed using Fubini-Tonelli’s theorem [48] as follows:

E(x0θ(t)) = Gp(x̂) ,
l∑

j=1

∫
Θ

∫
Rn

1Dθj (x̂)(x
0)
{

Φθj (0, t)
Tx0

+
Mθ
j

r

∫ t

0

Ψθ
j (σ, t, σ, T )pj dσ (39)

− q

r

∫ t

0

∫ σ

T

Ψθ
j (σ, t, σ, τ)x̂(τ) dτdσ

}
dP0dPθ.

In the next theorem, we show that Gp has a fixed point. We
define

k1 = E‖x0‖ ×

 l∑
j=1

max
(θ,t)∈Θ×[0,T ]

‖Φθj (0, t)‖


k2 =

l∑
j=1

max
(θ,t)∈Θ×[0,T ]

∥∥∥∥Mθ
j

r

∫ t

0

Ψθ
j (σ, t, σ, T )pj dσ

∥∥∥∥
k3 =

q

r

l∑
j=1

max
(θ,t,σ,τ)∈Θ×[0,T ]3

‖Ψθ
j (σ, t, σ, τ)‖.

(40)

Since Θ and [0, T ] are compact and Φθj is continuous with
respect to time and parameter θ, then k1, k2 and k3 are well
defined. Theorem 7 below, proved in Appendix B, establishes
the existence of a fixed point of Gp using Schauder’s fixed
point theorem. The latter requires boundedness of Gp on
bounded subsets of its domain and continuity of Gp, which
are guaranteed by the following two assumptions respectively.

Assumption 4: We assume that
√

max(k1 + k2, k3)T <
π/2.
Noting that the left hand side of the inequality tends to zero
as T goes to zero, Assumption 4 can be satisfied for a short
time horizon T for example.

Assumption 5: We assume that P0 is such that the P0-
measure of quadric surfaces is zero.



0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2723956, IEEE
Transactions on Automatic Control

9

Assumption 5, similar to Assumption 2, is satisfied when P0

is absolutely continuous with respect to the Lebesgue measure
for example.

Theorem 7: Under Assumptions 3, 4 and 5, Gp has a fixed
point.
Note that if T goes to zero, the costs become decoupled,
and each agent will choose the “closest” destination in the
minimum energy sense. It is then expected that a Nash
equilibrium exists in this case. Assumption 4 gives an upper
bound on the time horizon T under which we can prove that
such an equilibrium continues to exist.

VII. APPROXIMATE NASH EQUILIBRIUM

In the three cases above, deterministic, random initial
conditions and random initial conditions with non-uniform
dynamics and initial preferences, we defined three maps G, Gs
and Gp respectively (equations (13), (27) and (39)). Depending
on the structure of the game, each player can anticipate the
macroscopic behavior of the limiting population by computing
a fixed point x̂ of G, Gs or Gp, and compute its best response
u∗i (xi, x̂) to x̂ as defined in (8), (35). When considering the
finite population, the next theorem establishes the importance
of such decentralized strategies in that they lead to an ε-Nash
equilibrium with respect to the costs (2), (3) and (34). This
equilibrium makes the group’s behavior robust in the face of
potential selfish behaviors as unilateral deviations from the
associated control policies are guaranteed to yield negligible
cost reductions when N increases sufficiently.

Theorem 8: Under Assumption 3, the decentralized strate-
gies u∗i , i ∈ {1, . . . , N}, defined in (8) and (35) for a fixed
point path x̂, constitute an εN -Nash equilibrium with respect
to the costs Ji(ui, u−i), where εN goes to zero as N increases
to infinity.

Proof: See Appendix B.

