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A Min-LQG Dynamic Game Formulation
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Abstract—We consider a class of dynamic collective choice
models with social interactions, whereby a large number of non-
uniform agents have to individually settle on one of multiple
discrete alternative choices, with the relevance of their would-be
choices continuously impacted by noise and the unfolding group
behavior. This class of problems is modeled here as a so-called
Min-LQG game, i.e., a linear quadratic Gaussian dynamic and
non-cooperative game, with an additional combinatorial aspect
in that it includes a final choice-related minimization in its
terminal cost. The presence of this minimization term is key to
enforcing some specific discrete choice by each individual agent.
The theory of mean field games is invoked to generate a class of
decentralized agent feedback control strategies, which are then
shown to converge to an exact Nash equilibrium of the game
as the number of players increases to infinity. A key building
block in our approach is an explicit solution to the problem of
computing the best response of a generic agent to some arbitrarily
posited smooth mean field trajectory. Ultimately, an agent is
shown to face a continuously revised discrete choice problem,
where greedy choices dictated by current conditions must be
constantly balanced against the risk of the future process noise
upsetting the wisdom of such decisions. We show that any Nash
equilibrium of the game is defined by an a priori computable
probability matrix which describes the distribution of the players’
choices over the alternatives. The results are illustrated through
simulations.

Index Terms—Mean Field Games, Stochastic Optimal Control,
Discrete Choice Models.

I. INTRODUCTION

Discrete choice problems arise in situations where an indi-
vidual makes a choice among a discrete set of alternatives,
such as modes of transportation [1], entry and withdrawal
from the labor market, or residential locations [2]. In some
situations, the individuals’ choices are considerably influenced
by the surrounding social behavior. For example, in schools,
teenagers’ decisions to smoke are affected by some personal
factors, as well as by their peers’ behavior [3].

In this paper, we study a discrete choice problem for a
large population of agents in a dynamic setting, capturing
in particular the impact of mean population behavior on
individuals, the efforts involved by the latter in changing
opinions, and possible dithering behavior until an ultimate
choice is crystallized (See Figure 1 below, which illustrates
the opinions’ evolution of a group of agents choosing between
two alternatives, −10 and 10). For example, as in [4]–[6], a
group of robots exploring an unknown terrain might need to
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move within a finite time horizon from their initial positions
towards one of multiple sites of interest. While moving, each
robot optimizes its efforts to remain close to the group and
to arrive at the end of the time horizon in the vicinity of one
of the predefined sites. The group may split, but the size of
the subgroups should remain large enough to perform some
collective tasks, such as search and rescue. Our model could
also be viewed as a mechanistic representation of opinion
crystallization in elections [7], [8], where voters continuously
update their opinions until forming a final decision regarding
who they should vote for. Along the path to choose a can-
didate, changing one’s decision requires an effort, while at
the same time, persistent deviation from the current majority
opinion involves a discomfort.

This paper makes the following contributions:

1) We introduce a new class of stochastic dynamic games
called “min-LQG” to model certain dynamic discrete
choice problems involving population-influenced deci-
sions.

2) We develop via the Mean Field Games (MFGs) methodol-
ogy, briefly reviewed below, a set of decentralized closed-
loop strategies which lead to a near Nash equilibrium
for the finite population min-LQG game. The latter
becomes exact asymptotically in the size of the pop-
ulation. To compute the associated feedback strategies,
a generic agent must solve a novel class of optimal
tracking problems for which we are able to obtain an
explicit solution. Furthermore, provided the limiting MFG
equilibrium exists, it is important to note that a generic
agent need only know the other agents’ initial states
distribution, and observe its own state, to compute the
Nash equilibrium inducing feedback policy. This means
that the communication needed between agents, beyond
what would be required in a consensus like algorithm for
initial states distribution exchange (see [9] for example)
is minimal.

3) According to the min-LQG control laws, the agents
cannot commit to a choice from the beginning. Instead,
they continuously revise their decisions to account for the
risk of being driven by the noise process to one of the
alternatives, while making a premature decision in favor
of another alternative based on the current conditions.
Accordingly, we show that one can interpret the solution
to the min-LQG tracking problem at each instant as that
of a modified static discrete choice model [10], where an
agent’s cost for choosing one of the alternatives includes
an additional term penalizing myopic decisions.
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4) We establish a one-to-one correspondence between the
infinite population Nash equilibria and the fixed points
of a finite dimensional map. These fixed points are the
potential probability distributions of the agents’ choices
over the alternatives. This one-to-one correspondence
reduces the infinite dimensional problem of finding a
Nash equilibrium for the limiting game to finding a fixed
point for the finite dimensional map. Furthermore, it
simplifies the existence proofs and numerical schemes to
compute the equilibria.

5) Our model lies somewhere between the LQG MFG
models studied in [11], [12] and the fully nonlinear MFGs
considered in [13]–[16]. On the one hand, in the LQG
case the optimal strategies are linear feedback policies,
whereas in our case they are nonlinear. On the other hand,
an explicit solution in the general nonlinear case is not
possible, while we provide in this paper an explicit form
for the optimal strategies. Moreover, the existence and
uniqueness of solutions of the mean field equations are
shown in the general case under some strong regularity
and boundedness conditions on the dynamics and cost co-
efficients [13]–[16]. In this paper, however, the quadratic
running cost and linear dynamics make it possible to relax
these assumptions.

The rest of the paper is organized as follows. Section II
discusses related work on discrete choice models and MFGs.
In Section III, we present the mathematical formulation of our
problem. In Section IV, we develop a closed form solution
to the min-LQG optimal tracking problem characterizing a
generic agent’s best response. In Section V we introduce
the mean field equations and analyze their solutions. Finally,
Section VI discusses some numerical simulations illustrating
the results, while Section VII presents our conclusions.

II. RELATED WORK AND MEAN FIELD GAMES

McFadden laid in [10] the theoretical foundations of static
discrete choice models, where an agent has to choose among
a finite set of alternatives the one that maximizes its utility.
This utility depends on some potentially observable attributes
that dictate a deterministic trend in the choice, and other
attributes idiosyncratic to that agent, which are not known by
the economist or social planner carrying out the macroscopic
analysis, although they may influence the choice. As a result,
utility is defined as the sum of a known deterministic term plus
a random term. Later, Rust [17] introduced a dynamic discrete
choice model involving a Markov decision process for each
agent. While peer pressure effects are absent in Rust’s and
McFadden’s models, Brock and Durlauf [18] discuss a discrete
choice problem with social interactions modeled as a static
non-cooperative game, where a large number of agents have to
choose between two alternatives while being influenced by the
average of the choices. The authors analyze the model using
an approach similar to that of a static MFG and inspired by
statistical mechanics.

The Brock-Durlauf model includes peer influence but is
static, and in Rust’s model, the agents are required to make
a choice repeatedly at each discrete time period but under no

social influence. In our model, the agents are instead con-
tinuously reassessing the adequacy of their would-be choices
and current actions along their random state-space path, up
until the end of the control horizon, at which point their
ultimate choice of alternative becomes fully crystallized. Thus,
our formulation helps in modeling situations where alternative
choices are identified as potential destination points in a suit-
able state space (e.g., physical space in the robotics example,
or opinion space in the election example), and implementation
of a given choice involves movement towards a final destina-
tion state, requiring control effort and constrained by specific
dynamics.

The MFG methodology that we follow in this paper was
introduced in a series of papers by Huang et al. [11]–[13],
and independently by Lions and Lasry [14]–[16]. It is a
powerful technique to analyze dynamic games involving a
large number of agents anonymously interacting through their
mean field, i.e., the empirical distribution of the agents’ states.
The analysis starts by considering the limiting case of a con-
tinuum of agents. For agents evolving according to diffusion
processes, the equilibrium of the game can be shown to be
characterized by the solution of two coupled partial differential
equations (PDE), a Hamilton-Jacobi-Bellman (HJB) equation
propagating backwards and a Fokker-Planck (FP) equation
propagating forwards. Indeed, the former characterizes the
agents’ best response to some posited candidate mean field
trajectory, while the latter propagates the would-be resulting
mean field when all agents implement the computed best
responses. Consistency requires that sustainable mean field
trajectories, if they exist, be replicated in the process. Limiting
equilibria are thus required to satisfy a system of fixed point
equations, herein given by the coupled HJB-FP equations.
The corresponding best responses, when applied to the finite
population, constitute an approximate Nash equilibrium (ε-
Nash equilibrium) [12], [13], in the following sense.

Definition 1: Consider N agents, a set of strategy profiles
U = U1× . . .×UN , and for each agent i ∈ {1, . . . , N}, a cost
function Ji(u1, . . . , uN ), for (u1, . . . , uN ) ∈ U . A strategy
profile (u∗1, . . . , u

∗
N ) ∈ U is called an ε-Nash equilibrium with

respect to the costs {Ji, 1 ≤ i ≤ N} if there exists an ε > 0
such that, for any fixed 1 ≤ i ≤ N , for all ui ∈ Ui, we have
Ji(ui, u

∗
−i) ≥ Ji(u∗i , u∗−i)− ε.

