This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2021.3086888, IEEE

Transactions on Aerospace and Electronic Systems

Global Descriptors for Visual Pose Estimation of a
Non-Cooperative Target in Space Rendezvous

Anthea Comellini, Jerome Le Ny, Senior Member, IEEE, Emmanuel Zenou, Christine Espinosa,
and Vincent Dubanchet

Abstract—This paper revisits methods based on global de-
scriptors to estimate the pose of a known object using a
monocular camera, in the context of space rendezvous between
an autonomous spacecraft and a non-cooperative target. These
methods estimate the pose by detection, i.e., they do not require
any prior information about the pose of the observed object,
making them suitable for initial pose acquisition and the moni-
toring of faults in other on-board estimators. We consider here
specifically methods that retrieve the pose of a known object
using a pre-computed set of invariants and geometric moments.
Three classes of global invariant features are analyzed, based on
complex moments, Zernike moments and Fourier descriptors.
The robustness, accuracy and computational efficiency of the
different invariants are tested and compared under various
conditions. We also discuss certain implementation aspects of
the method that lead to improved accuracy and efficiency over
previously reported results. Overall, our results can be used
to identify which variations of the method offer a sufficiently
fast and robust solution for pose estimation by detection, with
low computational requirements that are compatible with space-
qualified processors.

Keywords: global descriptor, Fourier descriptor, Zernike
moments, complex moments, pose estimation, space ren-
dezvous.

I. INTRODUCTION

UTONOMOUS space rendezvous (RDV) operations be-

tween a chaser spacecraft (S/C) and a target require accu-
rate, real-time information about the relative pose (i.e., position
and attitude) of the target. When the target is non-cooperative,
i.e., does not assist the S/C for the acquisition, tracking and
rendezvous operations [11], the S/C must estimate the target’s
state with its on-board sensors and computer. Since passive
camera sensors have a small form factor and a low power
consumption, they can be easily integrated on a S/C, without
affecting its design and its power budget. For this reason, the
combination of camera sensors with tracking algorithms can
provide a cost effective solution. In this article, we consider a
system relying on a single camera, i.e., monocular vision, for
pose estimation. Indeed, monocular vision has advantages over
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stereo-camera configurations, because single camera systems
are less complex and have a much larger operational range,
which is not limited by the size of the platform.

Image-based pose estimation methods can be classified
into non-model-based and model-based techniques [27]. Non-
model-based techniques do not assume any a priori knowl-
edge of the tracked object’s shape, texture and other visual
attributes. They simultaneously estimate the object’s pose
while reconstructing its visual model [50], [14], [34]. On the
other hand, model-based techniques take advantage of a priori
knowledge about the object whose pose is to be estimated.
This knowledge can be in the form of visual features such as
markers, or in the form of a 3D geometric description of the
object. Since in the majority of rendezvous scenarios the target
is a known object, we focus here on model-based techniques.

Model-based 3D tracking methods can be classified as
frame-by-frame tracking or tracking-by-detection [35]. In
frame-by-frame tracking, the object’s pose retrieved from a
frame is used as a prior for a local search of the pose in the
following frame. This recursive approach makes image feature
identification and matching relatively easy [35]. However,
these methods require initialization and can diverge in the
presence of local minima. For this reason, a recursive tracking
algorithm must be complemented with a tracking-by-detection
algorithm to enable initial pose acquisition and fault detection.
In tracking-by-detection algorithms, which are the focus of this
paper, the pose is retrieved by exploiting a-priori information
on the geometry and appearance of the tracked object, but
with no knowledge of the pose at previous instants. More-
over, since space-qualified microprocessors have relatively low
computational resources, the tracking-by-detection algorithm
must be computationally inexpensive. It also has to cope
with the peculiarities of the RDV problem, such as harsh
illumination conditions or the presence of textureless and
reflective materials on the target.

A. Monocular Tracking-by-Detection

Monocular pose estimation by detection can be performed
using geometric methods or by template matching. In geomet-
ric methods, the observed 2D features in the input image are
matched with a database of features computed offline. Then
the pose is retrieved by solving the Perspective-n-Point (PnP)
problem. Geometric approaches based on local feature are
proposed for S/C pose acquisition in [48], [41], [45]. However,
methods relying on local feature detection lack robustness in
the adverse illumination conditions encountered by spaceborne
systems. In template matching approaches, a fraining set of
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views of the object is acquired offline to generate a database
of templates that are compared at run-time with the input
image. Classical template matching approaches compare the
pixels intensities of the templates and the input image ac-
cording to similarity measures or alignment functions [42].
However, these methods are computationally expensive and
lack robustness to illumination changes [42]. Other approaches
rely on templates of local features, such as image gradient
orientations [13], [23] or binary templates of the extracted
edges. An edge-based template matching approach relying on
a similarity measure derived from Chamfer Matching [5] and
on an unsupervised clustering technique is proposed for S/C
pose estimation in [42]. The template matching approaches
described are computationally complex because they evaluate
of a large number of possible pose hypotheses, so that real-
time may not be achievable on space qualified processors.
They might be appropriate for pose initialization, but cannot
be used as a backup algorithm to help detect divergence in
a recursive tracking algorithm. For this reason, recent work
has focused on using Convolutional Neural Networks (CNNs)
for pose estimation directly from greyscale images in a end-
to-end fashion [47], [46]. However, the reported accuracy is
currently still lower than that of geometric methods [48].
Hybrid approaches, where CNNs are used to extract keypoints
(i.e., local features) from the image while the PnP solver is
used to compute the pose, have recently shown very good
accuracy with synthetic images [30]. However, this still raises
the issue of relying on local feature detection.

The approach considered in this paper is to rely on template
matching with global features instead of local ones. Global
features such as image moments or Fourier descriptors provide
a low-dimensional representation of the target’s silhouette on
a binary image. As for a typical appearance-based template
approach, this representation can be matched to its nearest
neighbor in a database constructed offline from a sufficiently
rich sample of possible poses. However, due to the small
amount of data stored for each view, the search for the optimal
matching remains computationally inexpensive, resulting in a
fast estimation procedure that can be run in parallel of a frame-
to-frame tracking algorithm. If global features are computed
from binary silhouette images, they become independent from
illumination conditions. However, in this case, the pose estima-
tion algorithm should be complemented with a segmentation
algorithm to extract the silhouette, especially when complex
background such as the Earth is present in the image.

B. Tracking-by-Detection with Global Descriptors

Early attempts to use global features for shape recognition
of 3D objects were motivated by aircraft identification applica-
tions and relied on Hu’s moment invariants [15], [44], [22], [6]
and Fourier descriptors [54], [44], [9], [22]. Dudani proposed
in [15] to use these features not only for aircraft recognition
but also for pose estimation, inspiring follow-up work in [44],
[9], [22], [6]. Unfortunately, Hu’s invariants, although very
commonly used, are now known to form an incomplete set, see
Section IV, which results in limited discrimination capabilities.

Perhaps for this reason, [3] proposed a more complex
approach than Dudani’s, computing invariant features for each

planar surface of the object and recovering the global pose
via an algebraic method rather than a nearest neighbor search.
However, the additional steps involved, e.g., for face segmen-
tation, increase the computational requirements and introduce
additional failure modes in low illumination conditions.

During the past two decades, progress in pattern recognition
led to the development of more powerful sets of rotation-
invariant global features, which however were never fully
tested for the pose estimation problem. In this paper, we
consider complex moments (CMs), Zernike moments (ZMs)
and Fourier descriptors (FDs). CMs directly improve on Hu’s
invariants [18], see Section IV-A. ZMs form a set of orthogonal
moments, see Section IV-B, with advantages in terms of infor-
mation redundancy and image representation capabilities [1],
[53]. Some authors claim that Pseudo-ZM [21] are more robust
than ZM with respect to additive noise, but their independence
(see Section IV) is considered questionable [18]. ZMs were
used in [20] to determine the orientation of a S/C from
silhouette images, as we do here. However, the authors did not
fully exploit the power of the ZMs since they do not use the
rotation invariance to reduce the complexity of the problem,
as we explain in Section III. In [7] the amplitude of ZMs up
to the 29" order is used as rotation invariant to estimate the
pose of airplanes. However, considering only the amplitudes
leads to an incomplete set of descriptors, as we explain in
Section IV-B, which again results in limited discrimination
capabilities. Moreover, in [7] the in-plane rotation (see Section
III) is retrieved by comparing the phase of the ZMs in the
database with the phase of the ZMs computed on the observed
image.This approach leads to a doubling of the dimension
of the descriptor database. In contrast, the classical method
recovers this rotation by storing just one descriptor for each
database view and provides already adequate performance. The
amplitude of the Pseudo-ZMs is also used as rotation invariant
in [29], but this work focuses on recovering only two of the
six degrees-of-freedom (DOF) of the pose. Finally, Pseudo-
ZMs are used in [19] for aircraft pose estimation from contour
images. First, the authors determine with Pseudo-ZMs two of
the three attitude angles of the observed object. Then, shape
context descriptors are used to retrieve the remaining DOF.
However, as we explain in Section III, the remaining DOF
can be computed using Geometric Moments (GMs), resulting
in a simpler and faster estimation method.