VIII. SIMULATION RESULTS

To illustrate the collective decision-making mechanism, we
consider a group of agents (robots) moving on the real line
according to a second order system, ẍi = −3xi − ẋi + ui,
where xi is the position of robot i. They should move from
their initial conditions towards the position 10, and arrive at
the speed of 1, 4 or 10. Thus, in the state space (position,
speed), the potential destination points are p1 = (10, 10),
p2 = (10, 4) or p3 = (10, 1). We draw N = 300 initial
conditions from the Gaussian distribution P0 , N (0, I2).
We simulate two cases. In the first one, each agent knows the
exact initial states of the other agents and anticipates the mean
of the population accordingly. Following the counting and
verification operations described at the end of Section IV, we
find that F defined in (21) has a fixed point λ = (91, 209, 0).
By implementing the control laws corresponding to this λ, 91
agents (30.33% of the agents) go towards p1 and 209 (69.67%
of the agents) towards p2 (see Fig.1). Moreover, the actual
average replicates the anticipated mean as shown in this figure.
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Fig. 1. Collective choice (deterministic initial conditions) with λ =
(91, 209, 0). Red Crosses = agents that go towards p1. Blue diamonds =
agents that go towards p2.

In the second case, the agents know only the initial distri-
bution P0 of the agents. Then, Broyden’s method converges
to λ = (0.3066, 0.6921, 0.0013) satisfying (30). Accordingly,
30.66% of the agents go towards p1, 69.21% towards p2 and
the rest towards p3 (see Fig.2). The actual average and the
anticipated mean are approximately the same.
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Fig. 2. Collective choice (random initial conditions) with λ =
(0.3066, 0.6921, 0.0013). Red Crosses = agents that go towards p1. Blue
diamonds = agents that go towards p2.

To illustrate the social effect on the individual choices
(see Fig. 3), we consider the same initial conditions. Without
social effect (q = 0), (0.4146, 0.5843, 0.0011) satisfies (30).
In this case, the majority goes towards p2. As the social effect
increases to q = 5, some of the agents that went towards p1

in the absence of a social effect change their decisions and
follow the majority towards p2 (see yellow balls in Fig. 3). In
this case, (0.1775, 0.8216, 0.0009) satisfies (30). If the social
impact increases more to q = 30, then a consensus to follow
the majority occurs. Figure 4 shows that as the social effect
increases, the basin of attraction of p2 (blue area) increases at
the expenses of the two other basins.
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Fig. 3. Influence of the social effect q. Red Crosses = agents that go towards
p1. Blue diamonds = agents that go towards p2. Yellow balls = agents that
change their decisions when the social effect increases and follow the majority
towards p2.
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Fig. 4. Influence of the social effect q on the Basins of attraction. Region
hatched with: red crosses = basin of attraction of p1, blue diamonds = basin
of attraction of p2 and green circles = basin of attraction of p3.

To illustrate the impact of the individual efforts on the
behavior of the population (see Fig. 5), we start with the
case where the control effort is inexpensive (r = 1). In this
case, λ = (0.3066, 0.6921, 0.0013) is a fixed point of Fs,
defined in (28). As the effort coefficient increases (r = 5),
the majority of the agents that went to p1 in the previous
case (r = 1) choose a closer alternative, namely p2 (yellow
balls). Moreover, some of the agents that chose p2 move now
towards a less expensive choice p3 (yellow balls). In this case
λ = (0.0097, 0.9085, 0.0819). As r increases to 10, more
players change their choices from p2 to p1 (yellow balls), and
λ is equal to (0.0004, 0.6664, 0.3332) in this case.

Fig. 5. Influence of r.

To illustrate the Gaussian Binary Choice Case, we consider
a group of agents initially drawn from the normal distribu-
tion N (µ0, I2) and moving according to the same dynamics
towards the destination points p1 = (−10, 0) or p2 = (10, 0).
Now the robots are moving on the real line towards −10 or 10,
where they must arrive at a speed 0. For the covariance matrix
Σ0 = I2, S(Σ0) defined in (32) is the region delimited by the
lines y = −3.8203 − 0.9164x and y = 3.8203 − 0.9164x. If
µ0 = (5, 0), i.e., outside S(Σ0), only one ε−Nash equilibrium
corresponding to λ = (0, 1) exists. If µ0 = (0, 0), i.e. inside
S(Σ0), three ε-Nash equilibria exist. The first corresponds to
λ1 = (0.06, 1− 0.06), the second to λ2 = (0.5, 1− 0.5), and
the third to λ3 = (0.94, 1− 0.94) (see Fig. 6).
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Fig. 6. Gaussian binary choice case. Fixed points of Fs defined in (28).

