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Abstract This paper studies a dynamic collective choice model in the pres-
ence of an advertiser, where a large number of consumers are choosing between
two alternatives. Their choices are influenced by the group’s aggregate choice
and an advertising effect. The latter is produced by an advertiser making
investments to convince as many consumers as possible to choose a specific
alternative. In schools for example, teenagers’ decisions to smoke are con-
siderably affected by their peers’ decisions, as well as the ministry of health
campaigns against smoking. We model the problem as a Stackelberg dynamic
game, where the advertiser makes its investment decision first, and then the
consumers choose one of the alternatives. On the methodological side, we use
the theory of mean field games to solve the game for a continuum of consumers.
This allows us to describe the consumers’ individual and aggregate behaviors,
and the advertiser’s optimal investment strategies. When the consumers have
sufficiently diverse a priori opinions towards the alternatives, we show that a
unique Nash equilibrium exists between them, which predicts the distribution
of choices over the alternatives, and the advertiser can always make optimal
investments. For a certain uniform distribution of a priori opinions, we give
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an explicit form of the advertiser’s optimal investment strategy and of the
consumers’ optimal choices.

Keywords Mean Field Games · Stackelberg competition · Advertising

1 Introduction

Advertising is the activity or effort to promote a product or an idea. It ad-
dresses a mass of consumers making a choice between multiple products. In the
past forty years, there has been much interest in developing mathematical ad-
vertising models [8,9,19,20]. The main goal is to understand the influence of the
advertising process on the sales level, and develop optimal, profit-maximizing
advertising strategies. However, these models investigate only the macroscopic
aspect of the advertising problem, that is, the market’s response (sales level)
to the advertising strategies. In contrast, this paper is concerned with both the
microscopic and macroscopic levels. Indeed, it tries to model the response of
each consumer (microscopic level) to the advertising process, and to anticipate
the market’s response (macroscopic level). Our approach allows us to model,
in addition to the advertising effect, some other factors that influence the in-
dividual and market’s responses. These factors include the consumers’ a priori
opinions towards the products, and a social effect. For example, in its intent
to reduce the percentage of smokers among teenagers, the government makes
some investments in the form of campaigns against smoking to encourage the
teenagers not to smoke. But, at the beginning of the campaign, the teenagers
have different tendencies towards smoking. Moreover, a teenager’s decision to
smoke is considerably affected by his or her peers’ decisions [22].

We model the dynamic collective choice problem with an advertiser as a
Stackelberg dynamic game. It includes a large number of consumers choosing
between two alternatives, while being influenced by their aggregate behav-
ior and an advertising effect. The latter is produced by an advertiser making
investments to convince as many consumers as possible to choose a specific
alternative. The advertiser is “Stackelbergian” [2], that is, it makes its deci-
sion first, with the consumers deciding afterwards, i.e., advertisement precedes
consumption. We use the Mean Field Games (MFG) methodology to solve the
game. This allows us to describe the consumers’ individual and aggregate be-
haviors, and the advertiser’s optimal investment strategies. Moreover, when
the consumers’ a priori opinions towards the alternatives are sufficiently di-
verse, in a sense made precise in Section 3.1, our model predicts the distribu-
tion of choices over the alternatives as a unique Nash equilibrium between the
consumers.

The MFG methodology is concerned with a class of dynamic games involv-
ing a large number of agents interacting through the mass effect of the group.
It assumes an infinite population to which one can ascribe a deterministic al-
though initially unknown macroscopic behavior, i.e., a given flow of population
probability distributions also known as the mean field over the control horizon
of interest. In view of the vanishing influence of isolated individuals, a generic
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agent’s best response is then described by a Hamilton-Jacobi-Bellman (HJB)
equation propagating backwards and parameterized by the macroscopic behav-
ior. In turn, the macroscopic behavior satisfies a forward Fokker-Planck (FP)
equation parameterized by the generic agent’s best response. Candidate sus-
tainable macroscopic behaviors are then computed as the fixed points, if they
exist, of a suitable map between macroscopic behaviors. The corresponding
best responses, when applied to the more realistic finite population situation,
constitute, under appropriate conditions, an approximate Nash equilibrium,
or ε−Nash equilibrium [13,14].

Definition 1 Consider N agents, a set of strategy profiles S = S1× · · · ×SN
and, for each agent k, a cost function Jk(u1, . . . , uN ), ∀(u1, . . . , uN ) ∈ S.
A strategy profile (u∗1, . . . , u

∗
N ) ∈ S is called an ε−Nash equilibrium with

respect to the costs Jk if there exists an ε > 0 such that for any fixed 1 ≤
i ≤ N , for all ui ∈ Si, we have Ji(ui, u

∗
−i) ≥ Ji(u

∗
i , u
∗
−i) − ε, where u∗−i =

(u∗1, . . . , u
∗
i−1, u

∗
i+1, . . . , u

∗
N ).

The MFG theory was originally developed in a series of papers by Huang
et al. [12–14], and independently by Lions and Lasry [16–18]. Furthermore,
Huang [11] introduced a class of so-called major-minor agent MFG’s, where
all agents except a single major one have vanishing individual influence of order
1/N , while the major agent, although dominant in terms of influence, has no
particular priority in its decision making. Thus, the appropriate equilibrium
concept is Nash. By contrast, Bensoussan et al. recently developed in [3, 4] a
major-minor MFG model where the major agent plays first and only then are
the minor agents allowed to make their decisions. In this setup, on which we
build here, the agents seek a Stackelberg solution [2, 27].

Definition 2 Consider N + 1 agents, a set of strategy profiles S = S0× · · · ×
SN , and for each agent k, a cost function Jk(u0, . . . , uN ), ∀(u0, . . . , uN ) ∈ S.
Suppose that agent 0 is the major agent. A strategy profile (u∗0, . . . , u

∗
N ) ∈ S

is called a Stackelberg solution with respect to the costs Jk, if there exists a
map T from S0 to S1 × · · · × SN , such that for all u0 ∈ S0, T (u0) is a Nash
Equilibrium with respect to Jk, k = 1, . . . , N , and u∗0 = min

u0∈S0

J0(u0, T (u0)),

with T (u∗0) = (u∗1, . . . , u
∗
N ).