Recently, we introduced a related dynamic collective choice
model with social interactions in [19]–[21]. In these articles,
we study using the MFG methodology a dynamic game
involving a large number of players choosing between multiple
destination points, when the agents’ dynamics are determin-
istic with random initial conditions. We show that multiple
ε−Nash equilibria may exist. The strategies developed in these
papers are open loop decentralized policies, in the sense that
to make its choice of trajectory and destination, an agent needs
to know only its initial state and the initial distribution of the
population. In particular, in this formulation, each agent can
commit from the start to its final choice, which implies that
the model with deterministic dynamics is not sufficiently rich
to fully capture opinion change phenomena. In contrast, we
consider here the fully stochastic case, where the noise in the
dynamics can model for example the unexpected events that
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influence a voter’s opinion during electoral campaigns or the
random forces that perturb a robot’s trajectory while choosing
a site to visit. The presence of this noise requires the agents
to use bona fide feedback strategies and prevents them from
committing to a choice before the final time. However, one can
still anticipate asymptotically the manner in which an infinite
population splits among the set of alternatives.

III. MATHEMATICAL MODEL

A. Notation

Given an Euclidean space X , B(c, r) denotes the ball of
radius r centered at c, xk the k-th element of x ∈ X , and
x−i the vector (x1, . . . , xi−1, xi+1, . . . , xN ). The Kronecker
product is denoted ⊗. The n × n identity matrix is In, M ′

denotes the transpose of a matrix M , Tr(M) its trace and
|M | its determinant. The notations M � 0 and M � 0 stand
respectively for M positive definite and positive semi-definite.
Given an n×n matrix Q � 0 and x ∈ Rn,

√
1
2x
′Qx is denoted

by ‖x‖Q. Let X and Y be two subsets of Euclidean spaces.
The set of functions from X to Y is denoted by Y X . For
a subset A ⊂ X , we denote ∂A, Int(A) and Ā its boundary,
interior and closure respectively. C(X) refers to the set of Rn-
valued continuous functions on X with the standard supremum
norm ‖.‖∞, and Ci,j(X × Y ) to the set of continuous real-
valued functions f(x, y) on X×Y such that the first i partial
derivatives with respect to the x variable and the first j partial
derivatives with respect to the y variable are continuous. The
normal distribution of mean µ and covariance matrix Σ is
denoted by N (µ,Σ).

B. Problem Statement

We present in this section the dynamic collective choice
model with social interactions. We consider a dynamic non-
cooperative game involving a large number N of players with
the following stochastic dynamics:

dxi(t) = (Aixi(t) +Biui(t)) dt+ σidwi(t), (1)

for 1 ≤ i ≤ N , where Ai ∈ Rn×n, Bi ∈ Rn×m, σi ∈ Rn×n,
and {wi, 1 ≤ i ≤ N} are N independent Brownian motions
in Rn on a probability space (Ω,F ,P). In the remaining of
the paper, P(A) denotes the probability of an event A and
E(X) the expectation of a random variable X . We assume
that the initial conditions {xi(0), 1 ≤ i ≤ N} are independent
and identically distributed (i.i.d.) and also independent of
{wi, 1 ≤ i ≤ N}. Moreover, we assume that E‖xi(0)‖2<∞.
The vector xi(t) ∈ Rn is the state of player i at time t and
ui(t) ∈ Rm its control input. Let pj , 1 ≤ j ≤ l, be l points
in Rn. Each player i ∈ {1, . . . , N} is associated with the
following individual cost functional:

Ji (xi(0), ui, u−i) = E
[ ∫ T

0

{
‖xi − x̄‖2Qi

+‖ui‖2Ri

}
dt

+ min
1≤j≤l

‖xi(T )− pj‖2Mi

∣∣∣ xi(0)

]
, (2)

where T > 0, Qi � 0, Ri � 0 and Mi � 0. Along the path,
the running cost encourages the players to remain grouped

around the average of the population x̄(t) :=
∑N
i=1 xi(t)/N ,

which captures the social effect, and to develop as little effort
as possible. The form of the final cost captures the discrete
choice aspect, if we assume Mi large. That is, a player i
at time T should be close to one of the destination points
pj ∈ Rn, otherwise it is strongly penalized. Indeed, we
show in [22] (for the scalar case) that the probability that an
agent is close to one of the destination points increases with
the final cost’s coefficients Mi. Hence, the overall individual
cost captures the problem faced by each agent of deciding
between l alternatives, while trying to remain close to the mean
population trajectory. It should be noted that the analysis of
the game doesn’t change if we allow the drift term in (1) to
depend linearly on x̄. The cost (2) has a LQG running cost
and a final cost the minimum of l quadratic terms, hence the
nomenclature “Min-LQG”.

Let us denote the individual parameters θi :=
(Ai, Bi, σi, Qi, Ri,Mi). We assume that there are k types of
agents, that is, θi takes values in a finite set {Θ1, . . . ,Θk},
which does not depend on the size of the population N . As
N tends to infinity, it is convenient to represent the limiting
sequence of (θi)i=1,...,N by realizations of a random vector
θ, which takes values in the same finite set {Θ1, . . . ,Θk}.
Let us denote the empirical measure of the sequence θi
as PNθ (Θs) = 1/N

∑N
i=1 1{θi}(Θs) for s = 1, . . . , k. We

assume that PNθ has a limit Pθ = (α1, . . . , αk) as N → ∞,
i.e. lim

N→∞
PNθ (Θs) := lim

N→∞
αNs = αs for s = 1, . . . , k. For

further discussions about this assumption, one can refer to
[23].

Let Mi([0, T ],Rm), 1 ≤ i ≤ N be the set of progressively
measurable Rm-valued functions with respect to the filtration
generated by the initial condition of player i and its Brownian
motion {F(xi(0), wi(s), 0 ≤ s ≤ t)}t∈[0,T ]. We define the set
of admissible control laws for an agent i as

Ui =

{
ui ∈Mi([0, T ],Rm)

∣∣∣ E∫ T

0

‖ui(s)‖2ds <∞

}
(3)

If ui ∈ Ui, then the stochastic differential equation (SDE) (1)
has a unique strong solution [24, Section 5.2]. We define the
set of admissible Markov policies

L =
{
u ∈ (Rm)[0,T ]×Rn

∣∣∣∃L1 > 0,∀(t, x) ∈ [0, T ]× Rn,

‖u(t, x)‖≤ L1(1 + ‖x‖), and ∀r > 0, T ′ ∈ (0, T ),∃L2 > 0,

∀‖(x, y)‖≤ r, t ∈ [0, T ′], ‖u(t, x)− u(t, y)‖≤ L2‖x− y‖
}
.

(4)

An agent i minimizes its cost with respect to its admissible
control set Ui. In addition, as shown in Theorem 2 below, it
turns out that no loss of optimality is incurred if one further
constrains the control strategies in Ui to be Markov (feedback
policy) and satisfying the linear growth and Lipschitz proper-
ties in (4). These properties guaranty that the SDE (1) has a
unique strong solution [24, Section 5.2].
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IV. THE MIN-LQG OPTIMAL TRACKING PROBLEM, THE
GENERIC AGENT’S BEST RESPONSE, AND RELATION TO

THE DISCRETE CHOICE MODELS

A. The Min-LQG Optimal Tracking Problem

Following the MFG approach, we start by assuming a
continuum of agents for which one can ascribe a determin-
istic macroscopic behavior x̄ (posited mean population state
trajectory), which is supposed known in this section. The
problem of determining x̄ is treated in Section V. In order
to compute its best response to x̄, a generic agent with
parameters θ = (A,B, σ,Q,R,M) ∈ {Θ1, . . . ,Θk} solves
the following optimal control problem, which we call the
“Min-LQG” optimal tracking problem:

inf
u∈U

J (x(0), u, x̄) = inf
u∈U

E
[ ∫ T

0

{
‖x− x̄‖2Q+‖u‖2R

}
dt

+ min
j=1,...,l

‖x(T )− pj‖2M
∣∣∣x(0)

]
s.t. dx(t) = (Ax(t) +Bu(t)) dt+ σdw(t),

(5)

where w is a Brownian motion in Rn on the probability
space (Ω,F ,P) and x(0) is a random vector independent
of w and distributed according to the known distribution of
the agents’ initial states. Herein, ∂h(t,x)

∂x and ∂2h(t,x)
∂x2 will

denote respectively the gradient and Hessian matrix of the
real function h with respect to x ∈ Rn. The optimal cost-to-
go function of (5) satisfies the following HJB equation [25]

−∂V
∂t

= x′A′
∂V

∂x
− 1

2

(
∂V

∂x

)′
BR−1B′

∂V

∂x

+
1

2
Tr
(
σ′
∂2V

∂x2
σ

)
+ ‖x− x̄‖2Q

V (T, x) = min
1≤j≤l

‖x− pj‖2M , ∀x ∈ Rn.

(6)

Equation (6) is similar to the LQG HJB equation except
for the boundary condition, which is the minimum of l
quadratic terms. In the following, we linearize equation (6)
under appropriate conditions, using a generalized Hopf-Cole
transformation [26, Section 4.4]. Moreover, we derive an
explicit formula for the solution of (6) and the min-LQG
optimal control law.