IX. CONCLUSION

We consider in this paper a dynamic collective choice
model where a large number of agents are choosing between
multiple destination points while taking into account the social
effect as represented by the mean of the population. The
analysis is carried using the MFG methodology. We show that
under this social effect, the population may split between the
destination points in different ways. For a uniform population,
we show that there exists a one to one map between the self-
replicating mean trajectories and the fixed points of a function
defined on Rl. The latter describe the way the agents split
between the l destination points. Finally, we prove that the
decentralized strategies optimally tracking the self-replicating
mean trajectories are approximate Nash equilibria. We suspect
that in the uniform case the linear dynamics and the quadratic
running costs are necessary to reduce the infinite dimensional
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fixed point problem to a finite dimensional one. It is of interest
for future work to extend our analysis to a model where
players have stochastic dynamics as well. In that case, the
optimal choices (feedback strategies) change along the path
according to the occurring events (noise). This is in contrast
to the current formulation where the agents can choose without
loss of optimality their destination before they start moving.
Also, we would like to extend the current formulation to
certain nonlinear models, where the basins of attraction are
delimited by more complex manifolds, and the fixed-point
computations would require numerical methods for backward-
forward systems of partial differential equations [49].

APPENDIX A

This appendix includes the proofs of lemmas and theorems
related to the tracking and fixed point problems in case of
deterministic initial conditions.

A. Proof of Lemma 2

In this proof, the subscript M indicates the dependence on
the final cost’s coefficient M . For any M > 0, the agents are
optimally tracking a path x̂M . The agent i optimal state is
denoted by x∗iM (t). We have

M

2
min

j∈{1,...,l}

(
‖x∗iM (T )− pj‖2

)
≤ JiM (u∗iM , x̂M , x

0
i ),

where JiM (u∗iM , x̂M , x
0
i ) is the cost defined by (2) with the

final cost’s coefficient equal M . It suffices to find an upper
bound for JiM (u∗iM , x̂M , x

0
i ) which is uniformly bounded

with M . Since (A,B) is controllable, then there exists for
each agent i a continuous control law ux0

i ,p1
(t) on [0, T ]

which transfers this agent from the state x0
i to p1 in a

finite time T . By optimality, we have JiM (u∗iM , x̂M , x
0
i ) ≤

JiM

(
ux0

i ,p1
, x̂M , x

0
i

)
. But,

JiM

(
ux0

i ,p1
, x̂M , x

0
i

)
=∫ T

0

{q
2
‖xi(ux0

i ,p1
)− x̂M‖2 +

r

2
‖ux0

i ,p1
‖2
}

dt,

which is uniformly bounded with M , since x̂M is uniformly
bounded with M . Thus, for all ε > 0, there exists an M0 > 0

such that for all M > M0, min
j∈{1,...,l}

(
‖x∗iM (T )− pj‖2

)
< ε.

B. Fixed points of G2(·, λ)

For any λ = (λ1, . . . , λl) ∈ {0, ..., N}l, we define the map
Tλ from C([0, T ],Rn) to C([0, T ],Rn) by Tλ(x̂) = G2(x̂, λ),
with G2 defined in (15).

Lemma 9: For any λ = (λ1, . . . , λl) ∈ {0, ..., N}l, Tλ has
a unique fixed point equal to

yλ = R1(t)x̄0 +R2(t)pλ, (41)

where R1 and R2 are defined in (16)-(17) and x̄0 is the agents’
initial average. Moreover, if (A,B) is controllable, then the
paths yλ are uniformly bounded with respect to (M,λ) ∈

[0,∞)× [0, N ]l for the norm
( ∫ T

0
‖.‖2dt

) 1
2

.

Proof: Consider y a fixed point of Tλ. We define

n(t) = Γ(t)y(t) + q

∫ t

T

Φ(t, σ)y(σ)dσ −MΦ(t, T )pλ,

where Γ and Φ are defined in (6a) and (9). One can easily
check that (y, n) satisfies

ẏ = Ay − 1

r
BBTn y(0) = x̄0 (42)

ṅ = −ATn n(T ) = M(y(T )− pλ).