Our work is also related to the literature on discrete choice models in micro-
economics, which were initially developed to analyze human choice behavior in
the face of a finite set of alternatives, e.g., the choice of a mode of transporta-
tion [15], of a residential location [5], smoking decision in schools [22], etc.
Mcfadden [21] proposed the first static discrete choice model, where choices
are dictated only by personal factors. Several models with social interactions
were introduced later. For instance, Brock and Durlauf propose in [6], within
the framework of static non-cooperative game theory, a model involving a
large number of agents making a choice between two alternatives, while being
influenced by the average choice of the population. Recently, we developed a
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dynamic discrete choice model in [25, 26], with no advertisement, which we
analyzed using the MFG methodology.

The main contribution of this paper is to introduce an advertising model
involving two competing alternatives and in which both the consumers and
advertiser are part of the game. Our model describes the consumers’ individ-
ual behaviors, from which it deduces the way the population of consumers
splits along the alternatives under both the social and advertising effects. The
mathematical model is formulated in Section 2. In Section 3, we consider the
limiting infinite population case, and show that the advertiser can always make
optimal investments if the consumers have sufficiently diverse a priori opinions
towards the alternatives, i.e., a Stackelberg solution exists in that case. Section
4 considers the special case of consumers with a certain uniform distribution
of a priori opinions and gives an explicit form of the Stackelberg equilibrium
solution and of the final distribution of the consumers’ choices over the alter-
natives. In Section 5, we discuss some illustrative numerical simulation results,
while Section 6 presents our conclusions.

A preliminary version of our results appeared in the conference paper [28].
The proofs and many discussions of the results were omitted from the confer-
ence paper due to space limitations, and can be found here.

1.1 Notation

The following notation is used throughout the paper. The indicator function
of a subset X is denoted by 1X . The transpose of a matrix M is denoted by
M ′. We denote by Ik the k×k identity matrix. We denote the matrix product
MM ′ by M (2).Throughout this paper, L2([0, T ],Rm) is endowed with the

inner product 〈f, g〉 =
∫ T

0
f(t)′g(t)dt, and the corresponding norm is denoted

by ‖.‖2.

2 Mathematical Model

The dynamic collective choice problem with an advertiser is modeled as a
dynamic non-cooperative game involving N minor agents (mA) or consumers
and one major agent (MA) or advertiser, with respective dynamics,

ẋi = Axi +Bui, for i = 1, . . . , N, (1)

ẏ = A0y +B0v, (2)

where xi ∈ Rn, x0
i and ui ∈ L2([0, T ],Rm) are the state, initial state and

control input of the mA i, while y ∈ Rn1 , y0 and v ∈ L2([0, T ],Rm1) are the
state, initial state and control input of the MA. Throughout the paper, y will
be referred to as the influence state. We assume that the initial conditions x0

i ,
1 ≤ i ≤ N , are independent and identically distributed (i.i.d.) random vectors
on some probability space (Ω,F , P ) with distribution P0. In the remainder of
the paper, E(X) denotes the expectation of a random variable X.
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The mAs and MA are associated with the following individual cost func-
tions:

Ji(ui, x̄, v) = E

[∫ T

0

{q
2

∥∥xi − αx̄−K(p2)y
∥∥2

+
r

2

∥∥ui∥∥2
}

dt (3)

+
M

2
min
j=1,2

∥∥xi(T )− pj
∥∥2

]
,

J0(v, x̄) = E

[∫ T

0

r0

2

∥∥v∥∥2
dt +

M0

2

∥∥x̄(T )− p2

∥∥2

]
, (4)

for i = 1, . . . , N , where x̄ =
(∑N

i=1 xi

)
/N is the average state, α ≥ 0,

q, r, r0,M,M0 > 0, and p1, p2 ∈ Rn are the possible alternatives. The matrix
K(p2) ∈ Rn×n1 is a function of the alternative p2. M is a large number, which
incites the final state of the mAs to be close to one of the two alternatives at
time T .

Example 1 Consider a group of N teenagers choosing before a time T between
smoking (p1) or not smoking (p2). At time t, teenager i’s smoking inclination
is modeled by a variable xi(t) ∈ [−1, 1], where the value −1 corresponds to a
nonsmoker, while 1 represents a full smoker. The effort exerted by i at time
t to alter its position on the smoking spectrum is captured by ui(t) ∈ R. For
example, |ui| would represent the amount of money spent per unit time by
i to intensify (buying extra cigarettes) or reduce (resorting to anti smoking
treatment) its smoker status. On the other hand, the government rate of in-
vestments against smoking is modeled by a variable v ∈ R. The variable y
represents the effectiveness of the advertising investment. The influence ex-
erted by the advertisement on the teenagers’ smoking status is modeled by
K(p2)y, where K(p2) := p2 = “Do Not Smoke” = −1. A teenager, in the
process of choosing between not smoking or smoking, minimizes the cost (3),
which penalizes along the path the deviation from the peers’ average smoking
status x̄ and the government nonsmoking advertisement K(p2)y, as well as
the effort to change the smoking status. Moreover, the teenager should be by
time T a smoker (p1) or nonsmoker (p2) lest he/she be considered indecisive
by his/her peers. Thus, a lack of decision by time T is strongly penalized in
the final cost. On the other hand, the government tries to minimize its adver-
tisement investments (the running cost of (4)), and should convince by time T
the teenagers to be nonsmokers. Failure to sway a majority of teenagers away
from smoking results in a strong penalty in the final cost.