The following entities are used to define the solution of
(6). Let x(j), u(j) and V (j) be respectively the optimal state
trajectory, optimal control law and optimal cost-to-go of the
LQG tracking problem that the generic agent must solve when
pj is the only available alternative, that is, (5) with pk = pj ,
for all k ∈ {1, . . . , l}. Recall that [27, Chapter 6]

V (j)(t, x) =
1

2
x′Π(t)x+ x′β(j)(t) + δ(j)(t) (7)

u(j)(t, x) = −R−1B′
(

Π(t)x+ β(j)(t)
)

(8)

dx(j)(t) =
(
Ax(j)(t) +Bu(j)

(
t, x(j)(t)

))
dt+ σdw(j)(t),

(9)

where the positive definite matrix Π, the vector β(j) and scalar

δ(j) are the unique solutions of

d

dt
Π(t) = Π(t)BR−1B′Π(t)−A′Π(t)−Π(t)A−Q,

d

dt
β(j)(t) = −

(
A−BR−1B′Π(t)

)′
β(j)(t) +Qx̄(t), (10)

d

dt
δ(j)(t) =

1

2
β(j)(t)′BR−1B′β(j)(t)− 1

2
Tr(σ′Π(t)σ)

− ‖x̄(t)‖2Q,

with Π(T ) = M,β(j)(T ) = −Mpj and δ(j)(T ) = ‖pj‖2M .
We denote by W(j), for j ∈ {1, . . . , l}, the Voronoi cell
associated with pj , that is, W(j) = {x ∈ Rn such that ‖x −
pj‖M≤ ‖x − pk‖M , for all 1 ≤ k ≤ l}. We define for
all j ∈ {1, . . . , l} the following notation for the conditional
probability of an agent following the control law u(j) to be in
the Voronoi cell j at time T given that its state at time t is x

g(j)(t, x) , P
(
x(j)(T ) ∈ W(j)

∣∣∣x(j)(t) = x
)
. (11)

Under Assumptions 1 and 2, the probability g(j) can be written
as follows,

g(j)(t, x) = P
(
x(j)(T ) ∈ W(j)

∣∣∣x(j)(t) = x
)

=
1√
|2πΣt|

∫
W(j)

exp

(
−
∥∥∥y − α(T, t)x

+

∫ T

t

α(T, τ)BR−1B′β(j)(τ)dτ
∥∥∥2

Σ−1
t

)
dy

for Σt =

∫ T

t

α(T, τ)σσ′α(T, τ)′dτ,

(12)

where x(j), Π and β(j) are defined in (9) and (10), and the
matrix-valued function α(t, s) is the unique solution of

d

dt
α(t, s) =

(
A−BR−1B′Π(t)

)
α(t, s), (13)

with α(s, s) = In. The matrix Σt, which is the Gramian [28]
of (A− BR−1B′Π(t), σ) = (A− ησσ′Π(t), σ), is invertible
under Assumptions 1 and 2. The expression (12) follows from
the fact that the solution of a linear SDE with deterministic
initial condition has a normal distribution [24, Section 2.5].

To linearize and solve the HJB equation (6) using the Hopf-
Cole transformation (see Appendix A), we make the following
assumption.

Assumption 1: We assume that there exists a scalar η > 0
such that BR−1B′ = ησσ′.

Remark 1: Note the following:
i. Assumption 1 always holds in the scalar case (n = m =

1).
ii. Assumption 1 is satisfied in particular if B = R = σ =

In, a situation that has been studied previously in the
context of other mean-field games (with A = 0) using the
Hopf-Cole transformation, see [29, Chapter 2] and the
references therein.

iii. Suppose that n = m, A = Q = 0, B = diag(b1, . . . , bn),
R = diag(r1, . . . , rn) and σ = diag(σ1, . . . , σn). σj
is the intensity of the noise in the j−th direction. The
control variable acts on the state in the j−th direction
through the coefficient bj , and the cost of this action in
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the same direction is evaluated through the coefficient
rj . Hence, the ratio b2j/rj measures the efficiency of the
control variable in the j−th direction. Following these
interpretations, Assumption 1 requires that the ratio of
the control efficiency to the noise intensity is identical
in all the directions. In other words, it imposes a sort of
isotropy on the ratio “control efficiency / noise intensity”.
Thus, the Hopf-Cole transformation is a linearizing trans-
formation and success in this linearization relies on some
global symmetries (isotropy “control efficiency / noise
intensity”). In future work, it would be interesting to study
the local Lie symmetries [30] of our HJB equation and
develop an explicit solution under weaker assumptions.

iv. The coefficient R is a design parameter. It can be chosen
to help satisfy Assumption 1.

Assumption 2: We assume that (A, σ) is controllable.
We now state the main result of this section, which is proved
in Appendix A.

Theorem 1: Under Assumptions 1 and 2, the HJB equa-
tion (6) has a unique strong solution (t, x) 7→ V (t, x) in
C∞([0, T )× Rn) ∩ C([0, T ]× Rn), defined as

V (t, x) = −1

η
log

 l∑
j=1

exp
(
−ηV (j)(t, x)

)
g(j)(t, x)

 ,

∀(t, x) ∈ [0, T )× Rn (14)

V (T, x) = min
j=1,...,l

‖x− pj‖2M , ∀x ∈ Rn,

where Vj and gj are defined in (7) and (11), respectively.
Having solved the HJB equation related to the Min-LQG

optimal control problem (5), we now prove the existence of a
unique optimal control law. We define the following function:

u∗(t, x) = −R−1B′
∂V

∂x
, t ∈ [0, T )

u∗(T, x) = 0.
(15)

The proof of the following Theorem is given in Appendix A.
Theorem 2: Under Assumptions 1 and 2, the following

statements hold:
i. The function u∗ defined in (15) has the following form

on [0, T )× Rn:

u∗(t, x) = (16)
l∑

j=1

exp
(
−ηV (j)(t, x)

)
g(j)(t, x)∑l

k=1 exp
(
−ηV (k)(t, x)

)
g(k)(t, x)

u(j)(t, x),

with V (j), u(j) defined in (7) and (8), respectively.
ii. u∗ is an admissible Markov policy.

iii. u∗ (t, x∗(t, w)) is the unique optimal control law of (5),
where x∗(t, w) is the unique strong solution of the SDE
in (5) with u equal to u∗(t, x).

In the degenerate case with σ = 0, it is shown in [19]–[21]
that the optimal strategy of an agent i in the Min-LQG problem
is equal to u(j) (the optimal strategy in the presence of only
one alternative pj) if the Linear Quadratic Regulator (LQR)
control problem associated with pj is the least costly starting
from xi(0). Therefore, a generic agent commits from the start
to its final choice based on its initial state. When σ 6= 0, the

generic agent can no longer be “decisive”. Its optimal control
law (16) is a convex combination of the optimal policies u(j),
j = 1, . . . , l. The weights of u(j) form a spatio-temporal Gibbs
distribution [31], which puts more mass on the less costly and
risky destinations. A destination pj is considered riskier in
state x at time t if the Brownian motion has a higher chance
of driving the state of an agent closer to a destination different
from pj at time T , when this agent implements u(j) from (x, t)
onwards.

B. Relation to Discrete Choice Models

In the rest of this section, we discuss the relation between
our solution to the Min-LQG optimal control problem in the
scalar binary choice case and the solution of static discrete
choice models. We start by recalling some facts about the
static models. In the standard binary discrete choice mod-
els, a generic individual chooses between two alternatives 1
and 2. The cost paid by this individual when choosing an
alternative j is defined by v(j) = k(j) + ν, where k(j) is
a deterministic function that depends on personal publicly
observable attributes and on alternative j, while ν is a random
variable accounting for personal idiosyncrasies unobservable
by the social planner. When ν is distributed according to the
extreme value distribution [10], then the probability that a cost-
minimizing generic individual chooses an alternative j is equal
to P (j) = exp(−k(j))

exp(−k(1))+exp(−k(2)) . Now, the Min-LQG optimal
control law (16) can be written as follows:

u∗(t, x) =
exp

(
−ηṼ (1)(t, x)

)
exp

(
−ηṼ (1)(t, x)

)
+ exp

(
−ηṼ (2)(t, x)

)u(1)(t, x)

+
exp

(
−ηṼ (2)(t, x)

)
exp

(
−ηṼ (1)(t, x)

)
+ exp

(
−ηṼ (2)(t, x)

)u(2)(t, x),

(17)

where

Ṽ (j)(t, x) = V (j)(t, x)− 1

η
log
(
g(j)(t, x)

)
, j = 1, 2. (18)

Here V (j)(t, x) is the expected cost paid by a generic agent
if pj were the only available alternative, and u(j)(t, x) is
the corresponding optimal policy. In the presence of two
alternatives, the optimal policy at time t is given by (17),
which can be interpreted as the mean of a randomized strategy
which is a mix of two pure strategies u(1)(t, x) (picking
alternative p1) and u(2)(t, x) (picking alternative p2). Within
this framework, denoting by −j the alternative other than
j, a generic agent at time t chooses the alternative pj with
probability

Pr(j) =
exp

(
−ηṼ (j)(t, x)

)
exp

(
−ηṼ (j)(t, x)

)
+ exp

(
−ηṼ (−j)(t, x)

) .
Thus, the Min-LQG problem can be viewed at each time
t ∈ [0, T ] as a static discrete choice problems, where the
cost of choosing alternative pj includes an additional term
− 1
η log

(
g(j)(t, x)

)
accounting for the risk of landing nearer
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to −j at time T because of unexpected random fluctuations,
while decisions were in fact optimized with a landing at pj in
mind.