Therefore, y and n are respectively the optimal state and co-
state of the following LQR problem:

min
u

∫ T

0

r

2
‖u‖2dt +

M

2
‖x(T )− pλ‖2 (43)

Subject to ẋ = Ax+Bu x(0) = x̄0.

Hence, n has the representation n(t) = P (t)y(t)+g(t), where
P is the unique solution of the Riccati equation (20) and g
satisfies ġ = −(A− 1

rBB
TP (t))T g, with g(T ) = −Mpλ. By

solving g and implementing its expression in n = Py+g, and
by implementing the new expression of n in the dynamics of
y, one can show that y(t) = R1(t)x̄0 +R2(t)pλ. Conversely,
let (n, y) be the unique solution of (42). We define m(t) =
Γ(t)y(t) + q

∫ t
T

Φ(t, σ)y(σ)dσ−MΦ(t, T )pλ. One can easily
check that d(m − n)/dt = ( 1

rΓBBT − AT )(m − n), with
m(T ) = n(T ). Therefore, n = m and from (42) y is a fixed
point of Tλ.

We now prove the uniform boundedness of the fixed point
paths yλ with respect to (M,λ). The paths yλ are the optimal
states of the control problem (43). Since (A,B) is controllable,
the corresponding optimal control law uλ satisfies∫ T

0

r

2
‖uλ‖2dt ≤

∫ T

0

r

2
‖uλ0‖2dt,

where uλ0 is a continuous control law that transfers the state y
from y(0) to pλ. But uλ0 is independent of M and continuous
with respect to λ. Hence,

sup
λ∈[0,N ]l

∫ T

0

r

2
‖uλ‖2dt ≤ max

λ∈[0,N ]l

∫ T

0

r

2
‖uλ0‖2dt.

We have

yλ(t) = exp(At)x̄0 +

∫ t

0

exp(A(t− σ))Buλ(σ)dσ.

Therefore,∫ T

0

‖yλ‖2dt ≤ K1+K2

∫ T

0

‖uλ‖2dt+K3

(∫ T

0

‖uλ‖2dt
) 1

2

,

for some positive constants K1,K2,K3 which are independent
of (M,λ). Hence, yλ is uniformly bounded with (M,λ).

C. Proof of Theorem 3

If x̂ is a fixed point of G, then x̂ is a fixed point of the map
Tλ(x̂), with Tλ defined in the previous subsection. By Lemma
9, x̂ is of the form (22). To show that λ(x̂) is a fixed point
of F , we replace the new expression of the fixed point x̂ (22)
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in the expressions of the basins of attraction, which will then
have the following form

H
λ(x̂)
j = Dj(R1(t)x̄0 +R2(t)pλ(x̂)) =

{x ∈ Rn|βTjkx ≤ δjk + θjkx̄0 + ξjkpλ(x̂) ∀k ∈ {1, . . . , l}
}
.

Therefore,

λ(x̂) = (
∣∣{x0

i |x0
i ∈ D1(x̂)}

∣∣, . . . , ∣∣{x0
i |x0

i ∈ Dl(x̂)}
∣∣)

= (
∣∣{x0

i |x0
i ∈ H

λ(x̂)
1 }

∣∣, . . . , ∣∣{x0
i |x0

i ∈ H
λ(x̂)
l }

∣∣) , F (λ(x̂)).

Thus, we proved that if x̂ is a fixed point of G, then x̂ is of
the form (22), where λ = λ(x̂) is a fixed point of the finite
dimensional operator F defined in (21).

To prove the converse, we consider a fixed point λ of F
and the path x̂ = R1(t)x̄0 +R2(t)pλ. We have

λ = F (λ) = (
∣∣{x0

i |x0
i ∈ Hλ

1 }
∣∣, . . . , ∣∣{x0

i |x0
i ∈ Hλ

l }
∣∣)

= (
∣∣{x0

i |x0
i ∈ D1(x̂)}

∣∣, . . . , ∣∣{x0
i |x0

i ∈ Dl(x̂)}
∣∣) = λ(x̂),

where the third equality is a consequence of the form of x̂.
By Lemma 9, the path x̂ is the unique fixed point of Tλ. But
then x̂ = Tλ(x̂) = Tλ(x̂)(x̂) = G(x̂). Therefore, x̂ is a fixed
point of G.

