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Summary

Real-time information processing applications such as those enabling a more
intelligent infrastructure are increasingly focused on analyzing privacy-sensitive
data obtained from individuals. To produce accurate statistics about the habits
of a population of users of a system, this data might need to be processed
through model-based estimators. Moreover, models of population dynamics,
originating for example from epidemiology or the social sciences, are often nec-
essarily nonlinear. Motivated by these trends, this paper presents an approach to
design nonlinear privacy-preserving model-based observers, relying on additive
input or output noise to give differential privacy guarantees to the individu-
als providing the input data. For the case of output perturbation, contraction
analysis allows us to design convergent observers as well as set the level of
privacy-preserving noise appropriately. Two examples illustrate the proposed
approach: estimating the edge formation probabilities in a social network using
a dynamic stochastic block model, and syndromic surveillance relying on an
epidemiological model.
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1 INTRODUCTION

The possibility to analyze vast amounts of personal data capturing information about the activities of private individuals
is a foundational principle behind* many current technology-driven trends such as the “Internet of Things,” electronic
biosurveillance systems, or developing an intelligent infrastructure enabling smart cities. In many respects, however, the
data collection practices envisioned to operate these systems often go against basic privacy rights.2 Concerns about the
acquisition and use of personal data by companies and governments, eg, for potential price and service discrimination, are
rising3-5 and could lead to people rejecting these technologies despite their suggested benefits. Rigorous privacy-preserving
data analysis methodologies are needed to support regulations and allow people to appropriately trade off the privacy
risks they increasingly incur with the benefits they can expect in return.

Typically, large-scale monitoring and control systems only require aggregate statistics computed from personal data
streams, eg, a dynamic map showing road traffic conditions built from location traces sent by smartphones or an estimate
of power consumption in a neighborhood updated using smart meter data from individual homes. Aggregation is bene-
ficial to privacy, but past examples have shown that this is not sufficient to a priori rule out the possibility of significant

*A preliminary version of this paper was presented at CDC 2015.1
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privacy breaches.6-8 Privacy attacks are often linkage attacks, where some newly published information is combined with
other available data in order to make new inferences about specific individuals, and predicting at system design time how
any such attack could be carried out is very difficult. Yet, as explained later, it is still possible to compute aggregate statis-
tics with formal privacy guarantees for the individuals from whom the data originates, which could help alleviate some
of the justified concerns and encourage wider adoption of certain pervasive sensing and control systems.

Various information theoretic definitions have been proposed to capture quantitatively the concept of privacy and are
potentially applicable to the processing of data streams in real time.9 In this paper, we focus on the notion of differential
privacy, which originates from the database and cryptography literature.10 Intuitively, a differentially private mechanism
publishes information about a data set in a way that is not too sensitive to a single individual's data. As a result, an indi-
vidual receives a guarantee that whether or not she decides to provide her data will not dramatically change the ability
of a third party to make new inferences about her. Previous work has considered the design of linear filters processing
sensitive time series data with differential privacy guarantees.11-17 The problem studied in this paper is that of designing
privacy-preserving nonlinear model-based estimators, which, to the best of our knowledge, has not been studied in a gen-
eral setting before. A convenient way of achieving differential privacy for an estimator is to bound its so-called sensitivity,10

a form of incremental system gain between the private input signals and the published output.15 Various tools could be
used for this purpose, and here, we rely on contraction analysis.18-21 This idea was proposed in a preliminary version of
this paper.1 Here, we extend our previous analysis in particular to a more general type of observer and to contraction with
respect to more general metrics, including Riemannian metrics, enlarging the class of systems for which a contraction
property holds and for which we can bound the sensitivity as a result. Moreover, by using different proof strategies, we
can provide tighter sensitivity bounds.

The rest of this paper is divided as follows. Section 2 presents the problem statement formally, provides a brief introduc-
tion to the notion of differential privacy, and describes and compares privacy-preserving data analysis mechanisms with
input and output perturbations. In Section 3, we discuss some fundamental results in contraction analysis and present
a type of “input-to-state stability” property of contracting systems similar to the one proved in the work of Sontag19 but
stated here for discrete-time systems. This property is used in Section 4 to design differentially private observers with out-
put perturbation. The methodology is illustrated via two examples involving the analysis of dynamic data originating from
private individuals. In Section 5.1, we consider the problem of estimating link formation probabilities in a social network
using a dynamic version of the classical stochastic block model,22 which involves a nonlinear measurement model. In
Section 5.2, we consider a nonlinear epidemiological model and design a differentially private estimator of the proportion
of susceptible and infectious people in a population, assuming a syndromic data source.

Notation. The expressions “if and only if” and “independent and identically distributed” are abbreviated as iff and
iid, respectively. ℕ ∶= {0, 1, …} denotes the set of nonnegative integers, 1 is the set of continuously differentiable
functions, and a class  function 𝛽 ∶ ℝ+ → ℝ+ is a strictly increasing continuous function such that 𝛽(0) = 0.
For H ∶ X → Y a linear map between finite dimensional vector spaces X and Y equipped with the norms | · |X and| · |Y respectively, we denote by ||H||XY its induced norm, so that |Hx|Y ≤ ||H||XY |x|X, for all x in X. If X = Y and both
spaces are equipped with the same norm | · |X, we simply write || · ||X. For 1 ≤ p < ∞, the p-norm on ℝn, denoted| · |p, is defined as |v|p ∶= (

∑n
i=1 |vi|p)1∕p, and |v|∞ ∶= max1≤i≤n|vi|. For v = {vk}k∈ℕ a vector-valued discrete-time

signal, where vk ∈ ℝn has components {vk,i}n
i=1, the 𝓁p signal norm is ||v||p = (

∑∞
k=0

∑n
i=1 |vk,i|p)1∕p = (

∑∞
k=0 |v|pp)1∕p

for 1 ≤ p < ∞, and ||v||∞ = supk≥0|vk|∞. We use diag (v) to denote a diagonal matrix with the components of the
vector v on the diagonal. For P a symmetric matrix, P positive definite is denoted P ≻ 0 and P positive semidefinite is
denoted P ⪰ 0. For P ⪰ 0, we denote its (unique) positive semidefinite square root as P1/2, ie, P = P1/2P1/2. For P, Q
symmetric matrices, P ⪰ Q means P − Q ⪰ 0, and P ⪯ 0 means −P ⪰ 0.

2 PROBLEM STATEMENT

2.1 Observer design
Consider the problem of estimating a discrete-time signal denoted x ∶= {xk}k∈ℕ, with xk ∈ X = ℝn for some positive
integer n, which represents an aggregate state for a population of privacy-sensitive individuals. For example, xk could
be the density at period k of drivers or pedestrians at a finite number of spatial locations, the proportion of individuals
infected by a disease in a population, etc. We assume that xk cannot be perfectly observed but that we can measure instead
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a privacy-sensitive discrete-time signal {𝑦k}k∈ℕ, with 𝑦k ∈ Y = ℝm for some positive integer m, for which we have a
state-space model of the form

xk+1 = 𝑓k(xk) + wk, (1)

𝑦k = gk(xk) + vk, (2)

where wk, vk are noise signals representing modeling and measurement errors, and fk and gk are 1 functions. Note that
the case where yk = xk + vk is possible, when the privacy-sensitive signal is a direct measurement of the underlying state.
Our aim is to publish an estimate zk of xk, computed from yk by an observer of the following form23:

zk+1 = 𝑓k(zk) + hk(zk, 𝑦k − gk(zk)), (3)

with, for each k in ℕ, hk ∶ X × Y → X a 1 function such that hk(x, 0) = 0. We initialize (3) with some estimate z0 of x0.
Note that (3) could describe an observer for a model (1)-(2) that has already been transformed under a suitable change
of coordinates to a form that facilitates observer design, eg, an observability canonical form.24,25 With straightforward
modifications to our arguments, the “prediction” form (3) could also be replaced by an observer using the most recent
observations

z0 = z̄0 + h0(z̄0, 𝑦0 − gk(z̄0)), for some estimate z̄0 of x0,

zk+1 = 𝑓k(zk) + hk+1(zk, 𝑦k+1 − gk(𝑓k(zk))), for k ≥ 0. (4)

In the applications discussed later in the paper, the signal yk is collected from privacy-sensitive individuals, hence needs
to be protected, in a sense defined below. For the examples of states xk mentioned above, yk could consist of location
traces or be the number of people presenting certain symptoms visiting emergency rooms for instance. On the other hand,
model (1)-(3), ie, the functions fk, gk, and hk, is assumed to be publicly available or at least could be potentially known
to an adversary trying to make inferences about y based on z. The data aggregator wishes to publicly release the signal z
produced by (3). However, since z depends on the sensitive signal y, we only allow the release of an approximate version
of z carrying certain privacy guarantees, which are presented formally in the next section. As a result, it will emerge that
the functions hk need to be carefully chosen to balance accuracy or convergence speed of the observer with the level of
privacy offered.

