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On the Dubins Traveling Salesman Problem

Jerome Le Ny, Member, IEEE, Eric Feron, Member, IEEE, and
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Abstract—We study the traveling salesman problem for a Dubins vehicle.
We prove that this problem is NP-hard, and provide lower bounds on the
approximation ratio achievable by some recently proposed heuristics. We
also describe new algorithms for this problem based on heading discretiza-
tion, and evaluate their performance numerically.

Index Terms—Algorithms, motion planning, traveling salesman problem
(TSP), unmanned aerial vehicles (UAVs).

I. INTRODUCTION

In an instance of the Traveling Salesman Problem (TSP), we are
given the distances between any pair of � points. The problem is to
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find the shortest closed path (tour) visiting every point exactly once. We
also call this problem the tour-TSP to distinguish it from the path-TSP,
where the requirement that the vehicle must start and end at the same
point is removed. This famously intractable problem is often encoun-
tered in robotics, and has traditionally been solved in two steps within
the common layered controller architectures for mobile robots. At the
higher decision-making level, the dynamics of the robot are usually
not taken into account and the mission planner might typically chose to
solve the TSP for the Euclidean metric (ETSP), i.e., using the Euclidean
distances between waypoints. For this purpose, one can directly exploit
many existing results on the ETSP (or more general TSPs on graphs),
see e.g., [1], [2]. This first step determines the order in which the way-
points should be visited by the robot. At the lower level, a path planner
takes as an input this waypoint ordering, and designs feasible trajec-
tories between the waypoints respecting the dynamics of the robot. In
this technical note, we assume that the robot has a limited turning ra-
dius and can be modeled as a Dubins vehicle [3], [4]. Consequently,
the path planner could solve a sequence of Dubins Shortest Path Prob-
lems (DSPP) between the successive waypoints. DSPPs have also been
extensively studied since the work of Dubins [3], most of the litera-
ture concentrating on designing shortest paths between an initial and
final configuration for a Dubins vehicle moving among obstacles, see
e.g., [4]–[9]. In fact, one should also consider shortest Dubins paths
through a sequence of ordered waypoints of length greater than two,
since the vehicle configuration at an intermediate waypoint influences
the length of the shortest Dubins path between the next two waypoints.
This problem was studied by [10], [11] for an environment without ob-
stacles.

Even if each problem is solved optimally however, the ad-hoc sepa-
ration into two successive steps can be inefficient, since the sequence of
points chosen by the TSP algorithm is often hard to follow for the phys-
ical system. In order to improve the performance of unmanned aerial
systems in particular, researchers are now working on integrating the
mission planning and path planning stages [12], [14]. In this note we
consider the TSP for the Dubins vehicle (DTSP), in a planar environ-
ment without obstacles, a problem introduced by Savla et al. in [17].
The Dubins model provides a good kinematic model for fixed wing
aircraft. At the same time, we can quickly compute the length of the
shortest path between any two configurations of the Dubins vehicle, a
necessary building block to design algorithms with good performance
for the DTSP.

A stochastic version of the DTSP for which the points are distributed
randomly and uniformly in the plane was considered in [13]–[16]. Here
however, we focus on algorithms and worst-case bounds for the more
standard problem where no probability distribution is given for the
input. In that case, most of the recently proposed algorithms seem to
build on a preliminary solution obtained for the ETSP [11], [17]–[19].
More detailed references on the DTSP can be found in [14].

1) Contributions of This Work: In this note, we first prove that the
DTSP is NP-hard, thus justifying the work on heuristics and algorithms
that approximate the optimal solution. Recall that an �-approxima-
tion algorithm (with approximation ratio � � �) for a minimization
problem is an algorithm that produces on any instance of the problem
with optimum ��� , a feasible solution whose value � is within a
factor � of the optimum, i.e., such that��� � � � � ��� . In gen-
eral, � is allowed to depend on the input parameters of the problem,
such as the number of points in the DTSP. This definition of approx-
imation ratio, used throughout the technical note, corresponds to the
worst-case performance of the algorithm [20]. On the negative side,
we give some lower bounds on the approximation ratio achievable by
recently proposed heuristics. Following a tour based on the ETSP or-
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dering or the ordering of Tang and Özgüner [12] cannot achieve an
approximation ratio better than ����1. The same is true for the nearest
neighbor heuristic, in contrast to the ETSP where it achieves a�������
approximation [21]. Then we propose an algorithm based on heading
discretization, which is a standard technique in the work on curva-
ture-constrained shortest path problems [5]. Its theoretical performance
does not improve on the previously mentioned heuristics. However, nu-
merical simulations show a significant performance improvement in
randomly generated instances over other heuristics when the inter way-
point distances are smaller than the turning radius of the vehicle.