V. THE MEAN FIELD EQUATIONS AND THE FIXED POINT
PROBLEM

In Section IV, we assumed the mean trajectory x̄ known and
we computed the generic agent’s best response to it, which is
given by (16). In the following, a subscript s refers to an agent
with parameters Θs ∈ {Θ1, . . . ,Θk}. We write u∗s(t, x, x̄)
instead of u∗s(t, x) to emphasize the dependence on x̄. We
now seek a sustainable macroscopic behavior x̄, in the sense
that it is replicated by the mean of the generic agent’s state
under its best response to it. Thus, an admissible x̄ satisfies
the following mean field equations:

x̄(t) =
k∑
s=1

αsx̄s(t), with x̄s = E[x∗s], 1 ≤ s ≤ k, (19)

dx∗s(t) = (Asx
s
∗(t) +Bsu

∗
s (t, x∗s(t), x̄)) dt+ σsdws(t),

where x∗s(.) , x∗s(0), respectively represent the trajectory of
a generic agent of type s and its associated initial condition,
1 ≤ s ≤ k. Initial conditions are independent and identically
distributed according to assumed common probability law, i.e.,
the distribution of xi(0) irrespective of the type. αs is the
proportion of agents of type s as defined in Section III and
{w1, . . . , wk} are k independent Brownian motions, assumed
independent of {x∗1(0), . . . , x∗k(0)}.

The mean field equations in (19) are a n × k nonlinear
McKean-Vlasov equation [13], where the drift term depends
on the joint probability law of the k types of agents through the
mean trajectory x̄. The solution of such equations corresponds
to computing a fixed point on the space of joint probability
laws of the k generic agent states over the time interval [0,T ],
given their evolution as law dependent SDE’s. A direct solu-
tion can be quite challenging. Since x̄ is really the trajectory
of interest, we focus instead on a simpler characterization
of that quantity. It is obtained via a consideration of the
following stochastic maximum principle equations associated
with the best responses of each of the k agents to a sustainable
trajectory x̄,

dx∗s(t) =
(
Asx

∗
s(t)−BsR−1

s B′sqs(t)
)
dt

+ σsdws(t) (20)
−dqs(t) = (A′sqs(t) +Qs(x

∗
s(t)− x̄(t))) dt

− ∂2Vs
∂x2

((t, x∗s(t))σsdws(t), (21)

with qs(t) = ∂Vs

∂x (t, x∗s(t)) and qs(T ) =

Ms

(
x∗s(T )−

∑l
j=1 1W(j)(x∗s(T ))pj

)
. This maximum

principle is derived in Lemma 7, Appendix B under the
following assumption,

Assumption 3: We assume that σs is invertible, for s =
1, . . . , k.
It should be noted that Assumption 3 implies Assumption
2. Taking expectations of these forward-backward SDEs over
both agent initial conditions and type leads to linear forward
backward deterministic coupled differential equations (See

(23a)-(23b) below) with nonlinear coupling in the boundary
condition characterizing sustainable x̄ trajectories.

Define the vectors X∗ = (x∗1, . . . , x
∗
k), U∗ = (u∗1, . . . , u

∗
k),

X̄ = (x̄1, . . . , x̄k) and X∗(0) = (x∗1(0), . . . , x∗k(0)) of
respectively, the optimal states, the optimal control laws,
expected optimal states and initial states for k generic agents
representing the k types, when they optimally respond to a
sustainable x̄. X∗ and U∗ satisfy

dX∗(t) = (AX∗(t) +BU∗ (t,X∗(t), x̄)) dt+σdW (t), (22)

which is the matrix form of (19), where W = (w1, . . . , wk),
and A,B, σ are the block-diagonal matrices diag(A1, . . . , Ak),
diag(B1, . . . , Bk) and diag(σ1, . . . , σk), respectively.

The equivalent representation for x̄ is given by the following
equations

d

dt
X̄(t) = AX̄(t)−BR−1B′q̄(t), (23a)

d

dt
q̄(t) = −A′q̄(t) +QLX̄(t), (23b)

x̄(t) = P1X̄(t), (23c)

with Q = diag(Q1, . . . , Qk), R = diag(R1, . . . , Rk), M =
diag(M1, . . . ,Mk) and L = Ink − 1k ⊗ P1, where 1k is a
column of k ones and P1 = P ′θ⊗In with Pθ the vector of αs as
defined in Section III. The initial condition for (23a) is X̄(0) =
EX∗(0) = E[x(0)] ⊗ 1k, and the terminal condition for the
backward equation (23b) is q̄(T ) = M

(
X̄(T )− (Λ⊗ In)p

)
,

where the k × l matrix Λ is defined as

Λsj = P
(
x∗s(T ) ∈ W(j)

)
, 1 ≤ s ≤ k, 1 ≤ j ≤ l, (24)

and p = (p1, . . . , pl). Equations (23a)-(23b) are respectively
the aggregates of the state and co-state equations (20)-(21)
of the generic agents. They have a nonlinear coupling in the
boundary condition q̄(T ) through what we call a “Choice
Distribution Matrix” (CDM) Λ. A CDM is a k × l row
stochastic matrix with its (s, j) entry equal to the probability
that the generic agent of type s is at time T closer (in the
sense of the M -weighted 2-norm) to pj than any of the
other alternatives when it optimally responds to x̄. The fact
that (23a)-(23c) characterize x̄ is proved in the first point of
Theorem 3 below.

The next step is to exploit this new representation to
characterize all candidate sustainable mean trajectories in (19).
Indeed, the advantage of this new representation is that if
one considers the CDM in the boundary condition q̄(T ) as
a parameter (say any k × l row stochastic matrix), then
equations (23a)-(23b) become two coupled linear forward-
backward differential equations. As a result, they have a
unique solution under the following assumption.

Assumption 4: We assume the existence of a solution on
[0, T ] to the following (nonsymmetric) Riccati equation:

d

dt
π(t) = −A′π(t)−π(t)A+π(t)BR−1B′π(t) +QL, (25)

with π(T ) = M.
Remark 2: If Assumption 4 is satisfied, the solution of (25)

is unique as a consequence of the smoothness of the right-
hand side of (25) with respect to π [32, Section 2.4, Lemma 1].
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This assumption is satisfied, for example, when QL is positive
semi-definite [33, Section 2.3]. This happens, for instance, in
case of a uniform population (k = 1), in which case L = 0.
For more details about Assumption 4, one can refer to [34].

The Riccati equation (25) arises in LQG dynamic games
[35]. Just like the Riccati function in optimal control theory
allows decoupling of the state and co-state equations, here the
Riccati function π in (25), if it exists, permits decoupling of
(23a)-(23b) (when Λ is considered as a parameter). As shown
in the proof of the second point of Theorem 3, these equations
have then the following explicit solution parametrized by Λ,

X̄(t) = R1(t, 0)X̄(0) +R2(t)(Λ⊗ In) p, (26)

where
d

dt
R1(t, s) =

(
A−BR−1B′π(t)

)
R1(t, s),

d

dt
R2(t) =

(
A−BR−1B′π(t)

)
R2(t)

+BR−1B′R1(T, t)′M,

(27)

with R1(s, s) = Ink and R2(0) = 0. This implies that the
solutions x̄ of the mean field equations lie in the following
family of paths parametrized by matrices Λ in the set S of
k × l row stochastic matrices

x̄Λ(t) := P1(R1(t, 0)X̄(0) +R2(t)(Λ⊗ In) p). (28)

Conversely, for a path x̄Λ parametrized by some candidate Λ
to be a solution of (19), consistency requires that Λ be equal
to the associated CDM as expressed in (24) when the generic
agents optimally respond to x̄Λ. This is equivalent to requiring
that Λ be a fixed point of the following finite dimensional map
F : S 7→ S,

F (Λ)sj = P
(
x∗s,Λ(T ) ∈ W(j)

)
, (29)

where X∗Λ = (x∗1,Λ, . . . , x
∗
k,Λ) is the unique strong solution of

the following SDE parameterized by Λ

dX∗Λ(t) =

(
AX∗Λ(t) +BU∗(t,X∗Λ(t), x̄Λ)

)
dt+ σdW (t),

with X∗Λ(0) = X∗(0). (30)

Note that although the notation is partially shared with (19),
(30) is no longer a McKean-Vlasov equation (with solutions
joint probability laws) but rather an SDE for a vector of
k generic agents, with each of the components of X∗Λ(0)
independent, and each being a sample random variable from
the common distribution assumed for agent initial conditions
across all types. F maps a row stochastic matrix Λ to the CDM
when the generic agents optimally respond to x̄Λ. The map F
involves the probability distribution of the process X∗Λ. Hence,
to find the value of F (Λ), one needs to solve the Fokker-
Planck equation associated with (30).