Moment-based invariants are generally computed using the
whole silhouette of the observed object, since the performance
of boundary moments quickly deteriorates in the presence of
noise and discretization effects on the images [44], [4]. Thus
CMs and ZMs are generally sensitive to the distribution of
the “mass” in the image silhouette. On the other hand, FDs
are computed only from the contours of the observed object,
hence are more sensitive to changes in the object boundaries
[44]. This motivates our goal of comparing Fourier descriptors
and moment-based invariants.

Contributions: In this paper, we evaluate variations of
the classical pose estimation method based on matching global
features [15], [37] for the problem of recovering the 3D pose of
a spacecraft from a single image obtained from a monocular
camera. As explained in Section III, the method determines
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the roll and pitch angles of the camera with respect to the
target by nearest neighbor matching on a vector composed of
global invariant features, and identifies the remaining DOFs,
i.e., distance and in-plane angle of the target, using GMs. We
add a step to the method that allows resolving a remaining
ambiguity for the in-plane rotation angle of the silhouette, by
using the third order GMs (the possibility to use the third order
GMs to define the orientation of a silhouette has been noted
before in a more general context however, see [51, p. 20]).
Although the basic ideas of the method are classical, they have
only been tested so far in limited settings, i.e., either in studies
that predate the introduction of powerful moment families such
as Zernike moments (ZMs), or by considering a limited set
of more modern descriptors and often failing to exploit their
full power. Hence, our main contribution is to compare the
performance of three complete and independent sets of modern
invariants to solve the 3D pose estimation problem. This
is important because the accuracy, efficiency and therefore
ultimately the usefulness of the method is directly tied to
the chosen set of invariants, yet no benchmark is currently
available to guide design choices or properly evaluate the
global feature matching method against possible alternatives.
As explained previously, in the available literature, the method
has mostly been tested with the classical Hu moments [15],
[44], [22], [6], which have limited power. CMs generalize
Hu’s moments but have not been tested for pose estimation.
Although they are generally expected to perform no better than
ZMs, we include CMs in our analysis for their importance and
for completeness. The power of modern ZMs in combination
with the classical method to recover all DOFs efficiently has
never been fully exploited for pose estimation. Indeed, [7],
[29] only use the amplitude of the ZMs, whereas [7], [19]
rely on cumbersome techniques to determine the target in-
plane rotation, which makes it difficult to evaluate properly the
efficiency/performance tradeoffs associated to ZMs. We also
include FDs in our analysis, for which many variations exist,
making an exhaustive comparison with the literature difficult.
Nevertheless, the method presented in this paper to exploit
FDs is new, as it relies on the possibility to resolve the in-
plane rotation ambiguity noted before in order to achieve both
rotation invariance and invariance with respect to the initial
point on the silhouette’s contour. Finally, we perform extensive
simulations comparing the different global descriptors for
an important application, namely, spacecraft pose estimation,
using images generated by an industrial-strength simulator.
As noted earlier, the RDV application requires computation-
ally efficient solutions running on space-grade electronics,
which often prevents using GPUs, and capable of working in
difficult lighting conditions. The accuracy vs. computational
efficiency tradeoffs detailed in Section V should be useful
to practitioners to quickly identify a promising set of global
descriptors to solve the tracking-by-detection spacecraft pose
estimation problem, given a mission’s expected environment
and implementation platform.

The rest of the paper is structured as follows. After pre-
senting the problem statement in Section II, we present in
Section III the tracking-by-detection algorithm for the pose
estimation of a S/C of known geometry, based on global

Fig. 1. Schematic representation of the pose estimation problem using a
monocular image

features computed from a single binary image. In Section IV,
the theory underlying the computation of rotation invariants
based on CMs, ZMs and FDs is recalled and we propose a
new method to compute rotation invariant FDs. Then, Section
V analyzes and compares the performance of these three
sets of global descriptors, characterizing their behavior in
different conditions typically encountered in operational RDV
scenarios.

II. PROBLEM STATEMENT

The problem considered in this paper is to estimate the pose
of an object of known geometry from a single bi-dimensional
image. No prior information about the object’s pose is known.
We assume that the input of the estimation procedure is a bi-
narized image of the object’s silhouette and we do not address
in this paper the task of foreground-background segmentation.
However, for operational scenarios such as a RDV with a
space debris, the object can be approached from a lower orbit,
keeping the Earth out of the field of view (FOV) of the camera.
Then, the silhouette of the object can be easily retrieved from a
multi-spectral image after a simple thresholding. Fig. 1 shows
a schematic representation of the pose estimation problem.
Let P? be the coordinates of a point P expressed in the target
reference frame (RF) ¢, which is centered at the target center of
mass (COM). The coordinates of P, expressed in the camera
RF, are:

P¢ = [SL’C, yc, ZC]T = Rcft Pt +t6670t . (1)

The vector tcoc—ot corresponds to the translation from the
origin O, of the camera RF to the origin O, of the target RF,
expressed in the camera RF. According to the classical pinhole
camera model, the point P¢ is projected on the image plane
as follows:

:CC C
p=lup v = | Sf+C SP4C, | @

where f denotes the focal length of the camera and (C,, Cy)
the principal point of the image. We assume that the camera
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optical axis z. is always pointing towards the target’s COM.
During the pose acquisition phase of a RDV, the camera will
likely be pointing towards the observed silhouette centroid
instead of the target COM. It may be also be the case that,
for some operational reasons such as the need for aligning
chaser and target docking interfaces, pointing exactly toward
the COM cannot be done. However, we demonstrate in Section
V-AS that the proposed pose estimation method is robust to
the presence of such pointing errors. Under the assumption
of perfect pointing, the degrees of freedom of the problem
pass from 6 to 4, since no translation in the camera plane
(Oc, e, yc) is present, ie., t§, o, = [t5 .ty ,t5] =[0,0,d].
The objective is to estimate the quantities d and the Euler
angles ,7,1, using a single binary image of the target
projected on the image plane.

III. NEAREST NEIGHBOR MATCHING WITH IMAGE
INVARIANTS

The interest in using global features such as Fourier de-
scriptors or image moments is that these features can be
made invariant to translation, to scaling, and most importantly
to rotation. If a bi-dimensional shape is described by such
invariant features, the value of the features will not depend on
the position of the shape centroid (translation invariance), on
the shape dimension (scaling invariance), and on the rotation of
the shape in the image plane (rotation invariance). With regard
to the problem described in Section II, if global invariant
features are used to describe the target S/C silhouette in a given
pose, the value of the features will depend only on the roll and
pitch angles ¢ €] — 7, ] and ¥ €] — /2, 7/2] of the matrix
R;_.. In fact, ) only affects the rotation of the projected shape
in the plane image, as seen on Fig.1. On the other hand, the
distance d slightly affects the shape of the projected silhouette
at a given attitude. However this contribution is negligible if
the target’s size is considerably smaller than the distance d,
as is the case during the pose acquisition phase of a RDV.
Thus, it is possible to assume that d affects only the scale. In
Section V we analyze the influence of this approximation on
the performance of the algorithm.

The general principles of the pose estimation algorithm
can be explained as follows [15], [37]. During an off-line
process, a set of synthetic views of the target, referred to as
training images, is generated for a sufficiently large number
of discrete values of the pairs (p, ) €] —m, 7| x| —7/2,7/2].
When generating the database, the yaw angle ¢ and the
camera-target distance d remain fixed, with ¥ = ¥.qin set
to zero. The choice of distance d = di,4i, can in fact affect
the performance of the pose estimation, as we discuss in
Section V-A. For a given pair (p,9), the position of the
camera expressed in the target RF is tbf,—Oc dirain *
[sind, —cos? sing, —cost Cos<p]T. Under the assumption that
the camera’s optical axis is pointing towards the target’s COM,
the locus of the points ta_oc(dtmm, v, 1) is represented by
the sphere of radius dy,q;, centered at the target COM. Thus,
the relative attitudes used to generate the training images can
be assigned by selecting N,, random points on the sphere. In
order to avoid oversampling of the polar zone, which would

be the result of a uniform sampling of ¢ and 4, the points are
assigned using the algorithm suggested in [32]

&

where rand, and randy are two independent random variables
uniformly distributed in the interval |0, 1]. Note that although
random attitude sampling was used here for benchmarking the
different sets of global descriptor, a deterministic sampling
may be more adequate for the nominal pose estimation solu-
tion. In that case, a spiral scheme could be used to generate
uniformly distributed samples on the unit sphere [31].

Once the images corresponding to the N,, viewpoints are
generated, the global invariant descriptors are computed for
each view. The size of the resulting database is N, X N, with
N the dimension of the feature vector. At run-time, when the
camera acquires a new image of the target (referred to as rest
image in the sequel), the algorithm computes the descriptor
vector associated to the resulting view and finds in the database
the pair (@meas, Pmeas) With the closest descriptor vector
(minimizing the Euclidean distance), i.e., performs a nearest
neighbor search. The two remaining degrees of freedom, i.e.,
the yaw angle ¢ and the relative camera-target distance d, are
estimated using geometric moments (GMs), according to the
procedure described below.