Remark 1. We do not provide here nor use any model of the noise signals w and v in (1), (2), which are simply intro-
duced as a device to explain the discrepancy between any measured signal y and the signals that can be predicted by
a deterministic model xk + 1 = fk(xk), yk = gk(xk).

Remark 2. More generally, we might just want to publish an output 𝜒k(xk), function of the state xk. As explained
below, this can be done by first obtaining a privacy-preserving estimate x̂ of the signal x and then publishing 𝜒k(x̂k),
relying on the fact that sound privacy guarantees such as differential privacy are preserved by the final transformation
through 𝜒k.

2.2 Differential privacy
The published signal should provide an accurate estimate of x under an additional constraint that is not satisfied a priori
by z from (3), aiming at preserving the privacy of the individuals from which the measured signal y originates. More
precisely, we impose that the published signal be differentially private,10 which requires adding artificial noise somewhere
in the signal processing system to randomize the published output. A differentially private version of observer (3) should
produce a randomized output signal whose distribution is not too sensitive to certain variations associated with the effect
of any individual's data on the signal y, input of the observer. The formal definition of differential privacy is given in
Definition 1 and requires that we specify the type of variations in y that should be hard to detect from the published
output. This is done by defining a symmetric binary relation, called adjacency and denoted Adj, on the space of data sets
D of interest, here the space of signals y, so that two adjacent input signals y and 𝑦̃ should produce (randomized) output
signals with similar distributions. It is possible to define different adjacency relations15 to model different data analysis
scenarios. In this paper, y is assumed to represent a (possibly multidimensional) signal that already aggregates the data
obtained from multiple users, eg, yk at a particular time period k could be the number of people waiting in a hospital
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emergency room, the total power consumption of a group of homes during that period, etc. We then consider in particular
the following adjacency relations between signals:

Adj(𝑦, 𝑦̃) iff ||𝑦 − 𝑦̃||p ≤ Bp, (5)

for p = 1 or p = 2 and some given fixed constant Bp > 0, as well as the more restrictive adjacency relation

Adj(𝑦, 𝑦̃) iff ∃k0 ≥ 0 s.t.

{
𝑦k = 𝑦̃k, k < k0|𝑦k − 𝑦̃k|p ≤ K𝛼k−k0 , k ≥ k0,

(6)

where again p = 1 or p = 2 and K > 0, 0 ≤ 𝛼 < 1 are given fixed constants. In other words, we aim at hiding deviations
in the signal y (eg, due to the contribution of one individual to the signal) that are bounded in p-norm (relation (5)) or
more explicitly that can start at any time k0 but then subsequently decrease geometrically (relation (6)). Note that even
the more restrictive condition (6) is much more general than the adjacency relation considered in some previous work on
the design of a differentially private counter,11,12,14 where adjacent (scalar) signals can differ at a single time period by at
most one. In comparison, the adjacency condition (6) greatly enlarges the set of signal deviations that can result from the
presence of any individual and for which we provide guarantees (deviation at a single period is obtained for 𝛼 = 0). We
can now state the definition of a differentially private mechanism, ie, of a randomized map from input to output signals.

Definition 1. Let D be a space equipped with a symmetric binary relation denoted Adj, and let (R,) be a mea-
surable space, where  is a given 𝜎-algebra over R. Let 𝜖, 𝛿 ≥ 0. A randomized mechanism M from D to R is
(𝜖, 𝛿)-differentially private (for Adj) if for all d, d′ ∈ D such that Adj(d, d′), we have

ℙ(M(d ) ∈ S) ≤ e𝜖ℙ(M(d′) ∈ S) + 𝛿, ∀S ∈ . (7)

If 𝛿 = 0, the mechanism is said to be 𝜖-differentially private.

This definition quantifies the admissible deviations for the output distribution of a differentially private mechanism,
when a variation at the input satisfies the adjacency relation. Smaller values of 𝜖 and 𝛿 correspond to stronger privacy
guarantees. In this paper, the space D was defined as the space of input signals y, the adjacency relation considered is (5)
or (6), and the output space R is the space of output signals for the observer, here Xℕ since we wish to estimate x. The
problem is to publish an accurate (but randomized) estimate of the state x while satisfying the property of Definition 1 for
specified values of 𝜖 and 𝛿.

Remark 3. Definition 1 depends on the choice of 𝜎-algebra , which must contain enough sets S to provide a mean-
ingful differential privacy guarantee. The interested reader can find a discussion of measurability issues in a previous
paper.15

2.3 Sensitivity and basic differentially private mechanisms
Enforcing differential privacy can be done by randomly perturbing the published output of a system10,15 at the expense of
its quality or utility. Hence, we are interested in evaluating as precisely as possible the amount of noise necessary to make
a mechanism differentially private. For this purpose, the following quantity plays an important role.

Definition 2. Let q ≥ 1. The 𝓁q-sensitivity of a system G with m inputs and n outputs, with respect to an adjacency
relation Adj on the input signals, is defined by ΔqG = supAdj(u,u′)||Gu − Gu′||q.

In practice, we are interested in the sensitivity of a system for the cases q = 1 and q = 2. The basic mechanisms of
Theorem 1 (with proofs and references in the previous paper15) can be used to produce differentially private signals. First,
we need the following definitions. A zero-mean Laplace random variable with parameter b has the probability density
function exp(−|x|∕b)∕2b, and its variance is 2b2. The -function is defined as (x) ∶= 1√

2𝜋
∫ ∞

x e−
u2

2 du. Then, for 𝜖 > 0,

0.5 ≥ 𝛿 > 0, define 𝜅𝛿,𝜖 = 1
2𝜖
(−1(𝛿) +

√
(−1(𝛿))2 + 2𝜖), which can be shown to behave roughly as O(

√
ln(1∕𝛿)∕𝜖).

Theorem 1. Let G be a system with m inputs and n outputs and fix a relation Adj in Definition 2. The mechanism
Mu = Gu+w, where all wk,i, k ∈ ℕ, 1 ≤ i ≤ n, are independent Laplace random variables with parameter b ≥ (Δ1G)∕𝜖,
is 𝜖-differentially private for Adj. If w is instead a white Gaussian noise such that the covariance matrix of each sample
wk is 𝜎2In with 𝜎 ≥ 𝜅𝛿,𝜖Δ2G, then the mechanism is (𝜖, 𝛿)-differentially private.
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The mechanisms of Theorem 1 are called the Laplace and the Gaussian mechanism. One reason for introducing the
Gaussian mechanism is that typically the 𝓁2-sensitivity is smaller than its 𝓁1 counterpart, which leads to lower noise
levels if one can tolerate 𝛿 > 0 in the privacy guarantee (7).

2.4 Input and output perturbation
Theorem 1 says that we can obtain a differentially private signal at the output of a system G by adding noise with standard
deviation proportional toΔ1G∕𝜖 or to 𝜅𝛿,𝜖Δ2G. A very useful additional result stated here informally says that postprocess-
ing a differentially private signal without re-accessing the privacy-sensitive input signal does not change the differential
privacy guarantee.15 Now, system G in Theorem 1 can simply be the identity with 𝓁1- and 𝓁2- sensitivity for the adja-
cency relation (6) equal to K∕(1 − 𝛼) and K∕

√
1 − 𝛼2 respectively (or B1 and B2 for (5)). This immediately gives a first

possible design approach for our privacy-preserving observer by simply adding Laplace or Gaussian noise directly to the
input signal y (see Figure 1A). The observer can then be designed according to any desired methodology and should try to
mitigate the effect of the artificial input noise, whose distribution is known, in addition to the usual measurement error.
We call this design an input perturbation mechanism. Note that for 𝛼 close to 1, 1∕

√
1 − 𝛼2 is significantly smaller than

1∕(1 − 𝛼), so that if we are willing to accept some 𝛿 > 0 in the privacy guarantee and to use the 2-norm on Y in the
adjacency relation (6), we can obtain much better accuracy by using the 𝓁2-sensitivity.

The input perturbation mechanism is attractive for its simplicity and might perform well, especially with low privacy
level requirements (relatively high 𝜖, 𝛿). In particular, the sensitive data can be made differentially private at the source
before sending it to any third party for processing. However, it can also potentially exhibit the following drawbacks. First,
the noise added to y might be unnecessarily large because it is not tailored to the task of estimating the state x of model
(1)-(2) and does not take into account the temporal correlations between samples of the signal y captured by this model.
Significant noise at the input of the observer can also lead to poor performance, ie, slow convergence and large errors in the
state estimate, or even perhaps divergence of the estimate from the true state trajectory, since the convergence of nonlinear
observers is often local. Second, characterizing the output error (state estimation error) due to the privacy-preserving
noise requires understanding how this noise is transformed when passing through the nonlinear observer. In general,
for nonlinear systems, the noise distribution at the output can become multimodal and nonzero mean, and hence, the
observer could produce a systematically biased estimate that could be hard to correct.