3 Mean Field Stackelberg Competition

In a Stackelberg competition, the MA plays first, and then the mAs make their
decisions. The agents solve the game as follows. Given the MA strategy v, the
mAs play a Nash equilibrium with respect to their individual costs (3). If for
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each v there exists a unique mA Nash equilibrium (u∗1(v), . . . , u∗N (v)), then the
advertiser knows how the mAs respond to its investment strategies. In other
words, it constructs a map that maps its strategies to the corresponding mA
Nash equilibria. Then, the MA computes its optimal strategy by minimizing
J0(v, x̄v), where x̄v is the consumers’ average state under the Nash equilibrium
(u∗1(v), . . . , u∗N (v)).

In view of (3)-(4), the MA and each mAs interact with the mAs population
only through the mean field term x̄. An efficient methodology to solve dynamic
games involving a large number of such weakly coupled agents is the MFG
approach [14]. We start by assuming a continuum of mAs to which one can
ascribe a deterministic but initially unknown mean trajectory x̄. Then, the
limiting game consists of (i) a representative (generic) mA of state x, control
input u, and initial state x0, where x0 is a random vector of distribution P0;
and (ii) the MA defined in (2). The state x satisfies (1). In view of the assumed
independence of the mAs’ random initial conditions, the generic mA and MA
limiting cost functionals are respectively,

J(u,x̄, v) =

∫ T

0

{q
2

∥∥x− αx̄−K(p2)y
∥∥2

+
r

2

∥∥u∥∥2
}

dt

+
M

2
min
j=1,2

∥∥x(T )− pj
∥∥2
, (5)

J̄0(v,x̄) =

∫ T

0

r0

2

∥∥v∥∥2
dt +

M0

2

∥∥x̄(T )− p2

∥∥2
, (6)

where x̄ = E[x]. The costs (5)-(6) are those of the mA/MA, with the average
of the mAs replaced by an assumed given deterministic trajectory x̄.

In the following subsection, we show that there exists a mA Nash equilib-
rium for any MA strategy v. Moreover, we anticipate for each equilibrium the
probability distribution of the mAs’ choices over the alternatives. Indeed, we
show that for each equilibrium, the fraction of consumers that choose p1 under
the social effect and advertising strategy v is a fixed point of a well defined
map.

3.1 mA Nash Equilibrium

Given the MA strategy v associated with an influence state trajectory t 7→ y(t),
we start by computing the generic mA’s best response to x̄. The cost function
(5) can be written as the minimum of two Linear Quadratic Regulator (LQR)
optimal tracking problems, each associated with one of the two alternatives.

Hence, J(u, x̄, v) = min
(
J1(u, x̄, v), J2(u, x̄, v)

)
, where

Jj(u, x̄, v) =

∫ T

0

{q
2

∥∥x− αx̄−K(p2)y
∥∥2

+
r

2

∥∥u∥∥2
}

dt +
M

2

∥∥x(T )− pj
∥∥2
,

for j = 1, 2. As a result, the mA’s best response is the optimal control law of
the LQR problem with the least optimal cost. Accordingly, we define the basin
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of attraction D(x̄, y) as the set of initial conditions for a generic mA such that
the LQR optimal tracking problem corresponding to p1 is the less costly, and
hence the generic agent goes towards p1 by applying the optimal control law
of J1. A generic mA whose initial condition does not belong to D(x̄, y) moves
towards p2 by applying the optimal control law of J2. Designating respectively
by u∗ and n the best response and the associated costate of a generic mA, the
Maximum Principle leads to the following equations:

u∗ = −1

r
B′n

−ṅ = A′n+ q (x− αx̄−K(p2)y) ,
(7)

with n(T ) = M
(
x(T )− p11D(x̄,y)(x

0)− p21D(x̄,y)c(x0)
)
. Equations (7) follow

from the fact that if x0 ∈ D(x̄, y), then the optimal control law u∗ is the
optimal control law of J1, which is equal to − 1

rB
′n1. Here, n1 is the optimal

costate of J1, which satisfies the costate equation in (7) with the boundary
condition n1(T ) = M(x(T ) − p1). Similarly when x0 ∈ D(x̄, y)c. Noting that
both best response costs are quadratic functions of the initial state x0, with
only the linear and constant terms differing as they respectively depend on the
trajectory to be tracked (αx̄+K(p2)y) and the chosen alternative in Jj(u, x̄, v),
j = 1, 2, it is possible to show that:

D(x̄, y) :=
{
x0 ∈ Rn|J1

∗ (x
0, x̄, v) ≤ J2

∗ (x
0, x̄, v)

}
=
{
x0 ∈ Rn|β′x0 ≤ δ +∆ (αx̄+K(p2)y)

}
,

where Jj∗(x
0, x̄, v) is the optimal cost of the LQR optimal tracking problem

associated with pj , ∆ is a linear form on L2([0, T ],Rn), β and δ are constants,
with the expressions of ∆, β and δ given in the Appendix.

Given the macroscopic behavior x̄ and the MA influence state y, the generic
mA’s best response is thus uniquely determined. Now, for a given y trajectory,
we study the existence of a consistent macroscopic behavior x̄, i.e., one such
that x̄ is indeed the mean of the mAs’ states when optimally responding to
the x̄, y dependent tracking trajectories in the cost functions Jj(u, x̄, v), j =
1, 2. This essentially corresponds to a fixed point property of the admissible
x̄ trajectories, which must be self replicating as the means of the above x̄, y
dependent agents’ best response trajectories. By taking the expectations of the
right and left hand sides of (1) and (7), and in view of the linear dependence on
initial and final conditions, we obtain that x̄ must satisfy the following Mean
Field equation system (MF)

˙̄x = Ax̄− 1

r
B(2)n

− ˙̄n = A′n̄+ q(1− α)x̄− qK(p2)y,
(8)

with x̄(0) = Ex0 := µ0, n̄ = En, n̄(T ) = M(x̄(T )− pλ), λ = P0

(
D(x̄, y)

)
, and

pλ = λp1 + (1− λ)p2. Note that λ is the fraction of mAs that go towards p1.
We make the following technical assumption.
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Assumption 1 The following Riccati equation has a unique solution:

Π̇ +ΠA+A′Π − 1

r
ΠB(2)Π + q(1− α)In = 0, Π(T ) = MIn. (9)