From a mathematical point of view, moments are projections
of a function into a polynomial basis [18]. GMs rely on the

=27 rand, — 7
= asin(1 — 2randy)

3)

most intuitive power basis ppq(z,y) = aPy?. The general
definition for a geometric moment of an image is:
o0 o0
Mpq = / / xpyqf(xv y) dz dy, 4)
— 00 — 00

where f(x,y) is a function equal to the intensity level of the
image in correspondence of the point (z,y). When binary
images such as object silhouettes are considered, f(x,y) is
equal to 1 inside silhouette and O elsewhere. For binary im-
ages, the lower order geometric moments are associated with
geometrical properties of the observed silhouette. For example,
mgo 18 the area, while mlo/moo =z, and m01/m00 = Y. are
the = and y coordinates of the silhouette’s centroid. Geometric
moments can be easily made translation and scale invariant.
Translation invariance is obtained by computing the central
geometric moments /i, according to:

Hpq = /_ /_ (x —2)P(y — yeo) i f(x,y) dz dy.  (5)

Scale invariance is obtained by dividing the central geometric
moments by an appropriated power of the area:

= Hee i _Pta

w w +1. (6)
mgo 2

Vpq

From a given image, the yaw angle ¢ €] — 7, 7] of R._;
can be retrieved using the second order central moments, as
follows. First, the inclination 1y €] — w/2,7/2] of the major
axis of inertia of the silhouette on the image is given by [18]

~ 1 2
Py = §atan (ﬁtn) . (7
H20 — Ho2
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However, to recover the full in-plane angle of rotation 1y €
] — 7, m] of the silhouette, we still need to determine a specific
direction along the axis of inertia, i.e., distinguish between
o = by or Yy = thy — m. This ambiguity remains in the
standard descriptions of the method [15], [37], but can be
resolved by using the the third order GMs, since these change
sign under a rotation of 7, as noted in a different context by
Tahri [51]. Central moments in the image frame rotated by an
angle 7,/;0 are given by

P q

ro_ Iy, la . p=l1, 912

ﬂpq*E E T2 T11 Byl ptg—(li+l),  (8)
11=015=0

where 11 = T922 = COS(l;()), r19 = —T9o1 = bln(’(;o) Then,
as a convention, we define the in-plane rotation )y to be the
direction for which the moment 5, after rotation by g is
positive, i.e.,

if :u:/30>07

9
if phy <0, 2

 d
%{@o—w

The ambiguity can be resolved only if the silhouette is not
rotationally symmetric. In the case of a silhouette having an
N-fold rotation symmetry (N-FRS) (i.e., if it repeats itself after
rotation around its centroid by 27j/N, for all j = 1,...,N),
N solutions are possible. In such cases, only an observation
of the target pose on a set of consecutive frames could help
solve the ambiguity. Once 1)y, _, is determined for the current
image, we can deduce the measured yaw angle ¥;,cqs Of the
camera frame by
wmeas = 1/J0test + (wtrain - 1/J0tm-n)- (10

where 1)y, ... is the major axis of inertia (precumputed and
stored in the database) of the training view that best matches
the current view, and ¥q;, = 0 by construction.

Finally, we obtain a measure d,,.,s of the relative camera-
target distance along the optical axis from the zeroth order
moment myyg,,., of the current silhouette image, namely

dmeas = V1M00trqin /mOOtESt . dtraina

where moo,,,;, 1S the zeroth order moment for the best
matching training view, which again can be precomputed and
stored in the database. The requirement of perfect pointing
introduced in Section II can be relaxed under the hypothesis
of a weak perspective model, i.e., when the depth of the
object along the line of sight is small compared to the
distance from the camera, or when the FOV is relatively
small [42]. These are indeed conditions that are met during
the pose acquisition phase. In the weak perspective model it
is assumed that all points on a 3D object are at the same
distance d from the camera without significant errors in the
projection with respect to the full pinhole perspective model.
Under this approximation, the contribution to the silhouette
shape of the relative position and the relative attitude can
be decoupled at the cost of an acceptable degradation of the
estimation performance. Recalling (2) and exploiting the fact

an

that d = | /(t$)? + (t¢)? + (t$)? ~ <, the components ¢5 and
ty, can be approximated by

t; = g (xctest - CI)
J (12)
t; = ? (yctest - Cy)

where (zc,,,,, Ye,..,) are the coordinates of the observed
silhouette centroid. The identities (12) can be used to ensure
camera pointing even before the target’s full pose has been

acquired.

Computation of global features |
v

mootest‘ lpotest‘

| rotation invariants |

Uctest? vctest

I database search |

v v

||(pmeas »Umeas

| mootrain’ lpotrain

c [
Xmeas’ tymeas’ dmeaS’ ¢meas

\4
| 6 DOF measured pose |

Fig. 2. Structure of the pose estimation algorithm.

By using rotation invariants, we can drastically reduce the
dimension of the database that needs to be stored and increase
the speed of the search. For example, if the library were built
using a uniform discretization of 5 deg for the Euler angles,
the database table would contain N,, = 72x 36 x 72 = 186624
synthetic views if 1) were included in the search space, but only
Ny, = 72 x 36 = 2592 synthetic views if rotations invariants
are used. In Sections IV-A, IV-B, and IV-C we provide details
about the computation of invariant global features using CMs,
ZMs, and FDs.

IV. COMPUTATION OF THE INVARIANT GLOBAL FEATURES

While designing translation and scale invariants based on
moments is generally straightforward, see (5) and (6), rotation
invariance is more difficult to obtain. In a seminal paper
[24], Hu introduced a set of 7 rotation invariants based on
combination of second and third order geometric moments.
Unfortunately, Hu’s approach cannot be generalized, so that
only invariants up to the third order can be derived, limiting
the descriptive power of these features. On the other hand,
by choosing other polynomial basis functions to compute the
moments, as for CMs and ZMs, one can derive general rules
for the computation of rotation invariants of up to any order.
In particular, a set of invariants up to a given order r» must
be independent and complete [18]. A set is independent if
none of its elements can be expressed as a function of the
other elements. It is complete if any rotation invariant up to
the order r can be expressed as a function of the set elements
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only. A complete set contains both true invariants and pseudo-
invariants. True invariants are invariants that do not change
sign under reflection, while pseudo-invariants (also known as
skew-invariants) do [18]. The capability of pseudo-invariants
to detect mirror reflections is very important for the pose
estimation problem, since a mirrored image corresponds to
a different S/C attitude.

A. Rotation Invariants with Complex Moments

CMs are computed by projecting the image function on the
basis ppq(z,y) = (x+1y)P(x —iy)?, where ¢ is the imaginary
unit. The complex moment c,, of order p + ¢ is defined by
the following formula:

= [ [ @yt ddy. 03

Translation and scaling invariance can be obtained as for the
standard geometric moments, replacing mgg, mi1g and mg; in
(5) and (6) by coo, Re(c1p) and Im(cyp) respectively. CMs
carry the same amount of information as GMs, but are more
convenient to derive an independent and complete set (also
referred to as a basis) of rotational invariants up to any order,
as shown by Flusser [16]. The key points of the approach are
recalled here. If the complex moments are expressed in polar
coordinates (z = r cosf, y = rsinf), (13) becomes:

equal to zero. In [17] Flusser provide an extension of (16) for
N-FR symmetric objects.

For our pose estimation algorithm, CM invariants up to
order 10 (i.e., Ny = 62) are computed and stored in the
database. The elements ®gy = co9 and P19 = cigcio are
not included in the set because coy and cjg are already
used to achieve scaling and translation invariance. Because
high-order moments have much higher magnitude than low
order moments, the components of the feature vector must
be normalized before applying the minimum Euclidean dis-
tance criterion. This issue, which is already present with
Hu’s invariants, has been addressed in the literature using
different approaches, e.g., using z-score normalization [15],
[6] or variance balancing [44], [29]. Here, we follow the
approach suggested in [36] of replacing each feature F' by
F,, = sign(F) -log(|F|), which was found to provide the best
recognition capabilities for CM-based invariants.

B. Rotation Invariants with Zernike Moments

ZMs are a family of orthogonal moments, i.e., the corre-
sponding polynomial basis satisfies

/ / Poa(@, ) - pyu(,y) dedy = 0 (17)
Q

oo 27
Cpg = / / (rcos@ +irsind)”(rcos@ —irsin0)* f(r,0) r dr dffor all ¢ # j, p # k, where Q is called the region of
0 0

oo 27 )
= / / pPHatleie=a9f ¢t 9) dr df .
o Jo
(14)

From (14) we can see that the complex conjugate of a CM
satisfies ¢, = ¢4p and that a pure rotation of the image around
the origin by an angle o changes CMs according to

! a—ilp—q)
Cpg = € Cpq »

15)

which shows that the magnitude of a CM is a rotation invariant.
However CM magnitudes do not generate a complete set.
Instead, considering complex moments up to the order r > 2,
we construct the following basis of rotation invariants [16]

B ={®pg:i=cpgch i |p>qandp+qg<r}, (16)

where po and g that can be arbitrary chosen such that
po+q0 <7, po—qo =1, go # 0, and ¢g,p, 7# 0. Rotation
invariance follows from
a