In effect, we establish that there is a one to one map
between the solutions x̄ of (19) and the fixed points of the
finite dimensional map F . Theorem 3 below summarizes the
related results: point (ii) of the theorem states the existence of
the one-to-one map in question, while point (iii) states that F
has at least one fixed point. Thus, a Nash equilibrium CDM

exists (equivalently a solution of (19)), which characterizes
the way an infinite population splits between the destination
points, when it has the same distribution of heterogeneous
parameters as the original large but finite population.

The following results are proved in Appendix B.
Theorem 3: Under Assumptions 1, 3 and 4, the following

statements hold:

(i) x̄ satisfies (19) if and only if it satisfies (23a)-(23c).
(ii) x̄ satisfies (19) if and only if

x̄ = x̄Λ (31)

where x̄Λ is defined in (28) and Λ is a fixed point of F
defined in (29)-(30).

(iii) F is continuous and has at least one fixed point. Equiv-
alently, (19) has at least one solution x̄.

Remark 3: In [13], [36], which consider the general MFG
theory, the authors show the existence and uniqueness of
solutions for the McKean-Vlasov equation describing the mean
field behavior via Banach’s [13] or Schauder’s fixed point
theorem [36]. In [13], it is assumed that the optimal control
law is regular enough (Lipschitz continuous with respect to
the state and the distribution) in order to define a contraction,
while in [36] the result is proved under the assumption of
smooth and convex final cost. In our case, the control law (16)
is not Lipschitz continuous with respect to x̄. Moreover, the
final cost is neither smooth nor convex. Hence, the McKean-
Vlasov equation (19) might have multiple solutions. Indeed,
(19) has a number of solutions equal to the number of fixed
points of F .
Having solved the game for a continuum of players, we now
return to the practical case of a finite population of players.
Using arguments similar to those in [21, Theorem 8], one
can show that the MFG-based decentralized strategies (16),
when applied by a finite population, constitute an ε−Nash
equilibrium with respect to the sets of centralized strategies
Uci = {ui adapted to F(xk(s), 0 ≤ s ≤ t, 1 ≤ k ≤
N) | E

∫ T
0
‖ui(s)‖2ds < ∞}, 1 ≤ i ≤ N . We give in

Appendix B a sketch of the proof.
Theorem 4: The decentralized feedback strategies u∗ defined

in (16) for a fixed point path x̄ of (19), when applied by N
players with dynamics (1), constitute an εN -Nash equilibrium
with respect to the costs (2) and control sets Uci , 1 ≤ i ≤ N ,
where εN = C( 1√

N
+ max

1≤s≤k
|αs−αNs |) converges to zero as N

increases to infinity. Here, C is a positive scalar independent
of N , and αs and αNs are defined in Section III-B.

The set of fixed points of the finite dimensional map F
characterizes the game in terms of the number of distinct
ε−Nash equilibria and the distribution of the choices for each
of them. In fact, Theorem 3 establishes a one to one map
between the solutions of the mean field equations (19) and the
set of fixed point CDMs. If Λ is a fixed point of F and the
players optimally respond to the corresponding x̄Λ given by
(28), then Λsj is the fraction of agents of type s that go towards
pj , and

∑k
s=1 αsΛsj is the total fraction of players choosing

this alternative. Thus, to compute a path x̄ satisfying (19), a
player computes a fixed point Λ of F and then computes (28).
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The computation of the mean field term in the general MFG
theory involves solving a forward Fokker-Planck equation
coupled with a backward HJB equation [37]. In our case,
however, Theorem 3 reduces this infinite dimensional problem
to the computation of a fixed point for the finite dimensional
map F . Thus, one can use the bisection method in the binary
scalar case for a population with uniform dynamics and cost
functions, i.e., n = m = k = 1, and l = 2, or a quasi Newton
method such as Broyden’s method [38] in the general case. In
both cases, one has to propagate the Fokker-Planck equation
associated to (30) to compute the values of F .

Let us briefly illustrate how to compute a fixed point of F
in the first case. We consider a uniform population with initial
probability density function f0. In this case, a pair (r, 1− r)
for r ∈ [0, 1] is a fixed point of F if and only if r is a
fixed point of G, where G(r) is the first component of the
2-dimensional vector F (r, 1− r). According to the third point
of Theorem 3, F is continuous, and so is G : [0, 1] → [0, 1].
Moreover, (G(1) − 1)(G(0) − 0) ≤ 0. Thus, we can apply
the bisection method to G(r) − r to find a fixed point of
G, if we can compute the value of G at any r ∈ [0, 1]. But
G(r) =

∫ c
−∞ fr(T, x)dx, where c = (p1 + p2)/2 and fr(t, x)

is the probability density of X∗(r,1−r)(t) defined by (30), which
can be computed numerically by solving the following Fokker-
Planck equation associated to (30), e.g., via an implicit finite
difference scheme [39]

∂fr(t, x)

∂t
= −∂ (µ(t, x, r)fr(t, x))

∂x
+
σ2

2

∂2fr(t, x)

∂x2
, (32)

with fr(0, x) = f0(x),∀x ∈ R. Here µ(t, x, r) =
Ax + Bu∗

(
t, x, x̄(r,1−r)

)
for x̄(r,1−r)(t) = R1(t, 0)x̄(0) +

R2(t) (rp1 + (1− r)p2), (see (28)). In the general case, one
can apply Broyden’s method to the function F (Λ)−Λ, where
the values F (Λ) are obtained by solving numerically the multi-
dimensional version of (32).

VI. SIMULATION RESULTS

To illustrate the dynamics of our collective decision mecha-
nism, we consider a group of uniform agents with parameters
A = 0.1, B = 0.2, R = 5, M = 500, T = 2 and σ = 1.5. The
agents, initially drawn from the normal distribution N (0.3, 1),
choose between the alternatives p1 = −10 and p2 = 10.
Assumptions 1, 2 and 3 are satisfied because of the scalar
dynamics, while Assumption 4 holds as a result of the uniform
population assumption (See Remark 2). At first, we consider a
weak social effect (Q = 0.1). Following the numerical scheme
at the end of Section V, we find a fixed point r = 0.39.
Accordingly, a player applying its decentralized MFG-based
strategy is at time T closer to p1 with probability 0.39. Equiv-
alently, if we draw independently from the initial distribution
a large number of players with independent Wiener processes,
then the percentage of players that will be at time T closer to
p1 converges to 39% as the size of the population increases
to infinity. Thus, the majority of the players choose p2. Figure
1 shows the distribution at time t = 0, t = 0.5T and t = T ,
the mean of a generic agent, the tracked path (admissible path
(31)), and the sample paths of 10 players choosing between
−10 and 10 under the weak social effect. As shown in this

figure, the mean replicates the tracked path computed using
the fixed point r = 0.39 and (31).
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Fig. 1. Distribution evolution, mean trajectory, tracked path and sample paths
for a weak social effect (Q = 0.1). Here r = 0.39.

Figure 2 shows that for sufficiently small values of Q
(Q < 21) the fixed points of F are unique. When the
social effect Q exceeds 21, F has three fixed points, where
two of them correspond to consensus on one alternative.
Indeed as Q increases arbitrarily, agents essentially forget
temporarily about the final cost, and the problem becomes a
classical rendez-vous MFG where they tend to merge towards
each other rapidly. If this occurs around the middle of the
destinations segment, then this is clearly an unstable situation
where most of the time, they end up splitting classically
according to initial conditions; however, some large deviations
are possible whereby a significant fraction decides to choose
one destination, thus pulling everyone else towards it, which
may help explain the non uniqueness of outcomes. Although
the frameworks are different, this behavior resembles to the
pitchfork bifurcation diagrams studied in [40] to model the
influence of the social effect on the behavior of a population
of honeybees choosing between two nectar sites. Figure 3
illustrates the evolution of the distributions that correspond
to the first fixed point with Q = 10 and Q = 20.

To illustrate the effect of the noise intensity on the behavior
of the group, we fix Q = 20 and we increase σ from 1.5 to 5.
For σ = 1.5, r = 0.02 (Figure 3), but for σ = 3, r increases
to 0.28 (Figure 4) and for σ = 5, r = 0.46 (Figure 4). Thus,
the higher the noise the more evenly distributed the players
are between the alternatives.
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Fig. 2. Influence of the coefficient Q on the multiplicity of the fixed points
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Fig. 3. Influence of the social effect on the distribution of the agents.
Distribution evolution for medium (Q = 10) and strong (Q = 20) social
effects. In the first case, r = 0.2, while in second case, r = 0.02.