An alternative to input perturbation is the output perturbation mechanism shown on Figure 1B. In this case, following
Theorem 1, a privacy-preserving noise signal proportional to the sensitivity of observer G is added at its output. Computing
the sensitivity of G, or in practice upper bounding it, should be done as accurately as possible to reduce the conservatism
of the approach. On the other hand, the output noise does not impact any stability or bias analysis of observer G. As
discussed in more details in the following sections, we should then try to design an observer that has both good tracking
performance for the state trajectory and low sensitivity in order to minimize the level of privacy-preserving noise necessary
at the output. These two desired properties are essentially in conflict. Figure 1B shows that we can also add a terminal
filter to smooth out the Laplace or Gaussian noise,26 although this can generally affect the transient performance of the
overall system (eg, its convergence speed). We do not discuss the design of a potential smoothing filter in this paper, except
briefly in Section 5.1.

observer+

smoothing
filter

+observer G

(A)

(B)

FIGURE 1 Gaussian mechanisms with input (A) and output (B) perturbation for the adjacency relation (6). nk represents a zero-mean
standard white Gaussian noise with identity covariance matrix. Dashed lines represent a differentially private signal
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Example 1. Consider the memoryless system 𝑦k → 𝜙(𝑦k) ∶= 𝑦2
k, which could be a simple state estimator for a

measurement model 𝑦k =
√

xk in (2), not taking the dynamics (1) into account. Consider the adjacency relation (6)
for 𝛼 = 0, so that we have a deviation at some (unknown) single time period k0 of at most K between adjacent
signals yk and 𝑦̃k. For the input perturbation scheme and the Gaussian mechanism, assuming for simplicity that
𝜅𝛿,𝜖 = 1, the signal zk = (𝑦k + K𝜉k)2 = 𝑦2

k+2K𝑦k𝜉k+K2𝜉2
k is differentially private when 𝜉 is a standard Gaussian white

noise. The privacy-preserving noise at the input induces a systematic bias at the output between zk and 𝑦2
k equal to

𝔼[2K𝑦k𝜉k + K2𝜉2
k] = K2. Since K is assumed publicly known, in this case, the bias can be compensated and a possibly

better approximation of 𝜙 that is still differentially private is z′k= (yk + K𝜉k)2 − K2. One can verify that the variance
of the remaining error is e′k = 𝔼[(z′k − 𝑦

2
k)

2] = 4K2𝑦2
k + 2K4.

Suppose we know in addition that yk ∈ [0, 1] for all k ≥ 0. Then, we can bound the sensitivity of the memoryless
system as

Δ2𝜙 = |||𝑦2
k0
− 𝑦̃2

k0

||| = |𝑦k0 − 𝑦̃k0 ||𝑦k0 + 𝑦̃k0 | ≤ 2|𝑦k0 − 𝑦̃k0 | ≤ 2K. (8)

Hence, the signal z′′k = 𝑦2
k + 2K𝜉k is also differentially private and unbiased, with 𝜉 a standard white Gaussian noise

as before. The variance of the error is e′′k = 𝔼[(z′′k − 𝑦2
k)

2] = 4K2, which is smaller than the worst-case value 4K2 + 2K4

for e′k However, e′′k is larger than e′k as soon as 𝑦k <
√

1 − K2∕2, the typical case since K should be much less than
one, otherwise both the input and output mechanisms essentially destroy the signal. The upper bound (8) on the
sensitivity is conservative in order to be independent of the actual values of the sensitive signal y, which is necessary
when Theorem 1 is used to provide a differential privacy guarantee.

In the rest of this paper, we focus on the output perturbation mechanism of Figure 1B. There are two aspects to the
differentially private observer design problem in this case. First, we need to enforce appropriate convergence of z toward
x, which is the observer design problem itself. Second, we also need to control and bound explicitly the magnitude of the
changes in z when the observer input changes from y to an adjacent signal 𝑦̃, in order to apply Theorem 1 and set the
output noise level providing the differential privacy guarantee. In this paper, both aspects of the problem are treated by
using contraction analysis to design the observer as well as quantify its sensitivity to variations in the measured signal y.
A motivation for this approach is the exponential convergence of trajectories of contractive systems toward each other,
which provides a degree of robustness against input disturbances18,19,27,28 and, as a consequence, sensitivity bounds for
variations in input data streams y. The next section provides some background on contraction analysis that is necessary
to describe our design approach in Section 4.

3 CONTRACTING SYSTEMS

Contraction analysis is an “incremental” stability analysis methodology for dynamical systems emphasizing convergence
of trajectories toward each other, popularized in particular by the work of Lohmiller and Slotine.18 Earlier related work
can also be found in the mathematics literature.29,30 Contraction and incremental stability analysis have seen significant
developments in the past two decades,18-21,27,31-33 and we refer the reader to the recent paper by Forni and Sepulchre20 for
a comparison of different variations that have emerged and additional references. The purpose of this section is to review
some aspects of this methodology for discrete-time systems, which are not emphasized as much as continuous-time sys-
tems in the literature and to state and prove some results that we rely on to design differentially private observers with
output perturbation. Although these results could potentially be derived from the ideas presented in some of the references
cited above, we provide here a self-contained discussion and, in particular, explicit bounds on distances between trajec-
tories that are necessary to precisely set the level of privacy-preserving noise since qualitative guarantees of incremental
convergence are insufficient.

3.1 Basic results
Consider a discrete-time system

xk+1 = 𝑓k(xk), (9)

with 𝑓k ∶ X → X a 1 function, for all k ∈ ℕ. Let us denote by 𝜙(k; k0, x0) the value at time k ≥ k0 of the solution of (9)
taking the value x0 at time k0. A forward invariant set for system (9) is a set C ⊂ X such that if x0 ∈ C, then for all k0 and
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all k ≥ k0, 𝜙(k; k0, x0) ∈ C. Although we assume in this paper X = ℝn, it is useful to introduce here some language from
differential geometry and view X more generally as an n-dimensional differentiable manifold.20,34 For each point x ∈ X,
the tangent space to X at x, ie, informally, the n-dimensional vector space of all tangent vectors to curves on X passing
through x, is denoted TxX. The tangent bundle of X is denoted TX ∶= ∪x∈X{x} ×TxX and is equipped with a time-varying
family of norms | · |[x,k], smoothly varying with x for each k, so that | · |[x,k] is a norm on TxX, for all k ∈ ℕ. For each x, x̃ ∈ X,
let Γ(x, x̃) be the set of piecewise 1 curves joining x and x̃, ie, functions 𝛾 ∶ [0, 1] → X with 𝛾(0) = x, 𝛾(1) = x̃. We define
the (time-varying) length of such a curve 𝛾 by20,35

Lk(𝛾) =

1

∫
0

|𝛾 ′(r)|[𝛾(r),k]dr,

where 𝛾 ′(r) ∶= d𝛾
dr
(r) ∈ T𝛾(r)X. We then have a notion of (time-varying) geodesic distance on X defined as

dk(x, x̃) = inf
𝛾∈Γ(x,x̃)

Lk(𝛾), ∀x, x̃ ∈ X. (10)

Moreover, if the norms | · |[x,k] are in fact independent of x, thus denoted | · |[k], and if X is a convex set in ℝn (possibly
equal to ℝn), then the infimum in (10) is achieved by straight lines 𝛾(r) = x + r(x̃ − x) and dk(x, x̃) = |x̃ − x|[k] in (10).
Finally, each function fk in (9) is associated to a Jacobian Fk(x) ∶=

𝜕𝑓k
𝜕x
(x), which defines a linear map from TxX at time k

to T𝑓k(x)X at time k + 1. As a result, for all vectors v ∈ TxX,

|Fk(x)v|[𝑓k(x),k+1] ≤ ||Fk(x)||[x.k][𝑓k(x),k+1] |v|[x,k], (11)

where || · ||[x.k][𝑓 (x),k+1] denotes the norm induced by | · |[x,k] and | · |[𝑓k(x),k+1].

Remark 4. The discussion could be carried out in a slightly more general framework by allowing asymmetric norms
on the tangent spaces20 rather than standard norms, but we will not need this level of generality.