= cpgch 1

qopo *

P — o—ilp—Da, (. e~ H(q0—po)a P
Pqg-qopo Pq qoPo

The exponents pg, qo are generally chosen as small as possible,
e.g., po = 2 and gy = 1, because high order moments are
more sensitive to noise [53]. Each basis element ®,, such
that p # ¢, except ®,,4,, provides two real-valued invariants,
corresponding to the real and imaginary parts of ®,,. It can
be proven that the real part is a true invariant, while the
imaginary part is a pseudo-invariant. Hu’s 7 invariants can
be expressed from the 6 elements of B3, implying that Hu’s
set is not independent. Moreover, one element of B3 cannot be
expressed as a function of Hu’s invariants, implying that Hu’s
set is incomplete [18]. Note that if an object has an N-FRS,
then all its complex moments with non-integer (p — q)/N are

orthogonality and must contain the support of the image f,
which must therefore typically be rescaled. For ZMs, (Q is
taken to be the unit disk. Given an image expressed in polar
coordinates, ZMs are defined by [18]

27 1
“/ / “(r 0)f(r,0) 7 drdd  (I8)
™ 0 0

where n is a nonnegative integer called the order, [ €
{—n,—m + 2,...,n} is called the repetition (note that the
difference n — |I| is always even), and V;,; denotes the Zernike
polynomials

n

Anl =

Vi (7,0) = Ry, (r)e™™ (19)

with radial part

(n—11))/2 o .
Boa(r) = 2 (D sigemyzz=si=mrz=an ™

N (20)

The radial functions satisfy R,, _;(r) = Ry, (r), so that

A, = A, and ZMs with repetition [ = 0 are real

valued moments. Different methods have been proposed to
normalize the image to the unit disk. In [28], each shape
is resized so that its zeroth order GM mgy is set to a
predetermined value, while in [20] a fixed-dimension bounding
box is used instead of the zeroth order moment. In this
paper, we simply transform the coordinates of the points
belonging to the object’s silhouette to normalized central
polar coordinates, i.e., § = atan((z —x.)/(y —y.)) and
r=/(2 —2:)% + (Y — Ye)/Tmaz> With 70, the maximum
value among the radii of the considered silhouette. This
approach, also in [29], ensures that all the points in the
object’s silhouette are used to compute the moments, and also
provides translation invariance. Scaling invariance is obtained
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by dividing A,,; by the zeroth order moment Agg, as suggested
by [18].

Teague [52] was the first to propose a set of rotation
invariants based on ZMs, up to the eighth order, but gave no
general rule to derive invariants of higher order. As for CMs,
some authors [29], [28], [7] use only the magnitude |A,;|,
but this provides an incomplete set of invariants because the
information carried by the pseudo-invariants is lost. Wallin
[55] noted that ZMs, which are complex valued moments,
behave as CMs under rotation, so that rotation invariance can
be obtained by multiplying ZMs by an appropriate phase-
cancellation term, see (15) and the discussion below. As
suggested by [18], this term has to be searched among the
ZMs with repetition 1, starting from Asz;. Similarly to CMs,
these moments are equal to zero for objects having a rotational
symmetry. In this case, the normalization moment should
be searched within the ZMs having repetition 2. Given the
normalizing moment A,, ; , the normalized ZM Z,, is

[Im(Am,l,,,)

1
with = —atan | ————=
¢ Re(Ay,1,)

an = Anle_il¢a
Ly

} . QD

Each Z,,; leads to two real-valued invariants, except for Z,, ;.
and for the moments with repetition I = 0. Zyy and Z;g are
not included in the set. In fact, Ay is already used to obtain
scaling invariance, while Ay is always zero when central
coordinates are used. For the pose estimation algorithm, ZM
invariants up to the 10" order (i.e., N = 62) are computed
and stored in the database. Unlike GMs and CMs, ZMs
values have a smaller dynamic range [18], which simplifies
the process of feature matching in the database. Some authors
claim that the presence of factorial terms in the radial poly-
nomials increases the computation time needed to compute
ZMs, especially for higher order moments, and methods to
speed up the computation of the moments are proposed in [43],
[26], [56]. However, as discussed in Section V, the optimal
performance of the ZM-based pose estimation algorithm is
obtained with moments up to the seventh and ninth order. For
such relatively low orders, the radial polynomial coefficients
can be stored and thus do not need to be computed on-line.

C. Rotation Invariants with Fourier descriptors

FDs provide a representation of the boundary of a two-
dimensional shape. Indeed, since a closed curve can be rep-
resented by a periodic function of a continuous parameter, it
admits a Fourier transform, whose coefficients can be used
as global descriptors both for shape recognition and shape
retrieval [2]. Different definitions of FDs exist [58], but the
most popular starts by defining the complex central coordinate
position sequence

Z(n) = (w(n)fl'c)+i(y(n)fyc)v forn=1,..., Np7 (22)

with N, the number of points belonging to the contour and
the coordinates of the contour’s centroid given by z, =

=+ fjﬁl z(n), Yo = 7 2521 y(n). The FDs are defined

by computing the discrete Fourier transform (DFT) of z using
the fast Fourier transform (FFT)

NP
Z(w) = Zz(n) exp (—imw) , forw=0,...,Ny,—1.
n=1

Np

(23)
Scaling invariance is obtained by dividing the DFT sequence
by |Z(1)|. Translation invariance is obtained by discarding the
coefficient Z(0), which is indeed equal to 0 when complex
central coordinates are used to define the position sequence.
The behavior of FDs under rotation is similar to that of CMs
and ZMs, see (15). However, the Fourier transform depends
also on the starting point used to describe the contour. If this
starting point is shifted by m positions, the resulting transform
Z(w) is

Z(w) = Z(w) exp (Twm) . (24)

p

A solution is to use only the magnitude of the transform | Z(w)]
as descriptor, as in [57], [8], [12], [4], since it is invariant
to rotation and independent of the choice of initial point.
However the resulting feature set will be incomplete, since
every harmonic Z(w) provides in fact two invariants, i.e., its
magnitude and phase or alternatively real and imaginary parts.
As with CMs and ZMs, the imaginary parts of FDs are pseudo-
invariants [57]. In [40], the rotation and starting point are
determined by a search for the best matching through all the
possible shapes, but this procedure increases the computational
time of the nearest neighbor search.

In this paper, we propose a method to achieve simultane-
ously rotation invariance and independence with respect to the
choice of initial point. First, using the GMs of the contour, the
in-plane rotation angle vy is computed as described in Section
III. By convention, the initial point of the contour is taken to be
the intersection of the contour with the half line originating
from the figure centroid and with direction . In the case
of multiple intersections, we select the farthest one from the
centroid. The sequence X = [z1 +iy1, ..., x; +iY;, ..., TN, +
inp]T is then rearranged starting from the selected initial
point and following the contour counterclockwise. Then, the
coordinates of the points are rotated by an angle —, i.e., we
let

X, =X e Wo, (25)

and compute the DFT of the sequence X,.. This procedure
is similar to the approach used in [33] and [9], where the
ellipse described by the first harmonic phasor is used instead
of the inertia ellipsoid. Note that none of these methods can be
applied when ellipse degenerates into a circle, i.e., when the
object’s silhouette has an N-FRS. Note that curves presenting
a N-FRS have zero amplitude harmonics for all indices that
are not integral multiples of N [57]. For the pose estimation
algorithm, FDs up to the 99" harmonic (i.e., Ny = 198) are
computed and stored in the database.

V. APPLICATION AND PERFORMANCE ANALYSIS

In this section, the performance of the method presented
in Section IIl is characterized for different invariants and
conditions. We aim to provide guidelines for choosing the
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type and number of descriptors (choice of order) among ZMs,
CMs and FDs that provide the best trade-off between pose
estimation accuracy and computation time. The geometry of

Fig. 3. Geometry and body reference frame of the target spacecraft.

the target S/C used in the simulations is inspired from the
structure of the Iridium-NEXT satellites and shown in Fig. 1.
The synthetic views are generated with Thales Alenia Space
rendering engine SpiCam. As we are only interested in the S/C
silhouette, SpiCam simply performs a geometrical rendering
of the 3D target model using the pinhole projection model.
The functions that compute the global invariants, as well as
the pose estimation method, are coded in MATLAB. The
performance analysis is carried out on a a 2.70 GHz Intel
Core i7 processor. More information about the computation
times of the method are provided in Section V-C. The target
has a size of 4 x 3 x 1 meters and the views are generated for
a camera with a FOV of 30° and image size of 1024 x 1024
pixels, i.e., on Fig. 1 we have C;, = C, = 512 and f =
Cy/tan(FOV/2) = 1911. The target dimensions, translated
in pixel, correspond to a projected size of 191 x 143 x 48
pixels at 40 m, 255 x 191 x 64 pixels at 30 m, 382 x 287 x 96
pixels at 20 m, and 764 x 573 x 191 pixels at 10 m. Figure
4 shows the silhouette of the target at these distances for a
given attitude. The main structure of the S/C, composed of
the central body and the lateral solar arrays, has two symmetry
planes, (O, ¢, z¢) and (O, yt, 2¢), see Fig. 3. Some elements
on the central body such as antennas and a docking fixture
break the symmetry but are relatively small and visible only for
a restricted range of attitudes. The ambiguity of determining
the pose of a symmetric body was already noted in previous
work on aircraft pose estimation and classification [15], [9],
[6]. With the method of [6], for any triplet of Euler angles
[p, 9, 1], 8 possible solution are possible. Two solutions
are due purely to the presence of a symmetry plane, i.e.,

[p, ¥, ¥] and [—¢, —1, ¢ — «|. Then, two more solutions,
ie., [t — ¢, =9, Y] and [7 + ¢, ¥, ¥ — 7], are due to the
impossibility of distinguishing between mirror images using
Hu’s invariants. Moreover, for all of the 4 solutions described,
the method in [6] cannot disambiguate the in-plane rotation
between [¢, ¥, 9] and [¢, ¥, 1) — 7]. In contrast, by using
a complete set of invariants containing also pseudo-invariants,
as discussed in Section IV, and by estimating the in-plane
rotation as explained in Section III, we only need to consider
the two potential solutions [p, ¥, ¥] and [—¢, =9, ¥ — 7]
for every output of the pose estimation algorithm.