Note that if α ≤ 1, then (9) has a unique solution [1, page 23]. For more
details about the existence and uniqueness of solutions to (9), one can refer
to [10]. Denoting Φ the unique solution of d

dtΦ(t, s) =
(
A− 1

rB
(2)Π

)
Φ(t, s),

Φ(s, s) = In, define R(t) = Φ(t, 0) and the following quantities:

R̄(t) =
M

r

∫ t

0

Φ(t, σ)B(2)Φ(T, σ)′dσ, (10)

Ξ(y)(t) = −q
r

∫ t

0

∫ σ

T

Φ(t, σ)B(2)Φ(τ, σ)′K(p2)y(τ)dτdσ,

Moreover, let F (λ, y) := P0(Hλ(y)), where

Hλ(y) =
{
x0 ∈ Rn|β′x0 ≤ δ +∆

(
K(p2)y + α

(
Rµ0 + R̄pλ +Ξ(y)

))}
. (11)

In the following lemma, we show that there exists a one to one map between
the solutions x̄ of the MF equation systems (8) and the fixed points of the finite
dimensional function λ 7→ F (λ, y). The existence of the latter is guaranteed
under the following assumption.

Assumption 2 We assume that P0 is such that the P0-measure of hyper-
planes is zero.

Using techniques similar to those used in [26, Theorem 6], one can show
the following Lemma.

Lemma 1 Under Assumptions 1 and 2, the following statements hold:

1. x̄(t) is a solution of the MF equation system (8) if and only if it can be
written under the form:

x̄(t) = x̄λ := R(t)µ0 + R̄(t)pλ +Ξ(y)(t), (12)

where λ = F (λ, y), i.e., λ is fixed point of λ 7→ F (λ, y) defined above (11).
2. The function λ 7→ F (λ, y) has at least one fixed point. Equivalently the MF

equation system (8) has at least one solution.

To prove the first point, we consider λ at first as a parameter. In this
case, (8) is a linear forward-backward differential equation parameterized by
λ. Under Assumption 1, n̄ can be written as an affine function of x̄, i.e., n̄(t) =
Π(t)x̄(t) + γ(t), where γ is the unique solution of d

dtγ = −(A− 1
rB

(2)Π)′γ −
qK(p2)y, γ(T ) = −Mpλ. By replacing this form of n̄ in (8), one can show that
x̄ is equal to (12). Thus, a fixed point path x̄ is of the form (12), where λ =
P0(D(x̄, y)) = P0(D(R(t)µ0 + R̄(t)pλ + Ξ(y)(t), y)) = P0(Hλ(y)) = F (λ, y).
Hence, λ is a fixed point of λ 7→ F (λ, y), for y fixed. The converse is proved by
a simple verification argument.The existence of a fixed point in 2. is established
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by capitalizing on the finite dimensional nature of operator λ 7→ F (λ, y) to
rely on Brouwer’s fixed point theorem.

To summarize, the mAs make their choices of alternatives under the social
effect and advertising investment v as follows. They compute a fixed point λ
of λ 7→ F (λ, y), and the corresponding mean trajectory x̄ defined in (12). If a
consumer is initially in D(x̄, y), then it goes towards p1. Otherwise, it moves
towards p2. In an infinite population, the best responses u∗ (7) to x̄ constitute
a Nash equilibrium for the mAs. But in practice, this assumption makes these
strategies less robust in face of unilateral deviant behaviors when applied to
a finite number of consumers. This loss of performance is however negligible
when N is large enough. Indeed, following the argument in [26, Theorem 9],
one can show that for a finite population of N mAs, the strategies u∗ defined
by (7) for any MA strategy v is an ε−Nash equilibrium with respect to the
costs Ji, i = 1, . . . , N defined in (3), where ε goes to zero as N increases to
infinity.

Having established in Lemma 1 the existence of at least one infinite pop-
ulation Nash equilibrium for an arbitrary MA strategy v, we now turn to the
problem of the MA itself optimizing its influence function in a Stackelberg
fashion. To compute its optimal strategy, the MA should be able, for each
strategy v, to anticipate uniquely the mA Nash equilibrium. Next, we present
a condition under which a unique mA equilibrium exists.

Assumption 3 We assume that F̄ (s) := P
(
β′x0 ≤ δ + s

)
is differentiable

and
∣∣ d
ds F̄ (s)

∣∣ < 1

|α∆(R̄(p1−p2))|
(here the linear form ∆ defined in (24) acts on

the function R̄(t)(p1 − p2)).

Noting that the function d
ds F̄ is the probability density function of β′x0 − δ,

Assumption 3 requires that the consumers’ a priori opinions x0 in the direction
β have enough spread. For example, if the consumers’ a priori opinions x0 are
distributed according to the normal distribution N (µ0, Σ0), then β′x0 − δ is
distributed according toN (β′µ0−δ, β′Σ0β), and the corresponding probability
density function has a maximum 1/

(√
2πβ′Σ0β

)
. In this case, Assumption 3 is

satisfied if 2πβ′Σ0β >
(
α∆

(
R̄(p1 − p2)

))2
. Under Assumption 3, the function

λ 7→ F (λ, y) is a contraction. Indeed, d
dλF = α∆

(
R̄(p1 − p2)

)
d
ds F̄ , which

under Assumption 3 has an absolute value strictly less than one. Therefore,
we can state the following theorem.

Theorem 1 Under Assumptions 1, 2, and 3, given the MA strategy v and
resulting trajectory y, λ 7→ F (λ, y) has a unique fixed point. Thus, the mA
limiting game admits a unique Nash equilibrium.