Definition 3. Let 𝜌 be a nonnegative constant. System (9) is said to be 𝜌-contracting for the norms | · |[x,k] on a forward
invariant set C ⊂ X if, for any k0 ∈ ℕ and any two initial conditions x0, x̃0 ∈ C, we have, for all k ≥ k0,

dk(𝜙(k; k0, x0), 𝜙(k; k0, x̃0)) ≤ 𝜌k−k0 dk0(x0, x̃0). (12)

Let 𝛾k ∈ Γ(x, x̃) be a curve joining two points x and x̃ in X at a fixed time k. Let 𝛾 ′k(r) be the tangent vector to 𝛾k at the
point 𝛾k(r), for r ∈ [0, 1]. The curve 𝛾k is transported at time k by (9) to a curve 𝛾k + 1 joining fk(x) and 𝑓k(x̃). Taking the
derivative with respect to r in the equation 𝛾k + 1(r) = fk(𝛾k(r)), we obtain the important linear relation between tangent
vectors

𝛾 ′k+1(r) = Fk(𝛾k(r))𝛾 ′k(r), ∀r ∈ [0, 1],∀k ≥ 0. (13)

The following fundamental theorem of contraction analysis is then a consequence of (13).

Theorem 2. Let Fk = 𝜕𝑓k
𝜕x

be the Jacobian of fk, for all k ≥ 0. A sufficient condition for system (9) to be 𝜌-contracting for
the norms | · |[x, k] on a forward invariant set C ⊂ X is that

||Fk(x)||[x.k][𝑓k(x),k+1] ≤ 𝜌, ∀x ∈ C,∀k ∈ ℕ. (14)

Proof. Consider a curve 𝛾k0 ∶ [0, 1] → X in Γ(x0, x̃0). This curve is transported by (9) to a sequence of curves
𝛾k0+1, 𝛾k0+2, … , ie, 𝛾k + 1(r) = fk(𝛾k(r)), for all r ∈ [0, 1], with 𝛾k joining 𝜙(k; k0, x0) and 𝜙(k; k0, x̃0). We have, for all
k ≥ k0, using (13)

Lk+1(𝛾k+1) =

1

∫
0

|||𝛾 ′k+1(r)
|||[𝛾k+1(r),k+1]

dr =

1

∫
0

|||Fk(𝛾k(r))𝛾 ′k(r)
|||[𝛾k+1(r),k+1]

dr.
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Now, using (11) and then assumption (14)

Lk+1(𝛾k+1) ≤
1

∫
0

||Fk(𝛾k(r))||[𝛾k(r),k]
[𝛾k+1(r),k+1]

|||𝛾 ′k(r)|||[𝛾k(r),k]
dr ≤ 𝜌

1

∫
0

|||𝛾 ′k(r)|||[𝛾k(r),k]
dr = 𝜌Lk(𝛾k), (15)

and hence by immediate recursion, Lk(𝛾k) ≤ 𝜌k−k0 Lk0(𝛾k0 ). To conclude, let 𝜖 > 0 and take the curve 𝛾k0 above to satisfy

Lk0(𝛾k0) ≤ (1 + 𝜖)dk0 (x0, x̃0).

Then, since 𝛾k ∈ Γ(𝜙(k; k0, x0), 𝜙(k; k0, x̃0)), we have

dk(𝜙(k; k0, x0), 𝜙(k; k0, x̃0)) ≤ Lk(𝛾k) ≤ 𝜌k−k0 Lk0(𝛾k0) ≤ (1 + 𝜖)𝜌k−k0 dk0(x0, x̃0). (16)

Since this inequality is true for all 𝜖 > 0, (12) holds.

Remark 5. Note that to obtain useful results in continuous time (in particular, to detect convergent dynamics), it is
crucial to use a tighter inequality replacing the first inequality of (15) by Coppel's inequality36 to bound the solutions
of linear differential equations. This leads to a sufficient condition for continuous-time systems similar to (14) stated
in terms of matrix measures instead of induced norms.18,19,33 However, this does not apply to discrete-time systems.

Corollary 1. With the notation defined as in Theorem 2, suppose that C is a convex forward invariant subset of ℝn and
that the norms | · |[x,k] on the tangent spaces are independent of x and denoted | · |k. Let || · ||kk+1 be the matrix norm induced
by | · |k and | · |k + 1. Then, if ||Fk(x)||kk+1 ≤ 𝜌 for all x ∈ C and for all k ∈ ℕ, we have

|𝜙(k; k0, x0) − 𝜙(k; k0, x̃0)|k ≤ 𝜌k−k0 |x0 − x̃0|k0 , ∀x0, x̃0 ∈ C,∀k ≥ k0.

Proof. The result follows immediately from Theorem 2 and the remarks on geodesic distances preceding
Definition 3.

Corollary 2. With the notation defined as in Theorem 2, suppose that the norms on the tangent spaces are defined
for all x and k by |v|[x, k] = |P[x, k]v|1, where P[x, k] = diag(p[x, k]), with p[x, k] a vector with positive components p[x, k],i.
Hence, |v|[x,k] = ∑n

i=1 p[x,k], i|vi|. Then, the system is 𝜌-contracting for the associated distances on X if the following linear
programs are feasible, for all x ∈ C and k ∈ ℕ

n∑
i=1

p[𝑓k(x),k+1],i|Fk,i𝑗(x)| ≤ 𝜌p[x,k],𝑗 , ∀1 ≤ 𝑗 ≤ n, (17)

p[x,k],i, p[𝑓k(x),k+1],i > 0, ∀1 ≤ i ≤ n. (18)

In particular, if C is convex and if there exist positive vectors p[k] independent of x satisfying the above inequalities (17),
(18) for all x, k, then, with P[k] ∶= diag(p[k]), xk ∶= 𝜙(k; k0, x0), x̃k ∶= 𝜙(k; k0, x̃0), we have

||P[k](xk − x̃k)||1 ≤ 𝜌k−k0 ||P[k0](x0 − x̃0)||1, ∀x0, x̃0 ∈ C,∀k ≥ k0. (19)

Proof. Inequalities (17), (18) come from satisfying (14) for the 1-norm weighted by R ∶= P[x,k] and S ∶= P[𝑓k(x),k+1].
Condition (14) is equivalent to the induced 1-norm of the matrix SFk(x)R−1 being less than 𝜌, and this matrix has
entries p[𝑓k(x),k+1],iFk,i𝑗(x)∕p[x,k],𝑗 . The induced 1-norm of an n × m matrix A = [ai j]i, j is max1≤ 𝑗≤m

∑n
i=1 |ai𝑗|. The result

follows from these facts.

Corollary 3. With the notation defined as in Theorem 2, suppose that the norms on the tangent spaces are defined by|v|[x,k] = (vTP[x,k]v)1∕2 = |P1∕2
[x,k]v|2, where P[x,k] ≻ 0, for all x and k. Then, the system is 𝜌-contracting for the associated

distances on X if the following linear matrix inequalities (LMIs) are satisfied

Fk(x)TP[𝑓 (x),k+1]Fk(x) ⪯ 𝜌2P[x,k], ∀x ∈ C,∀k ∈ ℕ. (20)

Suppose C is convex. If there exist matrices P[k] ≻ 0, k ∈ ℕ, independent of x, satisfying these LMIs, then we have|||P1∕2
[k] (xk − x̃k)

|||2 ≤ 𝜌k−k0 |||P1∕2
[k0]

(x0 − x̃0)
|||2, ∀x0, x̃0 ∈ C,∀k ≥ k0, (21)
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where xk ∶= 𝜙(k; k0, x0), x̃k ∶= 𝜙(k; k0, x̃0). If there exist matrices P[x,k] satisfying (20) and if there exist 2 matrices
Pmin ≻ 0 with minimum eigenvalue 𝜆min > 0 and Pmax ≻ 0 with maximum eigenvalue 𝜆max > 0 such that we have
𝜆minI ⪯ Pmin ⪯ P[x,k] ⪯ Pmax ⪯ 𝜆maxI, for all x, k, then|||P1∕2

min(xk − x̃k)
|||2 ≤ 𝜌k−k0 |||P1∕2

max(x0 − x̃0)
|||2, ∀x0, x̃0 ∈ C,∀k ≥ k0,

and hence,

|xk − x̃k|2 ≤ 𝜌k−k0

√
𝜆max

𝜆min
|x0 − x̃0|2.

Proof. This is a corollary of Theorem 2 since satisfying (14) for the norm induced by the weighted 2-norms with
matrices P[x,k] and P[ f (x),k + 1] can be written vTFk(x)TP[ f (x),k + 1]Fk(x)v ≤ 𝜌2vTP[x,k]v, for all v in ℝn. The second part uses
the fact

1

∫
0

√
𝛾 ′(r)Pmax𝛾 ′(r)dr ≥ Lk(𝛾) =

1

∫
0

√
𝛾 ′(r)P[𝛾(r),k]𝛾 ′(r)dr ≥

1

∫
0

√
𝛾 ′(r)Pmin𝛾 ′(r)dr,

and moreover, ∫ 1
0

√
𝛾 ′(r)Pmin𝛾 ′(r)dr ≥ |P1∕2

min(x − x̃)|2 if 𝛾 ∈ Γ(x, x̃) since, for a constant norm on ℝn, the geodesic
curves are straight lines. Finally, referring to the argument leading to (16), we get|||P1∕2

min(xk − x̃k)
|||2 ≤ Lk(𝛾k) ≤ 𝜌k−k0 Lk0(𝛾k0) ≤ 𝜌k−k0 |||P1∕2

max(x0 − x̃0)
|||2.