In order to characterize the intrinsic performance of the de-
scriptors without including the problem of distinguish between
two symmetric attitudes, the tests described in this Section
are done using training images and test images corresponding
to attitudes in the semi-sphere where ¢ > 0. The training
database has a size of N,, = 5000 and the methods are tested
on 2000 images. Both the training and the test attitudes are
generated by modifying the sampling scheme (3) to consider
only nonnegative values of ¢, i.e., with ¢ = 7 rand,,. For the
test attitudes, v is also randomly generated such that ¢ =
27 randy, — 7, where rand, is a random variable uniformly
distributed in the interval ]0, 1]. Test images are generated
with perfect camera pointing (i.e., t5,__o, = [0, 0, d]), except
for the images used in Section V-AS, where the algorithm is
tested in the presence of camera pointing errors.

Even if the object is symmetric, the number of rotation
symmetries of the projected silhouette is always smaller or
equal to 1. It is equal to 1 if the projected shape has one axis
of reflection [49]. This implies that the invariants proposed
in Section IV-A and Section IV-B can be used, except for
attitudes corresponding to a camera position close to the
sphere poles, i.e., ¥ ~ 0 and ¢ ~ 0 or ¢ ~ . For these
attitudes, the projected S/C shape has a 2-FRS and a different
set of invariants should be computed to enable recognition.
Nevertheless, according to [18], the order of the normalizing
moment used to obtain rotation invariance should be kept as
low as possible to improve the performance of the recognition,
as higher order moments are more sensitive to noise. In order
to avoid degrading the global performance of the algorithm
for the sake of improving the recognition of just two isolated
orientations, the rotation-normalizing moments are kept equal
to c12 for CMs and Ag; for ZMs. Moreover, in correspondence
of the polar attitudes, the rule for the determination of the in-
plane angle of rotation 1)y described in Section III will provide
two solutions. However, this ambiguity can be resolved by
imposing a continuity constraint between two consecutive pose
estimates.

A. Simulation Results

We describe in this section the results of four different
simulation experiments. In Paragraph V-Al, our aim is to
characterize the degradation of the pose estimation perfor-
mance when the S/C in the test images is at a distance dis;
different from the distance d;,4i, used to build the database.
Paragraph V-A2 compares the performance of the different
global descriptors when the resolution of both test and training
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(a) (b) © ()

Fig. 4. Silhouette of the target satellite at 40 m (Fig.4(a)), 30 m (Fig.4(b)), 20 m (Fig.4(c)), 10 m (Fig.4(d)), for a 1024 x 1024 pixel camera with FOV of

30°. The attitude of the S/C is ¢ = 70.41°, ¥ = 66.92°, ¢ = —29.58°

images changes. In Paragraph V-A3, the robustness against the
resizing of the test images is investigated, while Paragraph
V-A4 studies the influence of the database size IV, on the
estimation error. Finally, in Paragraph V-AS5, the robustness to
camera pointing errors is analyzed.

For any test image, we compute the estimation error in the
axis-angle representation using unit quaternions. If g._¢,
is the true relative attitude quaternion associated with the
camera-target pose in a test image, and q._; the relative

meas

attitude quaternion estimated by the algorithm, the error 6,y
is computed as:
) (26)

where quaternions are written g = qo+q17+¢q2Jj + g3k, with qq
denoting the scalar part, and ¢* denotes the quaternion conju-
gate ¢* = qo— (q1t+q2j +g3k). The quantity J.,9, represents
the smallest rotation that aligns the measured quaternion with
the true one, and its value is always in the interval [0, 180°].
We assume that a test image has found an acceptable match
if 0,94 < 20°. Indeed, when using a frame-to-frame tracking
algorithm, a pose estimation error in this range can typically
be corrected, while outside of this range the matching result
can be rejected as outlier, as done in [10]. Finally, we record as
performance indices: i) the accuracy (also denoted % < 20°),
defined here as the percentage of detections with an estimation
error lower than 20°; ii) the mean of the error .9, over all
the test samples such that 6,9 < 20°; and iii) the mean of the
measured distance d,,¢,s computed using all the test samples.

A baseline test is performed using a database built with
dirain = 20 m and test images taken at the same distance.
Table I shows the performance of the CM, ZM, and FD
invariants as a function of the moment or harmonic order. The
best accuracy for CMs is 90.45%, obtained with invariants of
the 5! order, with a mean angular error of 2.67°. The best
accuracy of ZM-based invariants is 96.95%, obtained with
moments up to the 9*" order, with a mean angular error of
1.74°. However, little performance improvement is observed
beyond the 7" order. The optimal performance of FDs is
obtained using coefficients up to the 10*” harmonic, with
an accuracy of 85.05% and a mean angular error of 3.03°,
and no improvements is observed for higher order harmonics.

ok
6q - QCft”“e ® Qe—trmeas

Sp0y = 2atan <‘ 8q3 +0q3 + 643 /0qo

In general, even when the accuracy of CM, ZM, and FD
invariants is comparable (e.g., 4t" order CMs, 3™¢ order ZMs
and 10*" harmonic FDs), the mean angular error using ZMs
is lower. The descriptors show a comparable performance in
the estimation of the distance d,,cqs-

TABLE I
PERFORMANCE FOR d¢rgin = 20 M, dtest = 20 M.

Complex moment invariants

order: 37d id 5ER 6th R R 9th 10%7
% < 20 deg 84.15 | 86.65 | 90.45 | 89.55 | 88.40 | 88.20 | 86.95 | 88.50
dp9y mean [deg] 2.95 2.99 2.67 2.75 2.83 2.92 2.92 3.15
dmeas mean [m] | 20.14 | 20.13 | 20.15 | 20.13 | 20.09 | 20.08 | 20.05 | 20.02
Zernike moment invariants

order: 3rd Vg R Gt TR FUg 9th 10t

% < 20 deg 85.35 | 91.85 | 95.25 | 9545 | 96.40 | 96.25 | 96.95 | 96.80
dp9y mean [deg] 2.12 1.86 1.80 1.74 1.75 1.73 1.74 1.76
dmeas mean [m] | 20.07 | 20.01 | 20.01 | 20.01 | 20.02 | 20.01 | 20.01 | 20.01

Fourier descriptors

harmonic: 3rd At R TR 9th 10t 501" 9977

% < 20 deg 53.65 | 74.65 | 81.50 | 84.30 | 84.95 | 85.05 | 85.05 | 85.00
dp9y mean [deg] 4.65 3.34 3.23 3.01 3.01 3.03 3.05 3.05
dmeas mean [m] | 20.13 | 2021 | 20.12 | 20.04 | 20.03 | 20.01 | 19.98 | 19.98

1) Effect of a variation of the test distance with a constant
training distance: The descriptors based on ZMs, CMs, and
FDs are theoretically invariant on a continuous image, but
this invariance degrades for a digital image due to pixel
discretization [25], [4]. Thus, if the descriptors for a test image
with the target at distance di.,; are compared to a database
of descriptors computed with the target at a different distance
dirain, the quality of the matching may be reduced in practice.
Moreover, below a certain value of d, it is no more possible to
assume that the distance affects only the scale: its contribution
to the shape of the projected silhouette may entail an additional
degradation of the performance.

To investigate this issue and understand if one can use a
database with a single distance to estimate the S/C pose at
different distances or if it is necessary to store views covering
a wide range of relative distances, we use the same training
database built with d;,4i, = 20 m and the same test attitudes,
but perform tests with different values of d;.;. Results are
shown in Table II for diesy = 30 m, diesy = 40 m and
diest = 10 m. At 30 m, the maximal accuracy is obtained
for CMs up to the 6t" order (85.80%), for ZMs up to the
9" order (94.85%), and for FDs up to the 20** harmonic
(i.e., 72.85%). Zernike invariants are the most stable, with an
accuracy loss of only 2.1% compared to the baseline test. The
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TABLE II
EFFECT OF A VARIATION OF THE TEST DISTANCE WITH A CONSTANT
TRAINING DISTANCE (d¢rqin = 20 M)

Complex moment invariants

order: KA 5th &th i ] oFF 107
% < 20 deg 7395 | 7755 | 83.95 | 85.80 | 83.00 | 83.15 | 81.40 | 82.45
diest =30 m | 8,9y mean [deg] | 5.19 | 494 | 503 | 490 | 526 | 521 588 | 5.64
dmeas mean [m] | 3045 | 30.39 | 3053 | 30.36 | 30.21 | 30.25 | 30.01 | 30.02
% < 20 deg 66.55 | 7135 | 75.65 | 78.40 | 71.40 | 73.65 | 71.00 | 74.05
diest =40 m | 8,9, mean [deg] | 629 | 625 | 646 | 623 | 680 | 672 735 | 7.19
dmeas mean [m] | 40.56 | 40.59 | 40.71 | 40.67 | 40.15 | 4024 | 3952 | 39.78
% < 20 deg 5720 | 60.65 | 64.85 | 67.45 | 63.30 | 64.65 | 64.60 | 64.60
diest =10 m | 8,9y mean [deg] | 7.93 | 7.84 | 8.69 | 840 | 892 | 872 8.86 | 8.82
dmeas mean [m] | 979 | 970 | 975 | 979 | 971 | 9.70 972 | 971