3.2 MA Optimal Control Problem

Having determined the consumers’ individual and macroscopic (mean trajec-
tory) responses to the investment strategies, we turn now to the problem of
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finding an optimal investment policy v∗. We assume in the rest of this sec-
tion that Assumptions 1, 2 and 3 hold to guaranty the existence of a unique
Nash equilibrium for each v ∈ L2([0, T ]). The solution of the MF equation
system (8) that corresponds to v is denoted by x̄v. It is the mean trajectory
of the consumers under their best responses to it, u∗ defined in (7). Thus, the
advertiser solves the following optimal control problem:

min
v∈L2([0,T ])

J̄0

(
v, x̄v

)
s.t. ẏ = A0y +B0v and ˙̄xv = Ax̄v +BEu∗. (13)

In the following theorem, we show that if the consumers’ a priori opinions are
sufficiently diverse, then the advertiser can find an optimal investment policy
v∗. Afterwards, we characterize in Theorem 3 this strategy as the costate of
(yv∗ , x̄v∗), where yv∗ is the advertiser’s optimal state that corresponds to v∗.
This allows us to derive explicit optimal investment policies in some situations,
for example, in case the consumers’ initial opinions are uniformly distributed
in the direction β (See Section 4 below). The proofs of theorems and lemmas
are given in the Appendix.

Theorem 2 Under Assumptions 1, 2 and 3, the MA optimal control problem
(13) has an optimal control law v∗.

In the following theorem, we characterize an optimal strategy v∗ as the costate
of (x̄v∗ , yv∗). Given an optimal control law v∗, we define the costate equations:

−Ṗ = A′0P + L∗1(Q)(t) (14)

−Q̇ = L∗2(Q)(t) (15)

with P (T ) = 0 and Q(T ) = M0(x̄v∗(T )− p2), where for all z ∈ L2([0, T ],Rn),

L∗1(z)(t) =
q

r
K(p2)′

∫ t

0

Φ(t, σ)B(2)z(σ)dσ + ξ∗K(p2)′H(t)

∫ T

0

Φ(T, σ)B(2)z(σ)dσ

L∗2(z)(t) =

(
A− 1

r
B(2)Π

)′
z(t) + ξ∗αH(t)

∫ T

0

Φ(T, σ)B(2)z(σ)dσ, (16)

with ξ∗ =
dF̄

ds
(∆ (αx̄v∗ +K(p2)yv∗)) .

Here, H(t) = M2q
r2

∫ t
0
φ(η, t)′B(2)φ(η, T )dη(p1 − p2)(2), and φ is defined in the

Appendix.

Theorem 3 Under Assumptions 1, 2, and 3, if v∗ is an optimal control law of
(13) and the corresponding equations (14)-(15) have a unique solution (P,Q),
then

v∗ = − 1

r0
B′0P. (17)
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Theorem 2 states that the advertiser can act optimally. But, it doesn’t give
any indication on how to compute the optimal investment strategies v∗. The-
orem 3, however, provides a formula of v∗ (17). As a result, the computation
of v∗ requires solving the advertiser’s state equation (2) and the mAs MF
equations (8), which are coupled with the costate equations (14)-(15) through
the optimal control law (17). These equations show that the advertiser needs
only to know the probability distribution of the consumers’ a priori opinions
P0 to make optimal investments v∗. Even though the MA doesn’t know the
exact initial states of the consumers and their individual choices, it can an-
ticipate the fraction of the mAs that go toward each alternative. Indeed, once
v∗ is computed, the fraction of mAs that choose p1 is the unique fixed point
of λ 7→ F (λ, yv∗). In Section 4, we study a special case where the optimal
strategies v∗ can be computed explicitly.

Before moving to the next section, we give a sufficient condition for the
existence and uniqueness of solutions to (14)-(15) to hold. This condition is
needed to apply the results of Theorem 3 later. Given the function Q, equation
(14) is a linear differential equation which has a unique solution. Thus, it is
sufficient to study the second equation (15). We define the matrix

Σ = α

∫ T

0

∫ T

σ

(
Φ(T, σ)B

)(2)

Φ(τ, T )′H(τ)dτdσ. (18)

Assumption 4 Either ξ∗ is equal to zero or 1/ξ∗ is not an eigenvalue of Σ,
where ξ∗ is defined in (16).

Assumption 4 can be satisfied, for example, in the following two cases:

1. If the initial spread of the mAs is sufficient (dF̄ /ds is low enough).
2. If dF̄ /ds is bounded, and T is small enough.

In fact, ξ∗Σ is in both cases negligible with respect to In. Hence, 1/ξ∗ is not
an eigenvalue of Σ.

Lemma 2 Under Assumption 4, (15) has a unique solution.

4 Case of Uniform Initial Distribution

Because ξ∗ defined in (16) is a nonlinear functional of x̄v∗ and yv∗ , solving (2)-
(8)-(14)-(15) is not easy. Note however that dF̄ /ds is the probability density
function of β′x0−δ (see the definition of F̄ in Assumption 3), so one can hope
to compute an explicit solution when this random variable is uniformly dis-
tributed, for example. Indeed, in this case the probability density function is
piecewise constant. Hence, equations (2)-(8)-(14)-(15) can be written as a pair
of forward-backward linear ordinary differential equations (19). These equa-
tions are coupled in the boundary condition Kλ, through λ the probability
that a generic mA is initially in D(x̄v∗ , yv∗). Thus, they have similar structure
to the mA MF equations (8). Here again, we use similar techniques to those
used in [26, Theorem 6] to provide an explicit solution to (2)-(8)-(14)-(15), see
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Theorem 5 below. This solution encapsulates the advertiser’s optimal invest-
ment strategy v∗ and influence function yv∗ , the mA mean trajectory x̄v∗ , as
well as the fraction of mAs that go towards p1 under a social and advertising
effects.

So, we assume in this section that the mAs’ initial states are uniformly
distributed in the direction β. More precisely, we assume that β′x0 − δ has a
uniform distribution U([a − c/2, a + c/2]), where a ∈ R and c > 0. We show
in this case that if the initial spread of the mAs is sufficient (see Assumption
5 below), then there exists a unique Stackelberg solution. It should be noted
that Assumption 2 is satisfied for this distribution of initial states.