Remark 6. The first part of Corollary 3 is the classical contraction result,18 in discrete time, for norms associated
with an inner product (Riemannian structure on X). Using state-dependent P matrices enlarges the set of systems for
which we can prove contraction, but in our case, we also need to explicitly bound the Euclidean distances |xk − x̃k|2,
not just general geodesic distances, to be able to evaluate the level of noise necessary for the Gaussian mechanism of
Theorem 1.

3.2 Effect of disturbances
For the computation of 𝓁1 and 𝓁2-sensitivities, we need to study the trajectory deviations of contracting systems subject to
disturbances. Qualitatively, the exponential convergence of trajectories of a contracting system provides some robustness
against disturbances.18,19,28 However, to precisely set the level of privacy-preserving noise, quantitative worst-case bounds
on the 𝓁1 or 𝓁2-norms of the trajectory deviations are needed. Hence, consider a system

xk+1 = 𝑓k(xk, 𝜋k(xk)), (22)

where 𝜋k ∶ X → P ∶= ℝp, for some p, represents a 1 disturbance signal, and for all k ≥ 0, 𝑓k ∶ X × P → X is 1. We
equip the tangent spaces of the product manifold X×P with time-varying norms assumed for simplicity to be fixed for the
disturbance part, ie, |(v,w)|[(x,𝜋),k] = |v|[x,k] + |w|P, for a fixed norm | · |P. The nominal system under zero disturbance is

x̄k+1 = 𝑓k(x̄k, 0). (23)

We denote 𝜕𝑓k
𝜕x

and 𝜕𝑓k
𝜕𝜋

the Jacobian matrices of fk(x, 𝜋) with respect to the components of x and 𝜋, respectively.
For r ∈ [0, 1], denote by 𝜙(k; r, k0, x0) the iterates of

xk+1 = 𝑓k(xk, r𝜋k(xk)), (24)

starting from x0 at time k0. Note that (22) corresponds to r = 1 and (23) to r = 0. Let us also define

Jk(x; r) ∶= 𝜕𝑓k

𝜕x
(x, r𝜋k(x)) + r 𝜕𝑓k

𝜕𝜋
(x, r𝜋k(x))

𝜕𝜋k

𝜕x
(x), ∀x ∈ X,∀r ∈ [0, 1]. (25)

For all x in X, denote xk,r
+ ∶= 𝑓k(x, r𝜋k(x)). Formally, the “differential” maps (25) are from T[x,k]X to T[xk,r

+ ,k+1]X, with the
corresponding induced norms || · ||[x,k]

[xk,r
+ ,k+1]

. We then have the following result.
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Theorem 3. Consider a trajectory x̄k ∶= 𝜙(k; 0, k0, x̄0) for (23) starting from x̄0 and a trajectory xk ∶= 𝜙(k; 1, k0, x0) for
the perturbed system (22) starting from x0. Suppose that there exists a sequence {Mk}k≥ 0 such that||||𝜕𝑓k

𝜕𝜋
(x, r𝜋k(x))𝜋k(x)

||||[xk,r
+ ,k+1

] ≤ Mk, ∀r ∈ [0, 1],∀x ∈ C,∀k ≥ k0, (26)

and that ||Jk(x; r)||[x,k][
xk,r
+ ,k+1

] ≤ 𝜌, ∀r ∈ [0, 1],∀x ∈ C,∀k ≥ k0, (27)

where C is a forward invariant set for (24), for all r ∈ [0, 1]. Then, we have, for all k ≥ k0 and the distances dk defined
in (10),

dk(x̄k, xk) ≤ 𝜌k−k0 dk0(x̄k0 , xk0 ) +
k−k0−1∑

l=0
𝜌lMk−1−l.

Remark 7. As an example, in the case of additive disturbances on X = P = ℝn, ie,

𝑓k(x, 𝜋k(x)) = 𝑓k(x) + 𝜋k(x), (28)

with a fixed norm | · | on ℝn, condition (26) can be written more simply supx∈C|𝜋k(x)| ≤ Mk, ie, Mk is a bound on the
disturbance term.

Remark 8. Note that if the disturbance 𝜋k does not depend on x, then (25) reads Jk(x; r) ∶= 𝜕𝑓k
𝜕x
(x, r𝜋k) and (27) is a

type of contraction condition on the perturbed system. If moreover the perturbation is in fact additive as in (28), then
(27) simply asks that the Jacobian of the nominal system 𝑓k satisfy the contraction assumption.

Proof. Consider a curve 𝛾k0 ∈ Γ(x̄0, x0), ie, such that 𝛾k0(0) = x̄0 and 𝛾k0(1) = x0, transported by (24) to the sequence

𝛾k(r) = 𝜙(k; r, k0, 𝛾k0(r)), ∀r ∈ [0, 1],∀k ≥ k0.

Then, for k ≥ k0, we have 𝛾k ∈ Γ(x̄k, xk), where x̄k ∶= 𝜙(k; 0, k0, x̄0) and xk ∶= 𝜙(k; 1, k0, x0). Following the idea of
the proof of Theorem 2, define 𝛾 ′k(r) ∶=

d
dr
𝜙(k; r, k0, 𝛾k0(r)), so that we have, for all k and all r ∈ [0, 1],

𝛾 ′k+1(r) = Jk(𝛾k(r); r)𝛾 ′k(r) +
𝜕𝑓k

𝜕𝜋
(𝛾k(r), r𝜋k(𝛾k(r)))𝜋k(𝛾k(r)),

which implies, by (27) and (26),|||𝛾 ′k+1(r)
|||[𝛾k+1(r),k+1]

≤ 𝜌
|||𝛾 ′k(r)|||[𝛾k(r),k]

+ Mk, ∀r ∈ [0, 1],∀k ≥ k0,

and by integration over r ∈ [0, 1]
Lk+1(𝛾k+1) ≤ 𝜌Lk(𝛾k) + Mk, ∀k ≥ k0.

By the comparison lemma,37 we then have that L(𝛾k) ≤ uk for uk satisfying the linear scalar dynamics

uk0 = Lk0(𝛾k0), uk+1 = 𝜌uk + Mk, ∀k ≥ k0.

Hence, Lk(𝛾k) ≤ 𝜌k−k0 uk0 +
∑k−k0−1

l=0 𝜌lMk−1−l. As in the end of the proof of Theorem 2, we can then choose 𝛾k0 so that
Lk0(𝛾k0) is arbitrarily close to dk0(x̄0, x0), and then use dk(x̄k, xk) ≤ Lk(𝛾k) to conclude.

We can now make convergence assumptions on the bounding sequence {Mk}k≥ 0 in (26) to state more concrete results.
The following corollaries follow by standard calculations28 on the sequence uk introduced at the end of the proof of
Theorem 3.

Corollary 4. Let 1 ≤ p ≤ ∞ be an integer. Suppose that {Mk}k≥ 0 in (26) is a sequence in 𝓁p, with norm ||M||p. Then,
with the notation and assumptions of Theorem (3), if 𝜌 < 1, there exists a class  function 𝛽 ∶ ℝ+ → ℝ+ such that( ∞∑

k=k0

dk(x̄k, xk)p

)1∕p

≤ 𝛽(dk0(x0, x̄0)) +
||M||p
1 − 𝜌

, (29)

where, for p = ∞, the left-hand side of the inequality is interpreted as usual as supk≥k0
dk(x̄k, xk).

By further restricting the class of disturbances, we get slightly tighter bounds on the deviations for p ≥ 2.
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Corollary 5. Let 1 ≤ p ≤ ∞ be an integer. Suppose that {Mk}k≥ 0 in (26) satisfies the following condition:

∃K ≥ 0, 1 > 𝛼 ≥ 0, and k0 ∈ ℕs.t.Mk =

{
0, if k < k0,

K𝛼k−k0 , if k ≥ k0.
(30)

Then, with the notation and assumptions of Theorem 3, for k ≥ k0,

dk(x̄k, xk) ≤ 𝜌k−k0 dk0(x̄0, x0) + K 𝜌
k−k0 − 𝛼k−k0

𝜌 − 𝛼
.