D. Proof of Theorem 4

The first point follows from Theorem 3 and (23). For 2)
and 3), we define

aN (α) =
N

ξ12(p1 − p2)

(
βT12x

0
α − δ12 − θ12x̄0 − ξ12p2

)
.

We start by proving 2). Suppose that there does not exist any
α in {0, ..., N} satisfying (24), (25) or (26). Zero does not
satisfy (25), hence aN (1) ≤ 0 < 1. One does not satisfy
(24) and aN (1) < 1, hence aN (2) ≤ 1. By induction, we
have aN (N) ≤ N − 1. Therefore, N satisfies (26). Thus, by
contradiction, there exists α in {0, ..., N} satisfying (24), (25)
or (26). We now prove the third point. Suppose that there exist
multiple α’s satisfying (24), (25) or (26). Let α0 be the least
of these α’s. If α0 < N , then in view of ξ12(p1 − p2) < 0,
aN (α0 + 1) < α0 ≤ aN (α0). aN (j) is decreasing. Hence,
for all α > α0, aN (α) ≤ aN (α0 + 1) < α0 < α. Therefore,
α0 is the unique α satisfying (24), (25) or (26). Finally, if
ξ12(p1−p2) < 0, then an initial distribution for which aN (α)
is in (0, 1), for all α in {0, ..., N}, does not have any α in
{0, ..., N} satisfying (24), (25) or (26).

APPENDIX B

In this appendix, we provide the proofs of theorems related
to the fixed point problems in the random initial conditions
and non-uniform population cases, as well as the proof of
Theorem 8, which characterizes the decentralized control laws
developed in Sections III to VI as ε−Nash strategies.

A. Proof of Theorem 5

We start by proving (i). Let x̂ be a fixed point of Gs
and λj = P0(Dj(x̂)). By replacing the probabilities in the
expression of Gs by λj , j ∈ {1, . . . , l}, we get x̂ = Gs(x̂) =
Tλ(x̂), where λ = (λ1, . . . , λl) and Tλ is defined above
Lemma 9. Hence, x̂ is a fixed point of Tλ. By Lemma 9,
x̂(t) = R1(t)µ0 + R2(t)pλ. By replacing this expression of
x̂ in Dj(x̂) (11), we get λ = Fs(λ). Conversely, consider
λ = (λ1, . . . , λl) in ∆l such that λ = Fs(λ) and let
x̂(t) = R1(t)µ0 + R2(t)pλ. The path x̂ is the unique fixed
point of Tλ and(

P0(D1(x̂)), . . . , P0(Dl(x̂))

)
= Fs(λ) = λ.

Hence, x̂ = Tλ(x̂) = Gs(x̂). We now prove the second point.
Noting that the set ∆l is convex and compact in Rl, we just
need to show that Fs is continuous. Then, Brouwer’s fixed
point theorem [41] ensures the existence of a fixed point. Let
λr be a sequence in ∆l converging to λ. We have∣∣∣[Fs(λr)]k − [Fs(λ)

]
k

∣∣∣ =

∣∣∣∣ ∫
Rn

(1H̄λrk
(x)− 1H̄λk (x)) dP0(x)

∣∣∣∣
≤
∫
Rn

∣∣∣1H̄λrk (x)− 1H̄λk (x)
∣∣∣ dP0(x).

But, H̄λr
k and H̄λ

k , defined in (29), are regions delimited by
hyperplanes. Hence, under Assumption 2,∫

Rn

∣∣∣1H̄λrk (x)− 1H̄λk (x)
∣∣∣dP0(x) =∫
Rn

∣∣∣1 ◦
H̄λrk

(x)− 1 ◦
H̄λk

(x)
∣∣∣dP0(x).