Zernike moment invariants
order: 3 [ 4 57 il 7 Bl 9 107"
% < 20 deg 78.85 | 86.90 | 93.00 | 92.50 | 9395 | 9320 | 94.85 | 94.40
diest =30 m | 8,9y mean [deg] | 3.06 | 257 | 2.55 | 242 | 242 | 237 241 245
dmeas mean [m] | 30.19 | 30.11 | 30.11 | 3011 | 30.12 | 30.12 | 30.12 | 30.12
% < 20 deg 7140 | 80.20 | 89.35 | 89.65 | 90.95 | 89.40 | 91.35 | 91.25
diest =40 m | 8,9, mean [deg] | 390 | 319 | 329 | 3.02 | 303 | 296 3.02 | 311
dmeas mean [m] | 4028 | 4022 | 40.21 | 40.22 | 4022 | 4022 | 4023 | 40.22
% < 20 deg 6220 | 72.90 | 80.80 | 84.80 | 87.00 | 86.65 | 87.70 | 87.35
diest =10 m | 8,9, mean [deg] | 5.04 | 464 | 462 | 411 | 412 | 415 420 | 428
dmeas mean [m] | 9.87 | 9.89 | 9.89 | 9.88 | 9.87 | 9.88 9.87 | 9.87

Fourier descriptors

harmonic: 37 4t 5ER Tt 9th 107" 207" T 99"
% < 20 deg 4380 | 61.80 | 69.50 | 72.10 | 727 | 72.65 | 72.85 | 725
diest =30m | §,9y mean [deg] | 569 | 429 | 42 | 370 | 376 | 3.75 382 | 382
dmeas mean [m] | 30.53 | 3048 | 3032 | 30.10 | 30.05 | 29.99 | 29.92 | 29.90
% < 20 deg 3445 | 4880 | 57.80 | 6040 | 61.10 | 61.25 | 61.00 | 60.95
diest =40 m | 8,9y mean [deg] | 658 | 510 | 500 | 442 | 448 | 450 | 458 | 4.63
dmeas mean [m] | 41.08 | 40.76 | 40.53 | 40.16 | 40.07 | 40.01 | 3991 | 39.90
% < 20 deg 4565 | 80.80 | 84.60 | 90.70 | 9225 | 91.25 | 90.25 | 90.00
diest =10 m | 8,9y mean [deg] | 695 | 531 | 514 | 413 | 415 | 414 | 422 | 423
dmeas mean [m] | 975 | 977 | 9.66 | 9.85 | 9.86 | 9.84 9.83 | 9.83

mean angular error is increased for all the methods. Trends are
confirmed when the test distance increases. At 40 m, FDs are
the most affected (best accuracy equal to 61.25% for the 10"
harmonic), followed by CMs (best accuracy equal to 78.40%
with moments up to the 6" order). Zernike invariants confirm
their higher stability, with the best performance obtained for
the 9t" order. The accuracy of 91.35% for ZMs is still higher
than the best performance of CM and FD in the baseline test,
and the mean angular error of 3.02° is comparable. On the
other hand, if the test distance is decreased with respect to the
training distance, as illustrated in Table II for dyes; = 10 m, the
moment-based descriptors (CMs and ZMs) show a substantial
performance degradation. The best accuracy for CM invariants
(67.45%) is obtained with moments up to the 6t" order,
with a mean angular error of 8.40°. The degradation of ZM
invariant is smaller (accuracy = 87.70%, mean angular error
= 4.20° for the 9" order), but higher than the degradation
incurred at 40 m. This relatively large performance loss can
be attributed to the fact that at 10 m the distance starts having
a non-negligible contribution to the shape of the projected
silhouette. On the other hand, FD shows an opposite trend,
with a accuracy of 92.25% for the 9t" harmonic, a value which
is even higher than the one obtained in the baseline test. The
trends are summarized in Fig. 5, which shows as a function of
diest the evolution of best performance obtained for each set
of descriptors (attained for 6t" order CMs, 9t" order ZMs, and
10*" harmonic for FDs). The measured distance d,eqs tends
to be underestimated when d;.s; < dirqin, and overestimated
when dipqin < diest, as a consequence of the effect of d on
the shape of the projected silhouette.

2) Effect of a variation in the resolution of both the test
and the training images: In order to better isolate in the
previous tests the true effect of a mismatch between dis
and d;,qi, from a potential degradation in performance simply
due to a lower silhouette resolution as the distance increases,
we performed additional simulation experiments assuming
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TABLE III
EFFECT OF A VARIATION OF THE RESOLUTION OF BOTH THE TEST AND
THE TRAINING IMAGES (d¢rqin = dtest)

Complex moment invariants

order: 3rd ud R Gl TR R 9in 1007
% < 20 deg 82.00 | 84.65 | 90.75 | 90.40 | 89.30 | 89.45 | 88.15 | 89.15
diest =40 m | d,9y mean [deg] | 4.07 3.77 3.54 3.41 3.54 372 3.83 3.92
dmeas mean [m] | 4029 | 40.19 | 40.19 | 40.20 | 40.09 | 39.99 | 40.02 | 40.10
% < 20 deg 82.90 | 85.05 | 89.45 | 88.55 | 87.55 | 86.60 | 85.65 | 85.70
diest =10 m | 8,9, mean [deg] 2.7 2.69 2.56 2.57 2.78 291 3.01 3.17
dmeas mean [m] | 10.08 | 10.04 | 10.03 | 10.04 | 10.02 | 10.01 9.99 | 10.00
Zernike moment invariants
order: 37 i 5ih Gt 7t i 9t 10t
% < 20 deg 84.35 | 86.70 | 93.40 | 92.95 | 94.90 | 94.50 | 95.25 | 94.75
diest =40 m | dy9y mean [deg] | 2.41 2.03 2.04 1.97 1.98 1.98 1.98 1.96
dmeas mean [m] | 40.07 | 40.03 | 40.04 | 40.02 | 40.03 | 40.02 | 40.03 | 40.02
% < 20 deg 8550 | 93.05 | 9590 | 96.20 | 96.80 | 97.05 | 97.15 | 97.20
diest =10 m | d,9, mean [deg] 1.96 1.87 1.80 1.76 1.73 1.74 1.75 1.77
dmeas mean [m] | 10.03 | 10.01 | 10.01 | 10.00 | 10.00 | 10.01 10.00 | 10.01
Fourier descriptors
harmonic: B yug Bl T gti 1007 30t | 09t
% < 20 deg 38.45 | 51.35 | 59.25 | 61.85 | 62.90 | 62.15 | 62.35 | 62.25
dtest =40 m | 8,9y mean [deg] | 5.65 435 4.07 3.80 3.93 3.87 3.90 3.88
dmeas mean [m] | 41.01 | 40.61 | 40.29 | 39.69 | 39.69 | 39.64 | 39.60 | 39.59
% < 20 deg 62.55 | 89.20 | 92.10 | 96.30 | 96.50 | 96.65 | 96.05 | 95.85
diest =10 m | 8,9y mean [deg] | 4.53 3.30 3.14 2.79 2.85 2.86 2.85 2.85
dmeas mean [m] | 10.05 | 9.93 9.93 | 10.00 | 10.00 10.00 | 10.00 | 10.00

diest = dirain, With this distance equal to 10 m and 40 m,
complementing the baseline test at 20 m. The numerical results
are shown in Table III and Fig. 6 displays the performance
indices of the 6" order CMs, the 9*" order ZMs, and the 10*"
harmonic FDs as a function of the test distance. The accuracy
of CMs and ZMs is only slightly affected by the distance.
For ZM invariants up to the 9" order, the accuracy and mean
angular error are only slightly affected by the distance, going
from 97.15% and 1.75° at 10 m to 95.25% and 1.98° at 40
m respectively. On the other hand, the mean angular error of
both CMs and FDs degrades more clearly for a lower image
resolution. The mean angular error of CM invariants up to
the 6t order is equal to 2.57° at 10 m and 3.41° at 40 m,
and the mean angular error of FD invariant up to the 10"
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harmonic is equal to 2.86° at 10 m and 3.87° at 40 m. An
interesting result is the trend in the accuracy of FDs, which
monotonically increases as the image resolution increases,
with a maximum of 96.65% (10" harmonic) at a distance of
10 m. This performance is comparable to the accuracy of ZM
invariants, even though the error obtained with ZMs remains
always lower.