The rest of this technical note is organized as follows. We re-
call some facts about Dubins paths in Section II and reduce the
DTSP to a finite dimensional optimization problem. In Section III
we show that the DTSP is NP-hard. In Section IV-A we provide
lower bounds on the approximation ratios of various recently pub-
lished heuristics. Section IV-B describes our algorithms based on
heading discretization. They return in time ����� a tour within
� ��	 �
 � ���� ����� �
 � ����� of the optimum, where � is
the minimum turning radius of the vehicle and � is the minimum
Euclidean distance between any two waypoints. Note that throughout
the technical note, we fix � but � is allowed to depend on the problem
instance. In particular if the waypoints are sampled in a compact
environment we have necessarily � � ��
�

�
��. Finally, Section V

discusses the results of our numerical simulations.

II. PROBLEM FORMULATION

A Dubins vehicle in the plane has its configuration described by its
position and heading ��� �� 	� � � � 
�. Its equations of motion are


� � �� ����	��


� � �� ��	�	��


	 �
��
�
�� ���� � � ��
� 
�

where � is the minimum turning radius of the vehicle, and � is the
available control. Without loss of generality, we assume that the speed
�� of the vehicle is normalized to 1. Dubins [3] characterized curvature-
constrained shortest paths between an initial and a final configuration.
Let
 be a feasible path. We call a nonempty subpath of
 a�-segment
or an 
-segment if it is a circular arc of radius � or a straight line
segment, respectively.

Theorem 1 (Dubins [3]): A shortest path between any two config-
urations of a Dubins vehicle in an environment without obstacles is of
type CCC or CSC, or a subpath of a path of either of these two types.

We refer to these minimal-length paths as Dubins paths. When a
subpath is a�-segment, it can be a left or a right hand turn: denote these
two types of �-segments by � and � respectively. The DTSP asks,
for a given set of points in the plane, to find the shortest tour through
these points that is feasible for a Dubins vehicle. By Theorem 1, the
minimum length path between an initial and a final configuration can be
found among the six paths ��
���
���
���
����������.
Each of these paths can be explicitly computed and therefore finding
the optimum path and length between any two configurations can be
done in constant time [3]. Solving the DTSP reduces then to choosing
a permutation of the points specifying in which order to visit them, as
well as choosing a heading for the vehicle at each of these points.

III. COMPLEXITY OF THE DTSP

It is usually accepted that the DTSP is NP-hard and the goal of this
section is to prove this claim rigorously. Note that adding the curvature

1We say ���� � ������� if there exists � � � such that ���� � ����� for
all �, and ���� � ������� if there exists � � � such that ���� � ����� for
all �.

constraint to the Euclidean TSP could well make the problem easier,
as in the bitonic TSP [22, p. 364] for example. Hence, the statement
does not follow trivially from the NP-hardness of the ETSP [23], [24].
In the proof of Theorem 2, we consider, without loss of generality, the
decision version of the problem, which we also call DTSP. That is,
given a set of points in the plane and a number � � �, DTSP asks if
there exists a tour for the Dubins vehicle visiting all these points exactly
once, of length at most �.

Theorem 2: Tour-DTSP and path-DTSP are NP-hard.
Proof: This is a corollary of Papadimitriou’s proof of the

NP-hardness of ETSP, to which we refer [23]. First recall the Exact
Cover Problem: given a family � of subsets of the finite set � , is there
a subfamily � � of � , consisting of disjoint sets, such that � � covers
�? This problem is known to be NP-complete [25]. Papadimitriou
described a polynomial-time reduction of Exact Cover to ETSP. That
is, given an instance of the Exact Cover problem, we can construct an
instance of the Euclidean Traveling Salesman Problem and a number
� such that the Exact Cover problem has a solution if and only if
the ETSP has an optimal tour of length less than or equal to �. The
important fact to observe however, is that if Exact Cover does not have
a solution, Papadimitriou’s construction gives an instance of the ETSP
that has an optimal tour of length � ��� ��, for some � � �, and not
just ��. More precisely, letting � � �� exactly as in his proof, we
can take � � � �

�
�� � 
 � �.