But,
∣∣∣1 ◦
H̄λrk

(x)−1 ◦
H̄λk

(x)
∣∣∣ ≤ 2 and converges to zero for all x in

Rn. Thus, by Lebesgue dominated convergence theorem [48],
the integral of this function converges to zero. This proves
that Fs is continuous. Finally, we prove (iii). For l = 2, the
fixed points of Fs are of the form (α, 1−α). The set of fixed
points of Fs is compact. Thus, the set of the first components
of these fixed points is compact. Let α0 be the minimum of
those first components. Consider α > α0. Hence,{

(β12)Tx0
i − δ12 − θ12µ0 − ξ12p2 ≤ αξ12(p1 − p2)

}
⊂ {(β12)Tx0

i − δ12 − θ12µ0 − ξ12p2 ≤ α0ξ12(p1 − p2)
}
,

which implies
[
Fs(α, 1− α)

]
1
≤
[
Fs(α0, 1− α0)

]
1

= α0 <

α. Thus, (α0, 1 − α0) is the unique fixed point of Fs, and
x̂(t) = R1(t)µ0 + R2(t)p(α0,1−α0) is the unique fixed point
of Gs.

B. Proof of Theorem 6

We show in Theorem 5 that the fixed points of Gs can
be one to one mapped to the fixed points of Fs. The initial
states x0

i are distributed according to a Gaussian distribution
N (µ0,Σ0). Therefore, βT12x

0
i are distributed according to

the normal distribution N
(
βT12µ0, β

T
12Σ0β12

)
. Thus, one can

analyze the dependence of
[
Fs(α, 1−α)

]
1
−α on α to show
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that this function has a unique zero in [0, 1] in case 1) or 2)
holds. Indeed, if 1) or 2) holds, the sign of the derivative with
respect to α of

[
Fs(α, 1 − α)

]
1
− α does not change. Thus,

this function is monotonic. This implies that Fs and Gs have
unique fixed points.

C. Proof of Theorem 7

We use Schauder’s fixed point theorem [41] to prove the ex-
istence of a fixed point. We start by showing that Gp is a com-
pact operator, i.e., Gp is continuous and maps bounded sets to
relatively compact sets. Let x̂ be in C([0, T ],Rn) and {x̂k}k∈N
be a sequence converging to x̂ in

(
C([0, T ],Rn), ‖.‖∞

)
. Let

Qj = max
(θ,t)∈Θ×[0,T ]2

‖Φθj (t)‖

+ max
(θ,t)∈Θ×[0,T ]4

‖Ψθ
j (t)‖+ max

θ∈Θ
‖Mθ‖.

We have

‖Gp(x̂k)−Gp(x̂)‖∞ ≤
l∑

j=1

Qj

{
qT 2

r
‖x̂k−x̂‖∞+V1j+

Qj‖pj‖T + q‖x̂‖∞T 2

r
V2j

}
,

where

V1j =

∫
Θ

∫
Rn

∣∣∣1Dθj (x̂k)(x
0)− 1Dθj (x̂)(x

0)
∣∣∣‖x0‖dP0dPθ

V2j =

∫
Θ

∫
Rn

∣∣∣1Dθj (x̂k)(x
0)− 1Dθj (x̂)(x

0)
∣∣∣dP0dPθ.

Under Assumption 5,

V1j =

∫
Θ

∫
Rn

∣∣∣1 ◦
Dθj (x̂k)

(x0)− 1 ◦
Dθj (x̂)

(x0)
∣∣∣‖x0‖dP0dPθ.

But,
∣∣∣1 ◦
Dθj (x̂k)

(x0)− 1 ◦
Dθj (x̂)

(x0)
∣∣∣‖x0‖ ≤ 2‖x0‖ and converges

to zero for all (x0, θ) in Rn × Θ. We have E‖x0‖ < ∞.
Therefore, by Lebesgue’s dominated convergence theorem
[48], V1j converges to zero. By the same technique, we prove
that V2j converges to zero. Hence, Gp is continuous.