3) Effect of a resizing of the test images: The largest con-
tributor to the algorithm latency is the time needed to compute
moment invariants (see Sec.V-C). The execution time increases
linearly with the number of pixels to be processed, and this
may suggest to resize the acquired image before computing
the descriptors. In this paragraph we test the performance of
the invariants at dgpqin = diest = 20 m, where the test images
have been resized from 1024 x 1024 pixels to 256 x 256 and
512 x 512 pixels using OpenCYV resize() function [38]. When
computing descriptors from the resized images, (11) needs to
be corrected to allow computing the correct value of dieqs:

dmeas =V mOOt,,vai,L/mOOtest 'dtrain' \/ npi:velR/npimeloa (27)

where npizer,, i8 the total number of pixel in the resized image
and npizer, s the total number of pixel in the original image.
The results are displayed in Table IV. Moment invariants
show an accuracy comparable to the baseline test, and a
slightly increased angular error. ZM invariants show a higher
degradation in the estimation of the distance with respect to
CMs. However, this issue can be overcome using the original
image to compute mgg, and the resized image to compute
rotation invariants. The performance of the FD is very poor.
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for dirgin = diest = 20 m. Table V shows the results for
N, = 1000 and N, = 3000, in addition to the baseline
scenario with N,, = 5000. The estimated average distance is
not displayed in the table as no appreciable differences with
respect to the baseline test were found. Fig. 7 compares the
performance indices as a function of the ZM-based invariants’
order for the different values of N,,. As expected, both the
accuracy and mean angular error improve with larger values
of N,. However, the marginal improvement also decreases
as N,, becomes large, so that above a certain threshold, the
performance gains may not be worth the higher storage and
computational costs.
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Fig. 7. Performance of the ZM invariants for different database sizes N,.

TABLE V
EFFECT OF DATABASE SIZE Ny,. WITH d¢rgin = dtest = 20 M.

Complex moment invariants
T

order: 37‘d 41/1 sfh 6“1 ré 0 8“1 91}1 l[]th
i i _ i L % < 20 deg | 71.80 | 7410 | 77.95 | 77.30 | 76.70 | 75.10 | 7470 | 75.95
However, as discussed in Sec.Y C, the very loW time needed | v, =1000m | =20 e | adn | 404 | 492 | o5 | 527 | a3 | sir | sa
to compute FDs suggests that 1image resizing 1S unnecessary N, — 3000 m | /o <20deg | 8030 | 82.95 | 86.85 | 86.80 | 8565 | 8575 | 84.10 | 84.75
. . .. . v mean [deg] | 335 | 344 | 323 | 336 | 351 | 354 | 350 | 3.68
when working with Fourier invariants.
Zernike moment invariants
order: 37‘d /1th Sﬁh, Gth 7th 8“1 9?}1 10“1
o % < 20 deg | 7535 | 79.95 | 86.15 | 87.55 | 89.60 | 89.50 | 90.85 | 90.25
TABLE 1V Nu =1000m | o [deg] | 370 | 349 | 3.53 | 340 | 342 | 334 | 335 | 335
EFFECT OF A RESIZING OF THE TEST IMAGE. (dtrain = dtest = 20 M) N — 3000 % < 20 deg | 82.65 | 89.25 | 93.75 | 9440 | 9525 | 95.15 | 95.85 | 9545
v ™ | mean [deg] | 244 | 223 | 221 | 215 | 213 | 214 | 213 | 214
Complex moment invariants . .
order: 37 i BER ([ T U otf T0t7 . ; - - Four'ller de%cn};;t()rs - . -
% < 20 deg 7830 | 82.75 | 8740 | 87.55 | 8625 | 8625 | 8540 | 86 armonic: | 87C_| 470 | 57 | 70| 97 | 100 | 207 | 997
256 X 256 | 89y mean [deg] | 385 | 369 | 349 | 352 | 358 | 363 | 374 39 No — 1000 m | < 20deg | 4950 | 6870 | 7530 | 77.90 | 7920 | 7895 | 79.10 | 79.05
dmeas mean [m] | 20.02 | 19.99 | 19.99 | 19.98 | 19.96 | 19.92 | 19.91 19.86 mean [deg] | 5.36 4.56 4.46 429 | 437 441 4.48 4.49
% < 20 deg 819 | 84.70 | 89.90 | 83.90 | 87.00 | 87.10 | 86.30 | 87.30 No — 3000 m | % <20deg | 53.15 | 73.20 | 80.55 | 8275 | 83.I5 | 83.35 | 83.40 | 8320
512 X 512 | d,9y mean [deg] 3.53 343 3.16 3.15 3.30 341 3.52 3.64 v mean [deg] 4.86 3.68 3.56 3.33 3.34 3.38 3.42 342
dmeas mean [m] | 1998 | 19.97 | 19.99 | 20.00 | 19.96 | 19.93 | 19.84 | 19.86
Zernike moment invariants
order: 3ra 4!I( stn Bt 7tz 8”( gtL loth
% < 20 deg 7855 | 89.65 | 9420 | 9430 | 9525 | 95.55 | 95.95 | 9590
256 X 256 | 6,94 mean [deg] | 352 | 2.84 | 270 | 249 | 246 | 242 | 238 | 241
deas mean [m] | 20.02 | 19.92 | 1991 | 1991 | 19.90 | 19.90 | 19.90 | 19.89
% < 20 deg 83.05 | 9140 | 9455 | 94.60 | 95.60 | 9555 | 9655 | 96.35
512 x 512 | 6,9, mean [deg] | 2.66 | 220 | 211 198 | 195 | 1.95 | 196 1.98
dmeas mean [m] | 19.94 | 19.89 | 19.88 | 19.87 | 19.87 | 19.87 | 19.87 | 19.87
Fourier descriptors
harmonic: 3T [ 4 57 7 9" 1 10™ T 20" T 997"
% < 20 deg 2550 | 4035 | 4545 | 4840 | 4875 | 4865 | 4875 | 48.30
256 X 256 | 6,9, mean [deg] | 744 | 598 | 574 530 | 539 | 535 | 537 | 540
dimeas mean [m] | 2039 | 20.12 | 20.10 | 19.55 | 19.52 | 19.47 | 19.40 | 19.41
% < 20 deg 374 | 5515 | 60.70 | 63.35 | 63.80 | 63.65 | 63.60 | 63.70
512 x 512 | 0,9y mean [deg] | 588 | 446 | 426 | 401 | 403 | 405 | 415 | 416
dmeas mean [m] | 2024 | 20.12 | 20.04 | 1971 | 19.68 | 19.64 | 19.61 | 19.60

4) Effect of the database size N,,: Increasing N,, typically
leads to a smaller distance between a given target orientation
and its nearest neighbor in the database, and hence to a smaller
estimation error on average. However, a larger database re-
quires more memory as well as more computation time for
matching, although as we discuss below the latter is typically
much smaller than the time needed to compute the invariants.
The effect of reducing the database size NV, is evaluated

(a) (b)

Fig. 8. Silhouette of the target satellite at 20 m, at a relative attitude of
¥ = —35.02°, ¢ = 87.99°. In Fig.8(a) the pointing error is Ay = 1.43°,
in Fig.8(b) it is Ay = 5.85°.

5) Effect of a pointing error: While the database is con-
structed by centering the image at the target’s COM, during
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TABLE VI
EFFECT OF A POINTING ERROR. d¢rqin = dtest = 20 M

Complex moment invariants
order: R 57 S g
% < 20 deg 83.00 | 8635 | 90.40
5,95 mean [deg] | 357 | 355 | 336
AIZ mean [em] | 475 763
AtS mean [em] | 4.89 4.80
AtE mean [m] 0.605 0.499
20 deg 80.30 88.05

9" 10°
88.50
3.80

7
88.85
3.53
471
4.69
0.539
85.80

89.80
343
4.65
4.78

0.521

87.65

88.50
3.62

Ay € [1.41°, 2°] 767
4.83
0.537

84.70

4.65
475
0.563
85.95

ENZ3
4.81

0.624
86.25

, mean [deg] | 608 | 601 | 584 | 583 | 580 | 593 626
Ay € [4.25°, 6°] mean [cm] 6.70 6.20 6.32 6.05 6.36 6.20 6.64 6.62
mean [cm] 6.82 6.18 6.11 5.96 6.42 6.54 6.59 6.53
tS mean [m] 0.701 0.577 0.587 0.553 | 0.654 | 0.641 0.691 0.690
Zernike moment invariants

order: 377 47 57 6" 7 8 9t 10°
% < 20 deg 8540 | 9185 | 9570 | 95.70 | 9665 | 9685 | 97.35 | 97.15
Sp9p mean [deg) | 277 | 257 | 254 | 247 | 245 | 247 | 247 | 247
Ay € [1.41°,2°] [TAES mean [em] | 449 | 439 | 439 | 438 | 437 | 437 | 438 | 437
At; mean [cm] 4.53 4.46 4.46 446 4.45 4.46 4.46 4.45
AtS mean [m] 0.292 0.162 0.156 0.156 | 0.156 | 0.157 0.157 0.157
<720 deg 8425 | 90.70 | 94.90 | 9460 | 9590 | 9605 | 97.10 | 96.65
, mean [deg] 547 529 527 5.24 5.20 5.21 5.21 522
Ay € [4.25°, 6°] mean [cm] 5.07 454 4.56 453 452 4.50 4.50 4.50
At; mean [cm] 5.16 471 4.68 4.66 4.65 4.63 4.63 4.63
At mean [m] 0.318 0.176 0.176 0.169 | 0.168 0.166 0.167 0.168

Fourier descriptors

harmonic: 3" 4t 50 7 9t 10™" 20 99!