VII. CONCLUSION

We have studied within the framework of MFG theory
a dynamic collective choice model with social interactions.
Towards that end, a novel class of optimal control problems
called Min-LQG was formulated and an explicit form of a
generic agent’s best response was developed. The Min-LQG
problem relates to the discrete choice literature, in that it can
be interpreted at each time step as a static discrete choice
model where the cost of choosing one of the alternatives has
an additional term that increases with the risk of being driven
by the process noise to the other alternatives. We have shown
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0

0.1

0.2

0.3

0.4

-30 -20 -10 0 10 20 30
0

0.1

0.2

0.3

0.4

Fig. 4. Influence of the noise on the distribution of the agents. Distribution
evolution for σ = 3 and σ = 5. In the first case, r = 0.28, while in the
second case, r = 0.46.

the existence of closed loop decentralized ε−Nash strategies.
Moreover, we have characterized these strategies by a so-called
choice distribution matrix describing the way the population
splits between the alternatives. It is shown to be a fixed point of
a well defined finite dimensional map. The fixed points may in
general be non unique. A numerical example of such behavior
was given. In future work, it would be interesting to explore
a situation of non uniqueness where agents would use pure
or mixed strategies based on the possible anticipated distinct
mean field equilibria. The policies would be refined via mutual
observations of agents behavior as time unfolds. Furthermore,
the nature of best responses under non isotropy along different
dimensions should be further explored, in particular when
some agent state components are not directly excited by noise.
It is also of interest for future work to include a learning
process in the game, where the players share periodically their
states and parameters to learn the probability distributions of
their initial conditions and parameters. Finally, we would like
also to develop a maximum likelihood estimator that observes
the sample paths of some agents and estimates the model
parameters. Once the parameters are estimated, the model can
be used for example to predict the evolution of opinions before
elections and the distribution of voters’ final choices between
the candidates.
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APPENDIX A
In this appendix, we provide the proofs of lemmas and

theorems related to a generic agent’s best response.

Proof of Theorem 1
We start with a technical result on the mean-square conver-

gence of random variables.
Lemma 5: Let I be a closed subset of Rn. Let Xk ∈ Rn

be a sequence of random variables with finite first and second
moments. If E[Xk] =: µk → µ for some vector µ not in I ,
and E[‖Xk − µk‖2]→ 0, then lim

k→∞
P (Xk ∈ I) = 0.

Proof: I ⊂ Rn is a closed set and µ /∈ I , so the distance
d between µ and I is strictly positive. Since, µk converges
to µ, there exists k0 > 0 such that for all k ≥ 0 and for all
x in I we have ‖x − µk‖≥ d/2. Hence, using Chevyshev’s
inequality [41, Theorem 1.6.4],

P (Xk ∈ I) ≤ P (‖Xk − µk‖≥ d/2) ≤ 4

d2
E[‖Xk − µk‖2],

for all k ≥ k0. The result follows since the right-hand side of
the inequality is assumed to converge to 0.

The following lemma is concerned with the regularity of
the solution provided in Theorem 1.

Lemma 6: Under Assumptions 1 and 2, V defined in (14)
is in C∞([0, T )× Rn) ∩ C([0, T ]× Rn).

Proof: As discussed below equation (13), Σt � 0 for
all t ∈ [0, T ). Hence, in view of (12) and (14), V is
in C∞([0, T ) × Rn). It remains to show the continuity on
{T} × Rn. We start by considering x ∈ Rn \ ∪lj=1∂W(j),
and (tk, xk) ∈ [0, T )×Rn converging to (T, x). We have x ∈
Int(W(j0)) for some j0 ∈ {1, . . . , l}, and x 6∈ W(j) for j 6= j0.
In view of (12), g(j)(tk, xk) is the probability that a Gaussian
vector of mean α(T, tk)xk −

∫ T
tk
α(T, τ)BR−1B′β(j)(τ)dτ

(which converges to x with k) and covariance Σtk (which
converges to 0 with k) is in the closed set W(j). In this
way, each j defines a distinct sequence of random variables
associated with the (tk, xk)’s. Now, if one considers the closed
set I of Lemma 5 to be any of the closed sets W(j)’s for
j 6= j0, one can conclude from this lemma that g(j)(tk, xk)
must converge to 0 for j 6= j0 and, as a consequence, to
1 for j = j0 since the W(j)’s form a partition of the state
space. Therefore, V (tk, xk) converges to V (T, x). Thus, V is
continuous on [0, T ] ×

(
Rn \ ∪lj=1∂W(j)

)
. Finally, consider

a sequence (tk, xk) ∈ [0, T ) × Rn converging to (T, c),
with c ∈ ∪lj=1∂W(j). We show that V (tk, xk) converges
to V (T, c). Up to renumbering the Voronoi cells, we can
assume without loss of generality that c ∈ ∂W(j) for all j
in {1, . . . , z} and c /∈ ∪lj=z+1W(j), for some 1 ≤ z ≤ l. We
have,

I0 =
l∑

j=1

exp
(
−ηV (j)(tk, xk)

)
g(j)(tk, xk)

=
z∑
j=1

exp
(
−ηV (j)(tk, xk)

)
g(j)(tk, xk)

+
l∑

j=z+1

exp
(
−ηV (j)(tk, xk)

)
g(j)(tk, xk).

Since c /∈ ∪lj=z+1W(j), one can use an argument similar to
the one above to show that the second term of the right-hand
side of the second equality converges to 0.

Next, let ε > 0 and fix r > 0 small enough so that the closed
ball centered at c of radius r B̄(c, r) ⊂

(
∩lj=z+1W(j)

)C
.

The value of r will be determined later. The first term can be
written

z∑
j=1

exp
(
−ηV (j)(tk, xk)

)
g(j)(tk, xk) = I1 + I2,

where

I1 =
z∑
j=1

exp
(
−ηV (j)(tk, xk)

)
× P

(
x(j)(T ) ∈ W(j) ∩ B̄(c, r)

∣∣∣x(j)(tk) = xk

)
I2 =

z∑
j=1

exp
(
−ηV (j)(tk, xk)

)
× P

(
x(j)(T ) ∈ W(j) \ B̄(c, r)

∣∣∣x(j)(tk) = xk

)
.

By Lemma 5, I2 converges to zero. Next, by solving the linear
differential equations in (10) and replacing the expressions of
β(j) and δ(j) in the expression (12) of g(j), one can show that
under Assumptions 1 and 2

I1 = exp
(
−ηV (0)(tk, xk)

)
×

z∑
j=1

∫
W(j)∩B̄(c,r)

fk(y) exp
(
η(‖y‖2M−‖y − pj‖2M )

)
dy,

where fk(y) is the probability density function of
the Gaussian distribution of mean α(T, tk)xk −∫ T
tk
α(T, τ)BR−1B′β(0)(τ)dτ and variance Σtk , and V (0)

and β(0) are equal to V (j) and β(j) defined in (7)-(10) but for
pj = 0. By the definition of c, ‖c− p1‖2M= · · · = ‖c− pz‖2M .
Hence,

I1 = exp
(
−η(V (0)(tk, xk)− ‖c‖2M+‖c− pj‖2M )

)
×

z∑
j=1

∫
W(j)∩B̄(c,r)

fk(y)dy

+ exp
(
−ηV (0)(tk, xk

)
)

z∑
j=1

∫
W(j)∩B̄(c,r)

fk(y)f(y)dy

, I3 + I4

where f(y) = exp
(
η(‖y‖2M−‖y − pj‖2M )

)
−

exp
(
η(‖c‖2M−‖c− pj‖2M )

)
. V (0)(tk, xk) converges to

V (0)(T, c) = ‖c‖2M , fk converges in distribution to
a point mass at c and W(j) ∩ B̄(0, c), j = 1, . . . , z,
is a partition of B̄(0, c). Therefore, I3 converges to
exp(−η‖c − pj‖2M ) = exp(−ηV (T, c)). f is continuous,
and f(c) = 0. Hence, one can choose r small enough
so that |f(y)|< ε for all y ∈ B̄(c, r). Thus, |I4|≤ ε, and
lim sup

k
|I0 − exp(−ηV (T, c))|≤ ε. Since ε is arbitrary, I0

converges to exp(−ηV (T, c)). This proves the result.
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To finish the proof of Theorem 1, it remains to show that
V satisfies the HJB equation (6). We define the transforma-
tions by a generalized Hopf-Cole transformation [26, Chapter
4-Section 4.4] of the LQG optimal cost-to-go V (j)(t, x),
ψ(j)(t, x) = exp

(
−ηV (j)(t, x)

)
, for j = 1, . . . , l. Recall [27,

Chapter 6] that the optimal cost-to-go V (j) satisfies the HJB
equation,

−∂V
(j)

∂t
= x′A′

∂V (j)

∂x
− 1

2

(
∂V (j)

∂x

)′
BR−1B′

∂V (j)

∂x

+
1

2
Tr
(
σ′
∂2V (j)

∂x2
σ

)
+ ‖x− x̄‖2Q (33)

V (j)(T, x) = ‖x− pj‖2M , ∀x ∈ Rn.

By multiplying the right-hand and left-hand sides of (33) by
−η exp

(
−ηV (j)(t, x)

)
, we obtain

− ∂ψ(j)

∂t
= x′A′

∂ψ(j)

∂x
+

1

2
Tr
(
σ′
∂2ψ(j)

∂x2
σ

)
− η‖x− x̄‖2Qψ(j)+

η

2
exp

(
−ηV (j)(t, x)

)(∂V (j)

∂x

)′ (
BR−1B′ − ησσ′

) ∂V (j)

∂x
.