The function F̄ is piecewise linear, hence only piecewise differentiable.
Therefore, we need an alternative to Assumption 3, under which the uniqueness
of the mA Nash equilibria holds. Moreover, in order to apply the variational
methods of Subsection 3.2, we require F̄ to stay in a differentiable domain for
all the MA strategies, which is the case when the mA are sufficiently spread
(see Lemma 3 below).

Assumption 5 We assume that c > α
∣∣∣∆(R̄(p1 − p2)

)∣∣∣.
Under Assumption 5, given the MA strategy v, the mA limiting game

admits a unique Nash equilibrium by virtue of Theorem 2.

Theorem 4 Under Assumptions 1 and 5, the MA optimal control problem
(13) has an optimal control law v∗.

Lemma 3 Under Assumptions 1 and 5, there exists c0 > 0 independent of
v such that for all c > c0, there exists a unique mA Nash equilibrium corre-
sponding to λ ∈ (0, 1).

For the rest of the analysis, we assume that c > c0. In this case, the unique
fixed point λ corresponding to a MA optimal control law v∗ is in (0, 1). Since
F is differentiable in (0, 1), one can use techniques similar to those used in
Theorem 3 to show that v∗ satisfies (17), provided that the Assumptions 1
and 5 are satisfied, and 1/c is not an eigenvalue of Σ defined in (18).

In the following, we write the equations (2)-(8)-(14)-(15) as a pair of
forward-backward differential equations. To this end, we define the states
h = (x̄v∗ , yv∗ , q1), d = (n̄, P,Q, q2). Here, q1(t) :=

∫ t
0
Φ(T, σ)B(2)Q(σ)dσ and

q2(t) :=
∫ T
t
Φ(T, σ)B(2)Q(σ)dσ are respectively the forward and backward

propagating parts of
∫ T

0
Φ(T, σ)B(2)Q(σ)dσ, which appears in (14)-(15). The

pair (h, d) satisfies

ḣ = K1(t)h+K2(t)d

ḋ = K3(t)h+K4(t)d
(19)
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with h(0) = h0 = (µ0, y
0, 0) and d(T ) = K5h(T ) + Kλ, where K1(t) =

diag(A,A0, 0),

K2(t) =

k1 0 0 0
0 k2 0 0
0 0 k3 0

 K5 =


MIn 0 0

0 0 0
M0In 0 0

0 0 0

 ,

K3(t) =


−q(1− α)In qK(p2) 0

0 0 k4

0 0 −αH(t)
c

0 0 0

 ,K4(t) =


−A′ 0 0 0

0 −A′0 0 −K(p2)′H(t)
c

0 0 k5 −αH(t)
c

0 0 −k3 0

 ,
Kλ = −

(
Mpλ, 0,M0p2, 0

)
, k1 = − 1

rB
(2), k2 = − 1

r0
B

(2)
0 , k3 = Φ(T, t)B(2),

k4 = −K(p2)′
(
q
rΦ(t, T ) + H(t)

c

)
and k5 = −(A− 1

rB
(2)Π)′.

The equation system (19) consists of two coupled forward-backward differ-
ential equations. The final condition d(T ) depends through λ non-linearly on
the path (x̄v∗(σ), yv∗(σ)), σ ∈ [0, T ]. As in Lemma 1, we need the following
assumption to decouple and solve these equations. This assumption plays the
role of Assumption 1 in Lemma 1.

Assumption 6 The following generalized Riccati equation has a unique solu-
tion

Ẇ = K4W −WK1 −WK2W +K3, W (T ) = K5. (20)

Here again, one can use similar techniques to those used in [26, Theorem 6] to
show that under Assumption 6, (h, d) is a solution of (19) if and only if

h(t) = Φ1(t, 0)h0 +Ru(t)Kλ :=
(
x̄λ, yλ, qλ1

)
, (21)

d(t) = W (t)h(t) + Φ2(t, T )Kλ :=
(
n̄λ, Pλ, Qλ, qλ2

)
(22)

where Φ1 and Φ2 are the unique solutions of d
dtΦ1(t, s) = (K1 +K2W )Φ1(t, s),

Φ1(s, s) = I2n+n1 and d
dtΦ2(t, s) = (K4 − WK2)Φ2(t, s), Φ2(s, s) = I3n+n1 ,

Ru(t) =
∫ t

0
Φ1(t, σ)K2(σ)Φ2(σ, T )dσ and λ is a fixed point of the following

final dimensional map,

Fu(λ) = F̄ ◦∆
(
αx̄λ +K(p2)yλ

)
. (23)

For a brief discussion of the proof, we refer the reader to the discussions below
Lemma 1.

Theorem 5 Under Assumptions 1, 5 and 6, the Stackelberg competition (for a
continuum of consumers) has a unique solution (v∗, x̄v∗), where v∗ = − 1

r0
B′0P

λ∗

and x̄v∗ = x̄λ∗ , with Pλ∗ and x̄λ∗ defined in (21)-(22) for the unique fixed point
λ∗ of Fu.
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Theorem 5 states that for a population of consumers with sufficiently di-
verse a priori opinions uniformly distributed in the direction β, an advertiser
can design a unique optimal investment strategy v∗ = − 1

r0
B′0P

λ∗ . This strat-
egy convinces a fraction of the consumers to choose the advertised alternative.
This fraction is equal to 1 − λ∗, where λ∗ is the unique fixed point of Fu.
One can apply the bisection method to find λ∗. Once λ∗ is computed, the
agents can compute the vectors (h, d), given by (21)-(22). The MA can then
implement its optimal strategy (17), where Pλ∗ is the second component of
d. Subsequently, the mAs can predict their limiting macroscopic behavior, the
first component of d, and implement their optimal strategies (7).