% < 20 deg 5345 | 7415 | 80.65 | 84.15 | 8480 | 8460 | 8455 | 84.50

4.99
6.84
6.56
2211
53.05
6.81

13.26
14.08
2.189

3.88
5.67
5.63
1.235
75.00
6.05

3.62
553
545
1.088
81.00
5.78
8.04
8.69
1.038

348
472
4.86
0.586
84.10
5.74

3.48
4.70
4.88

0.593
84.45

5.75
581
6.28

0.566

3.49
471
4.89
0.599
84.60
571

3.51
472
4.89
0.613
84.45
5.71
591
6.28
0.585

5,95 mean [deg]
ALZ mean [em]
can [em]
< mean [m]
% < 20 deg
00y mean [deg]
ALZ mean [em]
At mean [em]
At mean [m]

Ay € [1.41°, 2°]

0.610
84.45
5.79
593
6.29
0.584

Ay € [4.25°, 6°] 8.66
9.10

1.166

582
6.27
0.562

5.84
6.31
0.571

the pose acquisition phase in a real RDV the camera will likely
point at the silhouette’s centroid, causing a small pointing
error. In some scenario, it may be even impossible to keep
the target in the center of the FOV, causing a larger pointing
error. The presence of this error affects not only the position of
the image’s centroid (which does not influence the invariants),
but also the projected shape of the S/C, because of the
camera’s perspective projection. It is therefore important to
understand whether the presence of such pointing errors affects
the algorithm. To do this, we added angular offsets to the
camera RF around the z. and y. axis and tested the algorithm
at a distance of 20 m, using the database built with d;.q;,, = 20
m. Two sets of 2000 images were generated. In the first
one, each image is generated adding a total pointing error
A~y such that Ay € [1.42°, 2°] (see Fig.8(a)). In the second
set, the error is Ay € [4.25°, 6°] (see Fig.8(b)). For these
tests we collect also the performance on the estimation of the
relative position vector t?)c—Otmeas' In particular, the mean
of the absolute errors Atg, Aty, AtZ, is shown. The results
are displayed in Table VI and show that all the methods
are relatively robust to pointing errors. The accuracy of the
invariants remains almost the same as for the baseline test,
while the mean angular errors increase slightly. It is interesting
to see how the attitude error grows almost linearly with the
pointing error A~y. ZM based invariants show lower angular
errors and position errors than the other sets of invariants.

B. Discussion of the results

From the tests described in this section, the following

important conclusions can be drawn.

1) If the target is close, the shape of its projected silhouette
can change significantly with the distance, resulting in
a significant decrease in performance for moment-based
invariants. This phenomenon depends on the camera sensor
properties and on the target geometry. In our experiments,
it starts occurring for a distance of about 10 m, i.e., about
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two-hand-a-half times the maximum dimension of the target.
FDs, on the other hand, suffer less from this issue.

The accuracy of moment-based invariants is only mildly
affected by the image resolution, see Fig. 6, and by the
image resizing, see Par. V-A3. Thus, images could be sub-
sampled before computing moments in order to decrease
the computation time of the algorithm. This results in a
small performance loss, which might be acceptable if the
algorithm is only used to detect the divergence of a classical
iterative tracking algorithm.

ZM invariants up to the 4*" order (i.e., 13 features) always
perform better than CM and FD invariants of any order or
harmonic. The accuracy for FDs is comparable to that of
ZMs only for high resolution images.

The accuracy of FDs is highly affected by the test distance,
and the accuracy always increases as the test distance
decreases, regardless of the training distance. This can be
explained as follows. The majority of the spectral content
of the projected S/C silhouette, which is a relatively simple
shape, is contained in the first 10 harmonics. For a low
resolution image, the rasterization effect shifts some of the
spectral content of the S/C shape to be to higher frequencies,
resulting in loss of information. On the other hand, for
high resolution images, the spectral content is correctly
distributed in the first harmonics and the matching accuracy
is enhanced. This feature is also very interesting because
for short distances the computation time for the silhouette’s
moments increases due to the large number of pixels to be
processed. The computation of FDs on the other hand needs
less time, since only contour points have to be processed.
Thus, it could be useful to switch from moment-based
descriptors to FDs as the test distance becomes sufficiently
small.

The distance is always correctly recovered using (11), even
when 6,y is higher than 20°. Hence, even in the case of
an incorrect matching, the best match is an image having
a “mass” distribution similar to the one of the current
silhouette. This provides a method to estimate the camera-
target distance d using monocular vision, even when it is not
possible to estimate the attitude correctly. It should be noted
however that this property depends on the geometry of the
target and may not be inherited by different geometries.

It should be noted that all the tests have been carried out
using perfect binary images, and that a degradation should
be expected when using real images of the target spacecraft.
When using real images, the extracted binary silhouettes are
very likely to be affected by segmentation errors. However,
the design or choice of robust background subtraction and
segmentation algorithms are out of the scope of this study.

2)

3)

4)

5)

C. Computation Time and Memory Requirements

Fig.9 shows the evolution of the computation time needed to
compute the descriptors, as a function of the invariants’ order,
averaged over the images of the test set at 20 m. The times
are normalized with respect to the time needed to compute
ZM invariants up to the 10*" order. Using MATLAB on a
2.70 GHz Intel Core i7 processor, this time is equal to 649.95
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Fig. 9. Computation time normalized with respect to the 10t" order ZM
invariant computation time

milliseconds. Note however that this absolute computation
time is mostly indicative, since the implementation could
be optimized and would be done in a statically compiled
programming language or directly in hardware on a real
system, which can lead to significant improvements.

For ZMs and CMs, the total computation time of the algorithm
is the sum of the time needed to compute the n'” order
invariants and the time needed to compute the in-plane rotation
angle 9. For FDs, the computation time includes the time
needed to extract the edges from the silhouette’s image (using
the OpenCV function findContours() [39]), as well as the time
to compute the in-plane rotation. In fact, for FDs, 1)y must be
calculated before computing the Fourier transform. The FFT
computes all the harmonics up to the size of the input sequence
simultaneously, hence the computation time does not depend
on the invariants’ order.

We see that the computation time for CMs and ZMs is
comparable, while FDs are much faster to compute than
moment-based descriptors. Note that the computation of the
7t order ZM invariants requires only half of the time needed
to compute the 10" order ones, and that in every test, these
invariants have shown an accuracy very close to the optimal
one (which was always obtained for the 9" or 10" order)
as well as similar mean angular errors. Hence, 7t order ZM
invariant offer a good compromise between computational cost
and estimation performance. CM invariants offer no particular
advantage, as they are always outperformed by ZM invariants
and take essentially the same amount of time to compute.
Finally, the size of the database affects only moderately the
overall computation time of the algorithm, since the time
necessary for the nearest neighbor search is largely dominated
by the descriptor computation time. For example, with a
database of size N,, = 5000, matching requires less than 0.1%
of the time needed to compute the 10*” order ZM invariants.
Thus, the choice of the value of N,, should be driven only by
the memory available to store the database and by the precision
required for the algorithm. Note again that since the size of the
database grows exponentially with the number of parameters
to discretize, this analysis relies crucially on the fact that the
distance and yaw angles are not included in the matching
process, thanks to the invariance properties of the descriptors.
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The memory needed for the descriptor database storage can
be computed by multiplying the value of 8 bytes (i.e., the
dimension of a double type variable) by the total number of
doubles in the database, which is given by N,, x (N; + 4)
(i.e., the number of the rotation invariant Ny, plus moo,,.;..»
Y0,y 0ins> Prain, aNd Virain). A database of ZMs invariants up
to the 9" order (i.e., Ny = 53) with N,, = 5000 has a size
of 2.28 Mbytes. A navigation solution using two databases of
ZMs invariants up to the 7" order (i.e., N = 34) computed
respectively for dirqin = 40 m and dypgi, = 20 m, and a
database of FDs up to the 10" harmonic (i.e., N; = 18)
computed at dyq;, = 10 m, requires a size of 3.93 MBytes
if N, = 5000, and 2.353 MBytes if N,, = 3000. These
requirements are compatible with the resources available on
typical space qualified avionics.

VI. CONCLUSION

This article evaluates a template matching method to es-
timate the pose of a non-cooperative target during space
rendezvous from a single binary image capturing the target’s
silhouette. The method is suitable for initial pose acquisition
and for detecting faults and deviations in other on-board
trackers. The main step of the method matches the silhouette in
a database of pose-dependent global feature vectors generated
offline. By exploiting the scale and rotation invariance of the
descriptors, the approach requires discretizing only two pose
angles to construct the database, leading to fast computation
times appropriate for real-time implementations. Our main
contribution is to compare the performance of three complete
and independent sets of global descriptors, based on complex
moments, Zernike moments, and Fourier descriptors, to solve
the 3D pose estimation problem. We also discuss certain
implementation aspects of the method that lead to improved
accuracy and efficiency over previously reported results, e.g.,
regarding the use of Zernike moments, the resolution of the
in-plane rotation ambiguity and the computation of Fourier
descriptors. Our performance analysis on simulated realistic
images shows that Zernike moment invariants provide the
highest accuracy and robustness in off-nominal conditions.
Fourier descriptors show comparable performance with a much
lower computational cost, but only on for high resolution
images or short target distances. This suggests that these two
types of descriptors are complementary and could be used in
combination. Future work will focus on the post-processing
of the algorithm’s outputs to detect outliers and discriminate
between symmetric attitudes.
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