Let V be a bounded subset of C([0, T ],Rn). We show
in the following via Arzela-Ascoli Theorem that the closure
of Gp(V ) is compact. Let {Gp(x̂k)}k∈N ∈ Gp(V ). By the
continuity of Φθj (σ, t) with respect to (σ, t, θ), of its derivative
with respect to t and σ, and by the boundedness of x̂k, one
can prove that for all (t, s) in [0, T ]2,

‖Gp(x̂k)(t)−Gp(x̂k)(s)‖ ≤
(
K1E‖x0‖+K2

)
|t− s|,

where K1 and K2 are positive constants. This inequal-
ity implies the uniform boundedness and equicontinuity of
{Gp(x̂k)}k∈N. By Arzela-Ascoli Theorem [41], there exists a
convergent subsequence of {Gp(x̂k)}k∈N. Hence, Gp(V ) and
its closure are compact sets, and Gp is a compact operator.

Now we construct a nonempty, bounded, closed, convex
subset U ⊂ C([0, T ],Rn) such that Gp(U) ⊂ U . Let Q =
max(k1 + k2, k3), where k1, k2 and k3 are defined in (40).
We have ‖Gp(x)(t)‖ ≤ Q+Q

∫ t
0

∫ T
σ
‖x̂(τ)‖dτdσ.. Consider

the following set

U =
{
x ∈ C([0, T ],Rn)| ‖x(t)‖ ≤ R(t), ∀t ∈ [0, T ]

}
,

where R is a continuous positive function on [0, T ] to be
determined later. U is an nonempty, bounded, closed and
convex subset of C([0, T ],Rn). If we find an R positive such
that R(t) = Q+Q

∫ t
0

∫ T
σ
R(τ) dτdσ, for all t ∈ [0, T ], then

for all x̂ ∈ U ,

‖Gp(x)(t)‖ ≤ Q+Q

∫ t

0

∫ T

σ

R(τ) dτdσ = R(t). (44)

Hence, Gp(U) ⊂ U . It remains to find such R. Note that the
equality in (44) is equivalent to the second order differential
equation R̈ = −QR, with the boundary conditions, R(0) = Q
and Ṙ(T ) = 0. Thus, R(t) = Q/ cos(

√
Qt), which is positive

under Assumption 4. Having found R, U is well defined and
by Schauder’s Theorem, Gp has a fixed point in U .

D. Proof of Theorem 8

We consider an arbitrary agent i ∈ {1, ..., N} applying
an arbitrary full state feedback control law ui. Suppose that
this agent i can profit by a unilateral deviation from the
decentralized strategies. This means that

Ji(ui, u
∗
−i) ≤ Ji(u∗i , u∗−i). (45)

In the following, we prove that this potential cost improvement
is bounded by some εN that converges to zero as N increases
to infinity. We denote respectively by xi and x∗j the states
corresponding to ui and u∗j . In view of (34), the compactness
of Θ, the continuity of x∗j with respect to θ and E‖x0

i ‖2 <∞,
the right hand side of (45) is bounded by Q1 independently of
N . For any X and Y in C([0, T ],Rn), we define < X|Y >=

E
(∫ T

0
XT (t)Y (t) dt

∣∣∣x0
i

)
and ‖X‖2 =

√
< X|X >. We

have

Ji(ui, u
∗
−i) = Ji

(
xi, x̂, x

0
i

)
+
q

2

∥∥∥x̂− 1

N

N∑
j=1

x∗j

∥∥∥2

2

+
q

2N2
‖x∗i − xi‖22 + S1 + S2 + S3,

where

S1 =
q

N

〈
x∗i − xi

∣∣∣xi − x̂〉
S2 =

q

N

〈
x∗i − xi

∣∣∣x̂− 1

N

N∑
j=1

x∗j

〉
S3 = q

〈
x̂− 1

N

N∑
j=1

x∗j

∣∣∣xi − x̂〉,
with x̂ is a fixed point of Gp. By the Cauchy-Schwarz
inequality,

|S1| ≤
q

N

∥∥∥x∗i − xi∥∥∥
2

∥∥∥xi − x̂∥∥∥
2
.