5 Simulations

To illustrate the collective choice mechanism in the presence of social and
advertising effects, we consider a group of 6000 consumers that have opinion
states initially uniformly distributed between −25 and 5. The consumers are
choosing between p1 = −20 and p2 = 20. The social effect is represented by
αx̄, where α = 0.5. We consider two scenarios. In the first one, the consumers
make their choices in the absence of an advertising effect (K(p2) = 0), while
in the second scenario, an advertiser advertises for p2. The advertising effect
is modeled in the cost by K(p2)y = p2y, where y is the (influence) state of the
MA. We set T = 3, A = 0.5, B = 0.1, A0 = −0.1, B0 = 0.1, y0 = 0, q = 10,
r = r0 = 10, and M = M0 = 2000. In the absence of an advertising effect,
λ∗ = 0.84 is the unique fixed point of Fu defined in (23). Accordingly, 84% of
the mAs go towards p1 (Fig. 1). On the other hand, with advertisement for
alternative p2, the fraction of mAs that go towards p2 increases from 16% to
87%, see Fig. 1.

6 Conclusion

We introduce in this paper a dynamic collective choice model in the presence of
social and advertising effects. In this model, a large group of consumers choose
between two alternatives while influenced by their average and an advertising
effect. The latter is exerted by a Stackelbergian advertiser aiming at convincing
the population of consumers to choose p2. We consider the limiting infinite
population game and derive conditions under which a Stackelberg solution
exists. In case the consumers’ a priori opinions are distributed uniformly in a
specific direction, we give an explicit form of the unique Stackelberg solution,
and determine the fraction of minor agents that choose p1. This fraction is
the unique fixed point of well defined map, and can be computed by knowing
the a priori opinions’ distribution. Finally, it is of interest for future work to
extend the results to the case of multiple competitive advertisers, with more
than two alternatives.
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Fig. 1 Evolution of the consumers’ density in the absence and presence of advertising.

Appendix A

Quantities related to the mA Nash equilibrium:

For all x ∈ L2([0, T ],Rn),

∆(x) =
Mq

r
(p1 − p2)′

∫ 0

T

∫ η

T

φ(η, T )′B(2)φ(η, σ)x(σ) dσdη, (24)

where φ is the unique solution of d
dtφ(t, s) =

(
1
rΓ (t)B(2) −A′

)
φ(t, s), φ(s, s) =

In, and

Γ̇ =
1

r
ΓB(2)Γ − ΓA−A′Γ − qIn, Γ (T ) = MIn

β = Mφ(0, T )(p2 − p1)

δ =
1

2
M(‖p2‖2 − ‖p1‖2) +

M2

2r
p′2

∫ 0

T

(
φ(η, T )′B

)(2)

dη p2

− M2

2r
p′1

∫ 0

T

(
φ(η, T )′B

)(2)

dη p1.

Proof of Theorem 2:

The cost functional J̄0 is positive and coercive with respect to v ∈ L2([0, T ]),
i.e., lim

‖v‖2→∞
J̄0(v)/‖v‖2 =∞. If we show that J̄0 is continuous in the reflexive
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Banach space L2([0, T ]) with respect to v, then by Tonelli’s existence theo-
rem [7, Theorem 5.51], J̄0 has a finite minimum. Thus, we need only show
that J̄0 is continuous. The state y is continuous with respect to v. The fixed
points λ(y) of F are continuous with respect to v. In fact, consider v and v′

in L2([0, T ]) and denote by y, y′ the corresponding MA trajectories and by λ
and λ′ the corresponding fixed points. We have

|λ− λ′| = |F (λ, y)− F (λ′, y′)| ≤ |F (λ, y)− F (λ′, y)|+ |F (λ′, y)− F (λ′, y′)|

≤ sup
s∈[0,1]

∣∣∣dF
dλ

(s, y)
∣∣∣|λ− λ′|+ |F (λ′, y)− F (λ′, y′)|.

Therefore,
(

1− sup
s∈[0,1]

∣∣∣dFdλ (s, y)
∣∣∣)|λ−λ′| ≤ |F (λ′, y)−F (λ′, y′)|. Under Assump-

tion 3, sup
s∈[0,1]

∣∣∣dFdλ (s, y)
∣∣∣ < 1. Under Assumption 2, F̄ is continuous. Moreover,

∆ is continuous with respect to the L2 norm ‖‖2. Hence, F is continuous with
respect to y, and |F (λ′, y)−F (λ′, y′)| converges to zero as ‖y− y′‖2 converges
to zero. Therefore, the fixed points λ of F are continuous. In view of (12)
and the continuity of the fixed points λ, x̄(T ) is continuous. Therefore, J̄0 is
continuous.

Proof of Theorem 3:

We derive the condition on v∗ (17) by studying the first variation of the cost
functional in (13) with respect to a perturbation v = v∗ + ηδv, where η ∈ R,
and δv ∈ L2([0, T ],Rm1). To this end, we need to derive at first an explicit
form of the constraint on x̄v. We have that x̄v = x̄λ defined in (12), where λ
is the unique fixed point of λ 7→ F (λ, y). By taking the derivative of x̄λ with
respect to time, we obtain that,

˙̄xv = L(x̄v, y)(t), x̄(0) = µ0, (25)

where

L(x̄v, y)(t) =

(
A− 1

r
B(2)Π

)
x̄v −

q

r
B(2)

∫ t

T

Φ(σ, t)′K(p2)y(σ)dσ

+
M

r
B(2)Φ(T, t)′F̄ ◦∆

(
αx̄v +K(p2)y)

)
(p1 − p2) +

M

r
B(2)Φ(T, t)′p2.

We compute now the Gâteaux derivatives [7] of y and x̄ at v∗ in the direction
δv:

d

dη
yv∗+ηδv

∣∣∣
η=0

:= δy

d

dη
x̄v∗+ηδv

∣∣∣
η=0

:= δx̄,

(26)
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where,

d

dt
δy = A0δy +B0δv, δy(0) = 0

d

dt
δx̄ = L1(δy)(t) + L2(δx̄)(t), δx̄(0) = 0,

and L1 (resp. L2) is a continuous linear operator from the Hilbert space
L2([0, T ],Rn1) (resp. L2([0, T ],Rn)) to L2([0, T ],Rn) such that for all z1 ∈
L2([0, T ],Rn1) and z2 ∈ L2([0, T ],Rn),

L1(z1)(t) = −q
r
B(2)

∫ t

T

Φ(σ, t)′K(p2)z1(σ)dσ

+
M

r
ξ∗∆ (K(p2)z1)B(2)Φ(T, t)′(p1 − p2),

L2(z2)(t) =

(
A− 1

r
B(2)Π

)
z2(t) +

Mα

r
ξ∗∆ (z2)B(2)Φ(T, t)′(p1 − p2).