Hence, if 𝜌 < 1,
∞∑

k=k0

dk(x̄k, xk) ≤ 1
1 − 𝜌

dk0(x̄0, x0) +
K

(1 − 𝜌)(1 − 𝛼)
,

and for any p ≥ 2, there exists a class  function 𝛽 ∶ ℝ+ → ℝ+ such that( ∞∑
k=k0

dk(x̄k, xk)p

)1∕p

≤ 𝛽(dk0(x̄0, x0)) +
K|𝜌 − 𝛼|

( ∞∑
k=0

|𝜌k − 𝛼k|p)1∕p

. (31)

Remark 9. If the norms on TX are given by weighted 1- and 2-norms as in Corollaries 2 and 3, then condition (27)
corresponds to the feasibility of a family of linear programs or LMIs, and if moreover C is convex and the weight
matrices in these norms are independent of x, then we can replace the distances dk(x̄k, xk) in (29), (31) by |P[k](x̄k−xk)|1
or |P1∕2

[k] (x̄k − xk)|2 as in (19), (21).

4 DIFFERENTIALLY PRIVATE OBSERVERS WITH OUTPUT
PERTURBATION

Let us now return to our initial differentially private observer design problem with output perturbation. Two adjacent
measured signals y and 𝑦̃ produce distinct observer state trajectories z and z̃ by (3), such that

zk+1 = 𝑓k(zk) + hk(zk, 𝑦k − gk(zk)), (32)

z̃k+1 = 𝑓k(z̃k) + hk(z̃k, 𝑦k − gk(z̃k) + 𝜋k), (33)

where 𝜋k = 𝑦̃k−𝑦k. We can now attempt to choose the functions hk to design a contractive observer while at the same time
minimizing the “gain” of the map 𝜋 → z. First, contraction provides a notion of convergence for the observer. Namely,
if model (1), (2) were valid under no modeling noise assumptions (zero v,w), then any the sequence x satisfying (1), (2)
would also satisfy the dynamics (32) (since yk = g(xk)), and the trajectories x, z would converge exponentially toward each
other, so that any initial difference between z0 and x0 would eventually be forgotten. Second, the results of Section 3.2 give
us tools to bound the sensitivity of contractive observers, ie, the deviations between z and z̃ above and, hence, a mean to
set the level of privacy-preserving noise using Theorem 1.

Given two measured signals y and 𝑦̃, define the notation 𝜈𝑦,𝑦̃k (x; r) ∶= 𝑦k − gk(x) + r𝜋k = (1 − r)𝑦k + r𝑦̃k − gk(x) and

J𝑦,𝑦̃k (x; r) = 𝜕𝑓k

𝜕x
(x) + 𝜕hk

𝜕x
(

x, 𝜈𝑦,𝑦̃k (x; r)
)
− 𝜕hk

𝜕𝑦

(
x, 𝜈𝑦,𝑦̃k (x; r)

) 𝜕gk

𝜕x
(x). (34)

The proof of the following proposition follows immediately from Theorem 3 and Remark 8.

Proposition 1. Consider observer (3), and two measured signals 𝑦, 𝑦̃ producing respectively the trajectories z, z̃, assuming
the same initial condition z0 = z̃0 to initialize the observer. Suppose that we have the bound

‖‖‖J𝑦,𝑦̃k (x; r)‖‖‖[x,k][
xk,r
+ ,k+1

] ≤ 𝜌, ∀r ∈ [0, 1],∀x ∈ C,∀k ∈ ℕ, (35)
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where J𝑦,𝑦̃k is defined by (34), xk,r
+ ∶= 𝑓k(x) + hk(x, 𝜈𝑦,𝑦̃k (x; r)) and C is a set containing z0, which is forward invariant for

observer (32) for any input signal (1 − r)𝑦 + r𝑦̃, r ∈ [0, 1]. Suppose moreover that

sup
x∈C,r∈[0,1]

||||𝜕hk

𝜕𝑦

(
x, 𝜈𝑦,𝑦̃k (x; r)

)
(𝑦̃k − 𝑦k)

||||[xk,r
+ ,k+1

] ≤ Mk, ∀k ∈ ℕ. (36)

Then, we have, for the distances dk associated to the norms | · |[x,k],

dk(zk, z̃k) ≤
k−1∑
l=0
𝜌lMk−1−l.

The result of Proposition 1 is still quite general. To illustrate how it can be applied and to simplify the following dis-
cussion, we now focus on the simpler situation where a Luenberger-type observer can be used to estimate the state38

zk+1 = 𝑓k(zk) + Hk × (𝑦k − gk(zk)), (37)

where Hk represents an n × m matrix to design. In other words, we set hk(x, y) = Hk y. Then, expression (34) reads simply
𝜕𝑓k
𝜕x
(x) − Hk

𝜕gk
𝜕x
(x) and becomes, in particular, independent of r and 𝑦, 𝑦̃. Next, fix a norm | · |X on TX, independent of x, k,

and a p-norm | · |p on Y, and let H̄p
X ∶= supk||Hk||YX. Then, in (36), we can take Mk = H̄p

X |𝑦k − 𝑦̃k|p. This leads to the
following corollary of Proposition 1 similar to the Corollaries 4 and 5, which we will use next in the illustrative examples.
We introduce the notation ||v||p,X ∶= (

∑∞
k=0 |vk|pX)1∕p, for 1 ≤ p ≤ ∞.

Corollary 6. Consider observer (37), and two measured signals 𝑦, 𝑦̃ producing respectively the trajectories z, z̃, assuming
the same initial condition z0 = z̃0 to initialize the observer. Fix the norms | · |X, on TX, independent of x, k. Suppose that
we have the bound ‖‖‖‖𝜕𝑓k

𝜕x
(x) − Hk

𝜕gk

𝜕x
(x)

‖‖‖‖X
≤ 𝜌, ∀x ∈ C, k ∈ ℕ (38)

for some constant 𝜌 < 1, where C is a set containing z0 and forward invariant for (32) for any input signal 𝑦 + (1 − r)𝑦̃,
r ∈ [0, 1]. Then, if the signals 𝑦, 𝑦̃ are adjacent according to (5), we have, for the same value of p,

||z − z̃||p,X ≤ Bp H̄p
X

1 − 𝜌
. (39)

Moreover, if the signals 𝑦, 𝑦̃ are in fact adjacent according to (6), we have more precisely, for the same value of p,

||z − z̃||p,X ≤ K H̄p
X|𝜌 − 𝛼|

( ∞∑
k=0

|𝜌k − 𝛼k|p)1∕p

. (40)

Remark 10. For the adjacency relation (6) with p = 1, both (40) and (39) give the same upper bound K H̄p
X

(1−𝜌)(1−𝛼)
.

In Corollary 6, the choice of Hk has an impact both on 𝜌 and on the 𝓁p-sensitivity bound. Increasing the gains Hk can
help decrease the contraction rate 𝜌 to obtain a more rapidly converging observer, but at the same time, it increases the
sensitivity, in the sense of Section 2.3, and thus the level of noise necessary for differential privacy. Hence, in general, we
should try to achieve a reasonable contraction rate 𝜌 with the smallest gain possible. We conclude this section with two
more corollaries, describing differentially private observers with output perturbation.

Corollary 7. Let P = diag(p), with pi > 0, 1 ≤ i ≤ n, and assume that the conditions of Corollary 6 are satisfied for
the weighted 1-norm |Pv|1 =

∑n
i=1 pi|vi| on X. Consider the signal x̂k = zk + 𝜉k, where zk is computed from (37), and 𝜉k,i

are iid Laplace random variables with parameters b∕pi, for 1 ≤ i ≤ n, where

b =
B1 supk||PHk||1

𝜖(1 − 𝜌)
. (41)

Then, this signal x̂k is 𝜖-differentially private for the adjacency relation (5) with p = 1 and for (6) with p = 1 when
B1 = K

1−𝛼
.
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Proof. From bound (39) for p = 1, since ||z − z||1,X =
∑∞

k=0 |P(zk − z̃k)|1, we deduce by Theorem 1 that Pzk + 𝜁k is a
differentially private signal, where 𝜁k has Laplace distributed iid components with the parameter b. Hence, P−1(Pzk +
𝜁k) is also differentially private (by resilience to postprocessing15) and we define 𝜉k = P−1𝜁k in the corollary.

Corollary 8. Let P be a positive definite matrix, and assume that the conditions of Corollary 6 are satisfied for the
weighted 2-norm |P1/2v|2 on X. Consider the signal x̂k = zk + 𝜉k, where zk is computed from (37), and 𝜉k is a Gaussian
white noise with covariance matrix 𝜎2P−1, where 𝜎 = 𝜅𝛿,𝜖K2supk||P1∕2Hk||2. Then, this signal x̂k is (𝜖, 𝛿)-differentially
private for the adjacency relation (5) with p = 2 if K2 = B2∕(1 − 𝜌), and for the adjacency relation (6) with p = 2 if
K2 = K|𝜌−𝛼| (∑k≥0(𝜌k − 𝛼k)2)1∕2.