In view of (45) and the bound Q1,
∥∥∥x∗i −xi∥∥∥

2
and

∥∥∥xi− x̂∥∥∥
2

are bounded. Thus, |S1| ≤ η1/N , where η1 > 0. Similarly,
|S2| ≤ η2/N , where η2 > 0. We define

αN =
∥∥∥x̂− 1

N

N∑
j=1

Ex∗j
∥∥∥

2
=
∥∥∥∫

Θ

x̄θ dPθ −
∫

Θ

x̄θ dPNθ

∥∥∥
2
,
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where x̄θ = E(x0θ|θ), with x0θ defined in (38). We have∥∥∥x̂− 1

N

N∑
j=1

x∗j

∥∥∥2

2
≤ 2α2

N + 2
∥∥∥ 1

N

N∑
j=1

(
Ex∗j − x∗j

)∥∥∥2

2
.

By the compactness of [0, T ] × Θ, the family of functions
x̄θ(t) defined on Θ and indexed by t is uniformly bounded
and equicontinuous. By Corollary 1.1.5 of [50], we deduce

lim
N→+∞

sup
t∈[0,T ]

∥∥∥x̂(t)− 1

N

N∑
j=1

Ex∗j (t)
∥∥∥ = 0.

Thus, αN converges to 0 as N increases to infinity. By
the independence of the initial conditions (and thus the in-
dependence of x∗j , j ∈ {1, . . . , N}) and the assumption

E‖x0
i ‖2 < ∞, we deduce that

∥∥∥ 1
N

∑N
j=1

(
Ex∗j − x∗j

)∥∥∥2

2
=

O(1/N). Thus, S3 and
∣∣∣Ji(x∗i , x̂, x0

i

)
− Ji

(
u∗i , u

∗
−i

)∣∣∣ con-
verge to 0 as N increases to infinity. By optimality, we
have Ji

(
x∗i , x̂, x

0
i

)
≤ Ji

(
xi, x̂, x

0
i

)
. Therefore, Ji(ui, u∗−i) ≥

Ji(u
∗
i , u
∗
−i)+εN , where εN = Ji

(
x∗i , x̂, x

0
i

)
−Ji

(
u∗i , u

∗
−i

)
+

S1 + S2 + S3 converges to 0 as N increases to infinity.
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[23] N. Nourian, R. P. Malhamé, M. Huang, and P. E. Caines, “Mean-
field NCE formulation of estimation-based leader-follower collective
dynamics,” International Journal of Robotics and Automation, vol. 26,
no. 1, pp. 120–129, 2011.

[24] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks, First, Ed. Princeton University Press, 2010.

[25] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic
Networks, ser. Applied Mathematics Series. Princeton University Press,
2009.

[26] J. Le Ny and G. J. Pappas, “Adaptive deployment of mobile robotic
networks,” IEEE Transactions on automatic control, vol. 58, pp. 654–
666, 2013.

[27] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
numerical methods. Prentice hall Englewood Cliffs, NJ, 1989, vol. 23.

[28] F. Koppelman and V. Sathi, “Incorporating variance and covariance
heterogeneity in the generalized nested logit model: an application
to modeling long distance travel choice behavior,” Transportation Re-
search, vol. 39, pp. 825–853, 2005.

[29] C. Bhat and J. Guo, “A mixed spatially correlated logit model: formu-
lation and application to residential choice modeling,” Transportation
Research, vol. 38, pp. 147–168, 2004.

[30] M. A. Burke, G. Fournier, and K. Prasad, Physician social networks
and geographical variation in medical care. Center on Social and
Economic Dynamics, 2003.

[31] W. Brock and S. Durlauf, “Discrete choice with social interactions,”
Review of Economic Studies, pp. 147–168, 2001.

[32] M. Huang, P. E. Caines, and R. P. Malhamé, “Large-population cost-
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with LSS CNRS (France), École Centrale de Paris,

and University of Rome Tor Vergata. His interest in statistical mechanics
inspired approaches to the analysis and control of large scale systems has
led him to contributions in the area of aggregate electric load modeling, and
to the early developments of the theory of mean field games. His current
research interests are in collective decentralized decision making schemes,
and the development of mean field based control algorithms in the area of
smart grids. From june 2005 to june 2011, he headed GERAD, the Group
for Research on Decision Analysis. He is an Associate Editor of International
Transactions on Operations Research

Jerome Le Ny (S’05-M’09) is an assistant pro-
fessor in the Department of Electrical Engineer-
ing at the Ecole Polytechnique de Montréal since
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