Thus, under Assumption 1, we get

− ∂ψ(j)

∂t
= x′A′

∂ψ(j)

∂x
+

1

2
Tr
(
σ′
∂2ψ(j)

∂x2
σ

)
− η‖x− x̄‖2Qψ(j)

ψ(j)(T, x) = exp
(
−η‖x− pj‖2M

)
, ∀x ∈ Rn. (34)

Define ψ(t, x) = exp (−ηV (t, x)) the transformation of
V (t, x) defined in (14). Hence, we have ψ(t, x) =∑l
j=1 ψ

(j)(t, x)g(j)(t, x). Equation (34), Assumption 1 and

the identity ∂ψ(j)

∂x = −η
(
Πx+ β(j)

)
ψ(j), where Π and β(j)

are defined in (10), imply

∂ψ

∂t
+ x′A′

∂ψ

∂x
+

1

2
Tr
(
σ′
∂2ψ

∂x2
σ

)
− η‖x− x̄‖2Qψ

=
l∑

j=1

(
∂g(j)

∂t
+
(
Ax−BR−1B′Πx−BR−1B′β(j)

)′ ∂g(j)

∂x

+
1

2
Tr
(
σ′
∂2g(j)

∂x2
σ

))
ψ(j).

The process x(j) satisfies the SDE (9). Therefore, by Kol-
mogorov’s backward equation [24, Section 5.B] applied to the
conditional probability g(j),

∂g(j)

∂t
+
(
Ax−BR−1B′Πx−BR−1B′β(j)

)′ ∂g(j)

∂x

+
1

2
Tr
(
σ′
∂2g(j)

∂x2
σ

)
= 0.

with final condition g(j)(T, x) = 1W(j)(x). Hence ψ is the
unique strong solution of

∂ψ

∂t
+ x′A′

∂ψ

∂x
+

1

2
Tr
(
σ′
∂2ψ

∂x2
σ

)
− η‖x− x̄‖2Qψ = 0. (35)

By multiplying the right and left-hand sides of (35) by
1
η exp(ηV (t, x)), V (t, x) satisfies (6) in the strong sense. The

uniqueness of the solution follows from the uniqueness of
solutions to the uniform parabolic PDE (35) [24, Theorem
7.6].

Proof of Theorem 2

We have

u∗(t, x) = −R−1B′
∂V

∂x

=
l∑

j=1

ψ(j)(t, x)g(j)(t, x)∑l
k=1 ψ

(k)(t, x)g(k)(t, x)
u(j)(t, x)+

1

η
∑l
k=1 ψ

(k)(t, x)g(k)(t, x)
R−1B′

l∑
j=1

ψ(j)(t, x)
∂g(j)

∂x
(t, x).

In the following we show that the second summand is
zero. By the change of variable z = y − α(T, t)x +∫ T
t
α(T, τ)BR−1B′β(j)(τ)dτ in (12) and Leibniz integral

rule, we have

∂g(j)

∂x
(t, x)

=
−α(T, t)√
|2πΣt|

∫
∂W(j)−α(T,t)x+

∫ T
t
α(T,τ)BR−1B′β(j)(τ)dτ

exp
(
−‖z‖2Σ−1

t

)
~n(j)(z)ds(z) =

−α(T, t)√
|2πΣt|

∫
∂W(j)

exp

(

−

∥∥∥∥∥y − α(T, t)x+

∫ T

t

α(T, τ)BR−1B′β(j)(τ)dτ

∥∥∥∥∥
2

Σ−1
t

)
× ~n(j)(y)ds(y),

where α is defined in (13) and ~n(j)(y) is the unit normal
component of ∂W(j) and its translation ∂W(j) − α(T, t)x +∫ T
t
α(T, τ)BR−1B′β(j)(τ)dτ . By solving for β(j) and δ(j)

in (10) and replacing the solutions in the expressions of the
costs V (j) defined in (7) and in the derivatives ∂g(j)

∂x , one can
show that under Assumptions 1 and 2,

l∑
j=1

ψ(j)(t, x)
∂g(j)

∂x
(t, x) = K1(t, x)

l∑
j=1

(36)∫
∂W(j)

exp
(
K2(t, x, y) + η‖y − pj‖2M−η‖y‖2M

)
~n(j)(y)ds(y).

where K1 and K2 are functions that do not depend on pj ,
∀j ∈ {1, . . . , l}. Note that ∂W(j) = ∪kji=1Oi, where the
disjoint subsets (up to a subset of measure zero) {Oi}

kj
i=1 are

the common boundaries of W(j) and the adjacent Voronoi
cells. If Oi is the common boundary of W(j) and some
adjacent Voronoi Cell W(k), then ~n(j)(y) = −~n(k)(y) for
all y ∈ Oi. Moreover, by the definition of the Voronoi cells,
‖y − pj‖M= ‖y − pk‖M for all y ∈ Oi. Therefore, the right-
hand side of (36) is equal to zero. Thus, the optimal control
u∗ satisfies (16).

Next, we show that u∗ is an admissible Markov policy, i.e.
u∗ ∈ L defined in (4). In view of (16), the function ∂u∗

∂x
is continuous on [0, T ) × Rn. Therefore, the local Lipschitz
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condition holds. Moreover, for all (t, x) ∈ [0, T ] × Rn, we
have

‖u∗(t, x)‖ ≤
l∑

j=1

∥∥∥u(j)(t, x)
∥∥∥

≤ ‖R−1B′‖

l‖Π‖∞‖x‖+ l∑
j=1

‖β(j)‖∞

 . (37)

Hence, the linear growth condition is satisfied and this proves
the result. As a result, sufficient conditions are satisfied for the
SDE defined in (5) and controlled by u∗(t, x) to have unique
strong solution denoted x∗(.) [24, Section 5.2].

Finally, by the verification theorem [25, Theorem 4.3.1], we
know that u∗ is the unique optimal control law of (5) if it is the
unique minimizer (up to a set of measure 0) of the Hamiltonian
H(x, ∂V∂x , u, t) = (Ax + Bu)′ ∂V∂x + ‖x − x̄‖2Q+‖u‖2R, and
if the cost-to-go V (t, x) has a polynomial growth in x and
satisfies (6). For the first condition, we have for Lebesgue×P-
a.e (t, ξ) ∈ [0, T ]×Ω (P is the probability measure defined at
the beginning of Section III),

u∗ (t, x∗(t, ξ)) = −R−1B′
∂V

∂x
(t, x∗(t, ξ))

= argmin
u∈Rn

H

(
x∗(t, ξ),

∂V

∂x
(t, x∗(t, ξ)), u, t

)
.

In fact, the control law defined in (15) minimizes H except
on the set {T}×Ω, which has a Lebesgue×P measure zero.
Next, in view of (37), we have for all (t, x) ∈ [0, T )× Rn

‖V (t, x)‖≤
∫ ‖x‖

0

∥∥∥∥∂V∂x (t, y)

∥∥∥∥ dy ≤ K1(1 + ‖x‖2),

for some K1 > 0. Moreover, ‖V (T, x)‖≤ K2(1 + ‖x‖2), for
some K2 > 0. Hence, for all (t, x) ∈ [0, T ]×Rn, ‖V (t, x)‖≤
K
(
1 + ‖x‖2

)
, for some K > 0. Moreover, as established in

Lemma 3, V ∈ C1,2 ([0, T )× Rn) ∩ C([0, T ]× Rn) satisfies
the HJB equation (6). This proves the result.

APPENDIX B

This appendix includes the proofs of lemmas and theorems
related to the existence of a solution to the mean field
equations and the ε−Nash property.

Proof of Theorem 3

First, we provide in the following lemma a stochastic
maximum principle [27] for the “min-LQG” optimal control
problem. Because of the non-smooth final cost, this result is
derived using the relationship between dynamic programming
and the stochastic maximum principle rather than the varia-
tional method used in [27].

Lemma 7: Under Assumptions 1 and 3, the processes(
qs(t),

∂2Vs

∂x2 (t, x∗s(t)
)

, 1 ≤ s ≤ k, with qs(t) = ∂Vs

∂x (t, x∗s(t)),
satisfy the following backward linear SDE (21).

Proof: As discussed below equation (13), Σt � 0 for all
t ∈ [0, T ). Hence, in view of (12) and (14), the function Vs is
in C∞([0, T )×Rn), which means that ∂Vs

∂x (t, x) is smooth on
[0, T )×Rn. By applying Itô’s formula [24, Section 3.3.A] to

∂Vs

∂x (t, x∗s(t)), and by noting that Vs satisfies the HJB equation
(6), we have

−dqs(t) = (A′sqs(t) +Qs(x
∗
s(t)− x̄(t))) dt

− ∂2Vs
∂x2

((t, x∗s(t))σsdws(t),

with qs(0) = ∂Vs

∂x (0, x∗s(0)). It remains to show that P-a.s

lim
t→T

∂Vs
∂x

(t, x∗s(t)) = Ms

x∗s(T )−
l∑

j=1

1W(j)(x∗s(T ))pj

 .

(38)
By Theorem 2, we have on [0, T )× Rn

∂Vs
∂x

(t, x) =
l∑

j=1

exp
(
−ηsV (j)

s (t, x)
)
g

(j)
s (t, x)∑l

k=1 exp
(
−ηsV (k)

s (t, x)
)
g

(k)
s (t, x)

∂V
(j)
s

∂x
.