Proof. From bounds (39) or (40), we deduce by Theorem 1 that P1/2zk + 𝜁k is a differentially private signal, where
𝜁k is a Gaussian white noise with covariance matrix 𝜎2I. Hence, P−1/2(P1/2zk + 𝜁k) is also differentially private (by
resilience to postprocessing15) and we define 𝜉k = P−1/2𝜁k in the corollary.

Corollaries 7 and 8 give two differentially private mechanisms with output perturbation, provided that we can design
the matrices H̄k to verify the assumptions of Corollary 6 with the (weighted) 1- or 2-norm on X. The next section discusses
application examples for the privacy-preserving observer design methodology.

5 APPLICATION EXAMPLES

5.1 Estimating link formation preferences in dynamic social networks
Statistical studies of networks have intensified tremendously in recent years, with one motivating application being the
emergence of online social networking communities. In this section, we focus on a recently proposed state-space model39

describing the dynamics of link formation in networks, called the dynamic stochastic block model. It combines a linear
state-space model for the underlying dynamics of the network and the classical stochastic block model of Holland et al,22

resulting in a nonlinear measurement equation. Examples of applications of this model include mining email and cell
phone databases,39 which obviously contain privacy-sensitive data.

Consider a set of n nodes. Each node corresponds to an individual and can belong to one of N classes. Let 𝜃ab
k be the

probability of forming an edge at time k between a node in class a and a node in class b, and let 𝜃k denote the vector of
probabilities [𝜃ab

k ]1≤a,b≤N . For example, edges could represent email exchanges or phone conversations. Edges are assumed

to be formed independently of each other according to 𝜃k. Let 𝑦ab
k = mab

k
nab be the observed density of edges between classes

a and b, where mab
k is the number of observed edges between classes a and b at time k, and nab is the maximum possible

number of edges between these two classes. For simplicity, we assume that the quantities nab are publicly known (this
is the case, for example, if the class of each node is public information), and we focus on the problem of estimating the
parameters 𝜃ab

k by using the signals 𝑦ab
k . This corresponds to the “a priori” block modeling setting.22,39 The links formed

between specific nodes constitute private information however, so directly releasing mab
k or 𝑦ab

k or an estimate of 𝜃k based
on these quantities is not allowed.

If nab is large enough, previous work has argued39 using the central limit theorem that an approximate model where
𝑦ab

k is Gaussian is justified, so that
𝑦k = 𝜃k + vk, (42)

where vk is a Gaussian noise vector with diagonal covariance matrix Vk (whose entries theoretically should depend on 𝜃k,
but this aspect is neglected in the model). Rather than defining a dynamic model for 𝜃k, whose entries are constrained to
be between 0 and 1, let us redefine the state vector to be the so-called logit of 𝜃k, denoted 𝜓k, with entries 𝜓ab

k = ln 𝜃ab
k

1−𝜃ab
k

,

which are well defined for 0 < 𝜃ab
k < 1. The dynamics of 𝜓k is assumed to be linear

𝜓k+1 = F𝜓k + wk, (43)

for some known matrix F, and for noise vectors wk assumed to be iid Gaussian with known covariance matrix W.39 The
observation model (42) now becomes

𝑦k = g(𝜓k) + vk, (44)
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where the components of g are given by the logistic function applied to each entry of 𝜓 , ie,

gab(𝜓k) =
1(

1 + e−𝜓ab
k

) .
An extended Kalman filter is proposed in the work of Xu and Hero39 to estimate 𝜓 , but we pursue here a deterministic

observer design to illustrate the ideas discussed in the previous sections. Hence, for simplicity, we consider an observer
of the form

𝜓̂k+1 = F𝜓̂k + H(𝑦k − g(𝜓̂k)) = (F𝜓̂k − Hg(𝜓̂k)) + H𝑦k,

with H a constant square gain matrix. To enforce contraction as in Corollary 6, we should choose H so that ||F − HG(𝜓)|| ≤
𝜌,where G(𝜓) is the Jacobian of g at 𝜓 . Note that G(𝜓) is a square and diagonal matrix with entries Gii(𝜓) = e−𝜓 i

(1+e−𝜓 i )2
,with

i indexing pairs (a, b). The only nonlinearity in model (43), (44) comes from the observation model (44).
To further simplify the following discussion, let us assume that F is also diagonal (an assumption also made in the

previous work,39 where the coupling between components occurs only through the nondiagonal covariance matrix W).
In this case, the systems completely decouple into scalar systems, and it is natural to choose H to be diagonal as well. The
observer for one of these scalar system takes the form

zk+1 = 𝑓zk + h ×
(
𝑦k −

1
1 + e−zk

)
= 𝑓zk −

h
1 + e−zk

+ h𝑦k, (45)

where h ∈ ℝ is the observer gain to set, 𝑓 ∈ ℝ+, zk ∈ ℝ is one component (a, b) of 𝜓̂k and yk now represents just the
corresponding scalar component of the measurement vector as well. Since the state space X is now ℝ, the norm | · |X is
simply the absolute value. The contraction condition (38) reads, for some 0 < 𝜌 < 1,

−𝜌 ≤ 𝑓 − he−z

(1 + e−z)2 ≤ 𝜌 (46)

ie, 𝑓 − 𝜌 ≤ he−z

(1 + e−z)2 ≤ 𝑓 + 𝜌. (47)

Now, note that 0 ≤ e−z

(1+e−z)2
≤ 1

4
for all z. Hence, by taking h ≤ 4(f + 𝜌), the right inequality (47) is satisfied. To satisfy the

left inequality, if f < 1, we could potentially take 𝜌 ≥ f, although the estimation performance might not necessarily be
satisfying in this case. Alternatively, if f ≥ 1 or if we want to achieve a smaller contraction parameter 𝜌 than the value of
f, we can enforce the left inequality on a subset of the state space. Namely, for −a ≤ z ≤ a, we have e−z

(1+e−z)2
≥ e−a

(1+e−a)2
. In

this case, for 𝜌 < f, by taking h ≥ (f − 𝜌)ea(1 + e−a)2, the left-hand side of (47) is also satisfied.
Suppose for example that f = 1 in the dynamics (45), so that (43) describes a Gaussian random walk and that the

adjacency relation considered is (6). By Corollary 7, we can publish an 𝜖-differentially private estimate of 𝜓 by computing
zk using (45) and adding Laplace noise to it with parameter b = Kh∕(𝜖(1 − 𝜌)(1 − 𝛼)). Small noise requires small values
of h and of 𝜌. Since we must take 𝜌 < 1, we cannot enforce the left inequality of (47) for all values of z. Suppose then
that we want to design a privacy-preserving observer assuming that 𝜃 remains in the interval [0.1, 0.9] or equivalently
𝜓 ∈ [− 2.197, 2.197] approximately. In this interval, we have 0.09 ≤ e−𝜓

(1+e−𝜓 )2
≤ 1

4
, and so 𝜌 and h must also satisfy

𝑓 − 𝜌
0.09

≤ h ≤ 4(𝑓 + 𝜌), ie, 1 − 𝜌
0.09

≤ h ≤ 4(1 + 𝜌). (48)

Note in particular that the factor h∕(1 − 𝜌) also appearing in parameter b is lower bounded by 1∕0.09 ≈ 11.1. We should
then set h = (1 − 𝜌)∕0.09, satisfying the left inequality in (48) with equality, for the value of the contraction parameter 𝜌
that we want to achieve. For example, for faster observer convergence we should try to achieve the lowest possible value
of 𝜌, although this might amplify the steady-state variance due to measurement noise. The inequalities (48) can only be
satisfied for 𝜌 ⪆ 0.47, a contraction parameter that can then be achieved by taking h ≈ 5.88.