Using Fubini-Tonelli’s theorem [23], one can show that the adjoint operators
of L1 and L2 are respectively L∗1 and L∗2 defined in (16). We recall from [24]
that the adjoint operator of a linear continuous operator G defined from the
Hilbert space (H1, 〈, 〉1) into the Hilbert space (H2, 〈, 〉2) is the linear continu-
ous operator G∗ defined from the Hilbert space (H2, 〈, 〉2) into the Hilbert space
(H1, 〈, 〉1) and satisfying for all x ∈ H1 and y ∈ H2 〈G(x), y〉2 = 〈x,G∗(y)〉1.
Here, we use the explicit form of the operator ∆ (24). The Gâteaux derivative
of J̄0 is

δJ̄0 =
d

dη
J̄0

(
v∗ + ηδv, x̄v∗+ηδv

)∣∣∣∣
η=0

= r0

〈
v∗, δv

〉
+M0(x̄v∗(T )− p2)′δx̄(T ).

We have

d

dt
(δy′P ) = δv′B′0P − δy′L∗1(Q)(t) (27)

d

dt
(δx̄′Q) = L1(δy)(t)′Q+ L2(δx̄)(t)′Q− δx̄′L∗2(Q)(t).

By integrating (27) from 0 to T we get 0 =
〈
B′0P, δv

〉
−
〈
L∗1(Q)(t), δy

〉
.

Similarly, we have

M0δx̄(T )′(x̄v∗(T )− p2) =
〈
L1(δy)(t), Q

〉
+
〈
L2(δx̄)(t), Q

〉
−
〈
δx̄,L∗2(Q)(t)

〉
=
〈
L∗1(Q)(t), δy

〉
.

Therefore, δJ̄0 =
〈
B′0P, δv

〉
+ r0

〈
v∗, δv

〉
. By optimality, δJ̄0 = 0 for all

δv ∈ L2([0, T ]). Hence, v∗ = − 1
r0
B′0P .
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Proof of Lemma 2:

The idea of the proof is to replace the term∫ T

0

Φ(T, σ)B(2)Q(σ)dσ (28)

in the expression of L∗2(Q) by an assumed known constant K1. Equation (15)
is then a linear differential equation parameterized by K1 whose solution is
a linear operator of K1. By replacing this solution in the term (28), and by
requiring that K1 is equal to (28), one can show that the unique solution of

(15) is Q(t) = Φ(T, t)′
(
αξ∗

∫ T
t
Φ(σ, T )′H(σ)dσY + M0(x̄v∗(T ) − p2)

)
, where

Y is the unique solution of the following linear algebraic equation:

(In − ξ∗Σ)Y = M0

∫ T

0

(
Φ(T, σ)B

)(2)

dσ(x̄∗(T )− p2).

Proof of Theorem 4:

Let v and v′ in L2([0, T ]), and denote by y, y′ the corresponding MA tra-
jectories, and by λ and λ′ the corresponding fixed points. We have,

|λ− λ′| = |F (λ, y)− F (λ′, y′)| ≤ |F (λ, y)− F (λ′, y)|+ |F (λ′, y)− F (λ′, y′)|

≤ α

c

∣∣∣∆(R̄(t)(p1 − p2)
)∣∣∣|λ− λ′|+ |F (λ′, y)− F (λ′, y′)|.

The rest of the proof is similar to the proof of Theorem 2.

Proof of Lemma 3:

The uniqueness follows from Assumption 5. Let v ∈ L2([0, T ]). The path x̄v
defined in (12) is uniformly bounded with c (with respect to the L2 norm).
Therefore, the optimal cost J̄0(v∗, x̄v∗) ≤ J̄0(v, x̄v) of the MA optimal con-
trol problem defined in (13) is uniformly bounded with c. Hence, the opti-
mal control law v∗ and the optimal state yv∗ are uniformly bounded with c.
Consequently, the term ∆

(
K(p2)yv∗ + αx̄λ

)
, where x̄λ is defined in (12), is

uniformly bounded with c by a positive constant L1. This means that −L1 ≤
∆
(
K(p2)yv∗ + αx̄λ

)
≤ L1. Hence, F̄ (−L1) ≤ F (λ, y) ≤ F̄ (L1). If we choose

−L1 > a−c/2 and L1 < a+c/2, that is, c > max(2(a+L1), 2(−a+L1)) := c0,
then the map F takes its values in (0, 1). Therefore, F has a unique fixed point
λ ∈ (0, 1).

Proof of Theorem 5:
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By Theorem 4 we know that there exists v∗ an optimal investment strat-
egy. Moreover, we know that v∗ and x̄v∗ should be equal to v∗ = − 1

r0
B′0P

λ

and x̄v∗ = x̄λ, where Pλ and x̄λ are defined in (21)-(22) for a fixed point λ
of Fu. It remains to show that Fu has a unique fixed point λ∗. Let λ and λ′

be two distinct fixed points of Fu. Then, λ and λ′ are respectively the fixed
points of s 7→ F (s, yλ) and s 7→ F (s, yλ

′
), where F is defined above (11) and

yλ in (21). Following Lemma 3, λ and λ′ belong to (0, 1). But, β′x0 − δ has a
uniform distribution, which implies that Fu has a shape similar to that of the
cumulative distribution function of a uniform distribution. Thus, all the real
numbers in the interval [0, 1] are fixed points of Fu. In particular, λ = 0 is a
fixed point of s 7→ F (s, yλ=0). This leads to a contradiction and shows that
Fu has a unique fixed point.
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