Fix j ∈ {1, . . . , l}. By Lemma 5, we have on {x∗s(T ) ∈
Int(W(j))}, lim

t→T
g

(j)
s (t, x∗s(t)) = 1 and lim

t→T
g

(k)
s (t, x∗s(t)) = 0,

for all k 6= j. Hence, on {x∗s(T ) ∈ Int(W(j))}, we have
lim
t→T

∂Vs

∂x (t, x∗s(t)) = lim
t→T

∂V (j)
s

∂x (t, x∗s(t)) = Ms(x
∗
s(T ) − pj).

But, under Assumption 3, x∗s is the solution of an SDE with
non degenerate noise. Therefore, P

(
x∗s(T ) ∈ ∂W(j)

)
= 0.

Hence, (38) holds.
Remark 4: The backward SDE (21) is the adjoint equation

[27] for the min-LQG optimal control problem.
We now prove point (i) of Theorem 3. By taking the

expectations on the right and the left hand sides of (21) and
the SDE in (19), and in view of

∑k
s=1 αsx̄s(t) = x̄, we

get the necessary condition. To prove the sufficient condi-
tion, we consider (X̄, x̄, q̄) satisfying (23a)-(23c). We define
(x̂s, q̂s) = (Ex∗s,Eqs), where (x∗s, qs) are the s-type generic
agent’s optimal state and co-state when tracking x̄. We define
e = (x̂1, . . . , x̂k) − X̄ and q̄e = (q̂1, . . . , q̂k) − q̄. By taking
expectations on the right and the left hand sides of (21) and
the generic agent’s dynamics, we obtain that

d

dt
e(t) = Ae(t)−BR−1B′q̄e(t), e(0) = 0

d

dt
q̄e(t) = −A′q̄e(t) +QLe(t), q̄e(T ) = Me(T ).

(39)

Under Assumption 4, we define q′e(t) = π(t)e(t), where π(t)

is the unique solution of (25). We have d(q̄e−q′e)
dt = −(A′ −

π(t)BR−1B′)(q̄e − q′e), with (q̄e(T ) − q′e(T )) = 0. Hence,
q̄e(t) = π(t)e(t). By replacing q̄e(t) = π(t)e(t) in the forward
equation in (39), we obtain that e = 0. Hence, x̄ satisfies (19).

To prove point (ii), we consider a path x̄ satisfying (19),
which by point (i) satisfies (23a)-(23c) and (22). Thus, a
solution (X̄, q̄) of (23a) and (23b) exists. Under Assumption
4, using arguments similar to those used in the first point we
obtain that this solution is unique. Moreover, one can check
that q̄ = πX̄ + γ, where π is the unique solution of (25),
and γ is the unique solution of γ̇ = −(A − BR−1B′π)′γ
with γ(T ) = −MΛ ⊗ Inp. By replacing, q̄ = πX̄ + γ in
(23a), we get that x̄ is of the form (28). Next, by imple-
menting this new form of x̄ in the expression of (22) and
by noting that Λ satisfies (24), Λ is a fixed point of F .
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Conversely, we consider Λ to be a fixed point of F , X̄ =(
R1(t, 0)X̄(0) +R2(t)Λ⊗ Inp

)
and x̄ = P1X̄ . We define

q̄(t) = −(BR−1B′)−1( ddtX̄(t) − AX̄(t)). (X̄, q̄) satisfies
(23a)-(23b). We have Λsj = F (Λ)sj = P(x∗s,Λ(T ) ∈ W(j)),
where x∗s,Λ is defined in (30). But x̄ is of the form (31), hence
x∗s,Λ is the unique strong solution of (22). Therefore, x̄ satisfies
(23a)-(23c), and by the first point, it satisfies (19). This proves
the second point.

Next, to show the existence of a fixed point of F , it is suf-
ficient to show that F is continuous, in which case Brouwer’s
fixed point theorem [42, Section V.9] ensures the existence of
a fixed point. Equation (30) is a stochastic differential equation
depending on the parameter Λ. By [43, Theorem 1] and the
assumption that σ is invertible, the joint distribution of X∗Λ and
the Brownian motion W is weakly continuous in Λ. Consider
a sequence of stochastic matrices {Λn}n≥0 converging to the
stochastic matrix Λ. The distribution of X∗Λn

(T ) converges
weakly to the distribution of X∗Λ(T ) Moreover, X∗Λ is the
solution of a non-degenerate SDE. Hence, W(j), j = 1, . . . , l,
is a continuity set of the distribution of X∗Λ. Therefore,
lim
n
F (Λn)sj = lim

n
P(x∗s,Λn

(T ) ∈ W(j)) = P(x∗s,Λ(T ) ∈
W(j)) = F (Λ)sj , and so F is continuous.

Proof of Theorem 4

The idea of the proof is to show that the average state of the
N agents when they optimally respond to a sustainable mean
trajectory x̄ converges to this trajectory in the L2 norm (See
Lemma 8 below). This result is subsequently used to prove
that an individual cost in the finite population case converges
to that in the infinite population case. This, combined with the
fact that the MFG strategies form a Nash equilibrium in the
infinite population case, implies the ε−Nash property.

Lemma 8: We have

E
∫ T

0

‖x̄(t)− 1

N

N∑
i=1

x∗i (t)‖2dt = C

(
1

N
+ max

1≤s≤k
|αs − αNs |2

)
,

where α and αs are defined in Section III-B, x̄ is a solution of
the mean field equations (19), x∗i is the optimal state of agent
i when he optimally responds to x̄, and C > 0 independent
of N .

Proof: We have

E
∫ T

0

‖x̄(t)− 1

N

N∑
i=1

x∗i (t)‖2dt

≤ 2E
∫ T

0

‖x̄(t)− 1

N

N∑
i=1

Ex∗i (t)‖2dt

+ 2E
∫ T

0

‖ 1

N

N∑
i=1

Ex∗i (t)−
1

N

N∑
i=1

x∗i (t)‖2dt := I1 + I2.

Since the initial states are i.i.d and have finite second moment,
the optimal states are independent and

∫ T
0
‖x∗i (t)‖2dt < ∞.

Hence, I2 ≤ C1/N , where C1 > 0 independent of N . We

have

I1 =

∫ T

0

‖
k∑
s=1

αsx̄s(t)−
k∑
s=1

αNs x̄s(t)‖2dt

≤ Tk2 sup
1≤s≤k

sup
t∈[0,1]

‖x̄s(t)‖2 max
1≤s≤k

|αs − αNs |2.

The term sup
1≤s≤k

sup
t∈[0,1]

‖x̄s(t)‖2 is finite because x̄s, the s−th

component of X̄ in (26), is a continuous function of time.
This proves the result.
Finally, we proceed with the proof of the ε−Nash property. Fix
i, and suppose that the strategy of agent i is ui ∈ Uci , while
the strategies of the other agents are u∗j , j 6= i, defined in (16)
for a trjectory x̄ solution of (19). Suppose that agent i profits
by deviating from the mean field strategies, i.e. Ji(ui, u∗−i) ≤
Ji(u

∗
i , u
∗
−i). This implies that ui and the corresponding state

xi have finite L2 norm E
∫ T

0
‖‖2dt. We have,

Ji(ui, u
∗
−i)− Ji(u∗i , u∗−i) = J(ui, x̄)− J(u∗i , x̄)

+ E
∫ T

0

‖xi(t)−
1

N

N∑
j=1,j 6=i

x∗j (t)−
1

N
xi(t)‖2Qi

dt

− E
∫ T

0

‖xi(t)− x̄‖2Qi
dt+ E

∫ T

0

‖x∗i (t)− x̄‖2Qi
dt

− E
∫ T

0

‖x∗i (t)−
1

N

N∑
j=1

x∗j (t)‖2Qi
dt

:= I1 − I2 + I3 − I4 + I5 − I6.

Using the L2-boundedness of xi, x∗i , Cauchy-Schwarz in-
equality [44] and Lemma 8, one can show that I3 − I4
and I5 − I6 are bounded by εN . Moreover, the optimality
of u∗i implies that I1 − I2 is positive. Hence, Ji(ui, u∗−i) −
Ji(u

∗
i , u
∗
−i) ≥ −εN . This proves the result.
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haviour in large population stochastic wireless power control problems:
centralized and Nash equilibrium solutions,” in Proceedings of the 42nd
IEEE Conference on Decision and Control, 2003, pp. 98–103.

[12] ——, “Large-population cost-coupled LQG problems with nonuniform
agents: Individual-mass behavior and decentralized epsilon-Nash equi-
libria,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp.
1560–1571, 2007.

[13] M. Huang, R. P. Malhamé, and P. E. Caines, “Large population stochastic
dynamic games: closed-loop McKean-Vlasov systems and the Nash
certainty equivalence principle,” Communications in Information &
Systems, vol. 6, no. 3, pp. 221–252, 2006.

[14] J. M. Lasry and P. L. Lions, “Jeux à champ moyen. I–le cas stationnaire,”
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Comptes Rendus Mathématique, vol. 343, no. 10, pp. 679–684, 2006.

[16] ——, “Mean field games,” Japanese Journal of Mathematics, vol. 2, pp.
229–260, 2007.

[17] J. Rust, “Structural estimation of markov decision processes,” Handbook
of econometrics, vol. 4, pp. 3081–3143, 1994.

[18] W. Brock and S. Durlauf, “Discrete choice with social interactions,”
Review of Economic Studies, pp. 147–168, 2001.
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