Figure 2 illustrates the behavior of the privacy-preserving observer, when the privacy parameters are 𝜖 = ln(3), 𝛿 = 0
and K = 3 × 10−3 and 𝛼 = 0.25 in (6). That is, for the pair of classes (a, b) under consideration, we want to provide a
differential privacy guarantee making it hard to detect a transient variation in the number of edges, as long as this variation
represents initially at most 0.3% of all the edges between classes a and b, and subsequently decreases at least geometrically
with rate 1∕4. Concretely, if edges represent phone conversations for example, this means that if an individual in class a
suddenly increases his call volume with class b but by an amount representing less than a proportion K of all calls between
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FIGURE 2 Sample path of the estimate of the edge formation probability 𝜃ab
k , for some classes (a, b). The measured edge density is generated

from one component of model (42), (43) with f = 1 and wk, vk iid Gaussian random variables with zero mean and standard deviation 0.03 and
0.04, respectively. The trajectory 𝜃 (dotted line) starts at the value 0.65, and the observers are all initialized at the value 0.50. The upper bound 𝜌
on the contraction rate of observer (45) is set to 𝜌 = 0.9, providing a good trade-off between convergence speed and steady-state variance (see
green dashed curve for the nonprivate observer), with corresponding gain h = 1.11. The dot-dashed line shows 1∕(1+ exp(−z̃k)) as our private
estimate of 𝜃k, where z̃k is a ln(3)-differentially private estimate of 𝜓k (hence, the estimate of 𝜃k is also ln(3)-differentially private), obtained
by the Laplace mechanism, for the adjacency relation (6) with parameter values K = 3 × 10−3, 𝛼 = 0.25. We also show a differentially
private estimate obtained after further postfiltering, as explained in the main text [Colour figure can be viewed at wileyonlinelibrary.com]

a and b, and subsequently reduces this temporary activity at rate 𝛼, then an adversary having access to a differentially
private estimate of 𝜃ab

k can only achieve a low probability of correctly detecting this event.40

As explained in Figure 1, it can be useful to further filter the differentially private signal produced above since this
signal exposes directly the privacy-preserving noise. In this case, one can interpret the private estimate z̃k = zk + 𝜉k, with
𝜉 the Laplace noise as in Corollary (7), as a noisy measurement of 𝜓 , now with a trivial linear measurement model, in
contrast to (44). A possible simple postfilter smoothing z̃k can then be the linear observer

𝜓̂k+1 = 𝑓𝜓̂k + kpost(z̃k − 𝑓𝜓̂k),

and Figure 2 also represents 𝜃̂k = g(𝜓̂k) for the gain value kpost = 0.4.

5.2 Syndromic surveillance
Syndromic surveillance systems monitor health-related data in real-time in a population to facilitate early detection of epi-
demic outbreaks.41 In particular, recent studies have shown the correlation between certain nonmedical data, eg, search
engine queries related to a specific disease, and the proportion of individuals infected by this disease in the population.42

Although time series analysis can be used to detect abnormal patterns in the collected data,41 here, we focus on a
model-based filtering approach43 and develop a differentially private observer using a two-dimensional epidemiological
model.

The following SIR model of Kermack and McKendrick44,45 models the evolution of an epidemic in a population by
dividing individuals into 3 categories: susceptible (S), ie, individuals who might become infected if exposed; infectious
(I), ie, currently infected individuals who can transmit the infection; and recovered (R) individuals, who are immune to
the infection. A simple version of the model in continuous-time includes bilinear terms and reads

ds
dt

= −𝜇ois

di
dt

= 𝜇ois − 𝜇i.

http://wileyonlinelibrary.com
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Here, i and s represent the proportion of the total population in the classes I and S. The last class R need not be included
in this model because we have the constraint i + s + r = 1. The parameter o is called the basic reproduction number
and represents the average number of individuals infected by a sick person. The epidemic can propagate when o > 1.
The parameter 𝜇 represents the rate at which infectious people recover and move to class R. More details about this model
can be found in the monograph of Brauer et al.45

Discretizing this model with sampling period 𝜏, we get the discrete-time model

sk+1 = sk − 𝜏𝜇oiksk + w1,k = 𝑓1(sk, ik) + w1,k (49)

ik+1 = ik + 𝜏𝜇ik(osk − 1) + w2,k = 𝑓2(sk, ik) + w2,k, (50)

where we have also introduced noise signals w1 and w2 in the dynamics. We assume here for simplicity that we can collect
syndromic data providing a noisy measurement of the proportion of infected individuals, ie,

𝑦k = ik + vk,

where vk is a noise signal. We can then consider the design of an observer of the form

ŝk+1 = 𝑓1(ŝk, îk) + h1(𝑦k − îk)

îk+1 = 𝑓2(ŝk, îk) + h2(𝑦k − îk).

We define the Jacobian matrix of system (49), (50)

F(s, i) = I2 + 𝜏𝜇o

[
−i −s
i s − 1∕o

]
,

as well as the gain matrix H = [h1, h2]T and observation matrix C = [0, 1]. Here, we design a differentially private
observer with Gaussian noise using Corollary 8, for the adjacency relation (6) with p = 2.

Following Corollary 3, the contraction rate constraint (38) for a 2-norm on ℝ2 weighted by a matrix P ≻ 0 is equivalent
to the family of inequalities, for all (s, i) in the region of [0, 1]2 where we want to show contraction

(F(s, i) − HC)TP(F(s, i) − HC) ⪯ 𝜌2P
FT

x PFx − FT
x PHC − CTHTPFx + CTHTPHC ⪯ 𝜌2P,

where we used Fx ∶= F(s, i) to simplify the notation. Defining the new variable X = PH, this can be rewritten as

FT
x PFx − FT

x XC − CTXTFx + CTXTP−1XC ⪯ 𝜌2P,

which, using the Schur complement, is equivalent to the family of LMIs[
𝜌2P − FT

x PFx + FT
x XC + CTXTFx CTXT

XC P

]
⪰ 0, (51)

for all x = (s, i) in the region where we want to prove contraction. If we can find P,X satisfying these inequalities, we
recover the observer gain vector simply as H = P−1X.

For a given value of 𝜌, the covariance matrix of the Gaussian noise in Corollary 8 is proportional to ||P1∕2H||22P−1 =
(HTPH)P−1 = (XTP−1X)P−1, and hence, it is advantageous to minimize a function of this matrix. Note that XTP−1X is a
scalar. Minimizing (XTP−1X)Tr(P−1) does not appear to directly lead to an efficiently solvable optimization problem, but
as a proxy, we can choose to minimize instead the sum XTP−1X + 𝜈Tr(P−1), for some tuning parameter 𝜈. After taking
Schur complements, this leads to the following semidefinite program, for a given value of the contraction parameter 𝜌:

min
Σ⪰0,𝜆≥0,P⪰0,X

𝜆 + 𝜈Tr(Σ)

subject to
[
𝜆 XT

X P

]
⪰ 0,

[
Σ I2
I2 P

]
⪰ 0, and (51).

Alternatively, one can minimize 𝜆Tr(Σ) for fixed values of 𝜆 subject to the constraints above and perform a
one-dimensional search for a minimizing value of 𝜆.

Example 2. Let us assume 𝜇 = 0.1, o = 2, 𝜏 = 0.1, K = 10−3, 𝛼 = 0.25 in (6), and 𝜖 = 2, 𝛿 = 0.05. That
is, we wish to provide a (2, 0.05)-differential privacy guarantee for maximum deviations of 0.1% (see the discussion
in the previous section). Although not a perfectly rigorous contraction certificate, we sample the continuous set of
constraints (51) by sampling the set {(s, i)|0.01 ≤ i ≤ 0.25, 0.01 ≤ s ≤ 1 − i} at the values of s, i multiple of
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FIGURE 3 Sample path of the estimate of the percentage of infectious people over time produced by the observer. The standard deviations
for the dynamics and measurement noise were set to 𝜎wk

I2 = 0.005
√
𝜏I2 and 𝜎vk

= 0.02, respectively. The signals were truncated to maintain
positive values for i, s, y in the simulation. The true proportion of infectious people starts at 0.5%, whereas the estimate used to initialize the
observer is 1%. The output of the differentially private observer is not filtered [Colour figure can be viewed at wileyonlinelibrary.com]

0.01, to obtain a finite number of LMIs. A more rigorous approach to enforce these constraints could make use of
sum-of-squares programming.46 Following the procedure above, for the choice 𝜌 = 0.996, we obtain the observer gain

H = [3.9304; 0.2003] and the covariance matrix Σ with Σ1∕2 =
[

691 22
22 17

]
× 10−4 for the privacy-preserving Gaussian

noise. Sample trajectories of the nonprivate and private (nonsmoothed) estimates of i are shown on Figure 3.

Remark 11. If model (1)-(2) is linear and time-invariant

xk+1 = Fxk + wk,

𝑦k = Cxk + vk,

then the preceding discussion, replacing Fx in the LMI (51) with the constant matrix F, also provides a method to
design a time-invariant observer gain H based on the result of Corollary 8. If moreover we have stochastic Gaussian
models for wk, vk, a more complex set of LMIs was provided in our previous work15 to design a type of differentially
private Kalman filter using output perturbation.

6 CONCLUSION

This paper introduces a design methodology for nonlinear observer design, which provides differential privacy guarantees
when the measured signals are privacy sensitive, by perturbing the published output signal of the observer. Tools from
contraction analysis are used both to enforce convergence of the observer and to set the level of output noise necessary in
order to provide the differential privacy guarantee. More concretely, we bound the sensitivity of the observers by leveraging
a robustness property of contractive systems. The observer design methodology is illustrated through two examples where
we construct estimators for models with nonlinear dynamics or measurements.
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