Now from [17], there is a constant � such that for any instance �
of ETSP with � points and length ��

 ���, the optimal DTSP tour
for this instance has length less than or equal to ��

 ��� � ��.
Then if we have � points in the instance of the ETSP constructed as in
Papadimitriou’s proof, we simply rescale all the distances by a factor
�����. If Exact Cover has a solution, the ETSP instance has an op-
timal tour of length no more than ������ and so the curvature con-
strained tour has a length of no more than ������ � ��. If Exact
Cover does not have a solution, the ETSP instance has an optimal tour
of length at least ������ � ���, and the curvature constrained tour
as well. So Papadimitriou’s construction, rescaled by ����� and using
������ � �� instead of �, where � is the number of points used in
the construction, provides a reduction from Exact Cover to DTSP.

IV. APPROXIMATION ALGORITHMS

A. Hard Instances for Previously Proposed Algorithms

If the Euclidean distances between the waypoints to visit are large
with respect to �, the DTSP and ETSP behave similarly (see, e.g.,
[14]). Accordingly, researchers have tried in previous work to apply
to the DTSP the waypoint ordering optimal for the ETSP [11], [17],
[18], and have concentrated on the choice of headings. Theorem 3 pro-
vides a limit on the performance one can achieve using this approach,
which becomes particularly significant when the points are densely dis-
tributed with respect to �. We also describe two heuristics for the DTSP
that are not based on the optimal ETSP ordering. The nearest neighbor
heuristic produces a complete solution for the DTSP, including a way-
point ordering and a heading at each point. We start with an arbitrary
point, and choose its heading arbitrarily, fixing an initial configuration.
Then at each step, we find a point which is not yet on the path but
closest to the last added configuration according to the Dubins metric.
This is possible since we also have a complete characterization of the
Dubins distance and path between an initial configuration and a final
point with free heading [8]. We add this closest point to the path with
the associated optimal arrival heading. When all nodes have been added
to the path, we add a Dubins path connecting the last obtained con-
figuration and the initial configuration. Note that it is known that the
nearest neighbor heuristic achieves a ������� approximation ratio for
the ETSP, which is a particular case of the symmetric TSP [21]. The
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Fig. 1. A path between � and � contained in the shaded region � � � is
called a direct path. On Fig. 1(b), the vehicle cannot pass through points 1, 2
and 3 using only direct paths. For direct paths � � �, we show the range of
possible final headings at 2, delimited by the tangent directions to � and � .
We also delimit the region of direct paths � � �.

Fig. 2. Waypoint configurations that are hard instances for some proposed or-
dering methods. (a) ETSP ordering. (b) Nearest-neighbor heuristic. (c) Tang and
Özgüner ordering.

second heuristic, due to Tang and Özgüner [12], only produces a way-
point ordering (in [12], the authors then produce locally optimal head-
ings for this choice of waypoint ordering using a gradient descent al-
gorithm). To construct this ordering, we find the geometric center �
of the waypoints, and calculate the orientation angle of each waypoint
with respect to �. We then sort the points by increasing values of their
orientation to determine the traverse order. In the following theorem,
for an instance � of the DTSP, we denote by ���� ��� the length of
the optimal Dubins tour.

Theorem 3: There exist instances ������� of the DTSP, where
�� has � points, and constants � � � and �� � , such that any
algorithm following the optimal ETSP ordering cannot approximate
���� ���� within a factor better than ��, for all � � ��. This
statement is also true for the nearest neighbor heuristic and the Tang and
Özgüner ordering [12] (for possibly different instances and constants).

Proof: There are exactly two circles ��, �� of radius 	 passing
through two points
 and � in the plane with Euclidean distance �
�
� � � �	, see Fig. 1(a). These circles define the boundaries of two
closed discs	� and	�. Following [10], we call a path from 
 to � a
direct path if it is contained in 	� 
 	�, and a detour path otherwise.
It is shown in [10] that a Dubins path from 
 to � is of length strictly
smaller than 
	 if and only if it is a direct path. Now consider the
configuration of points shown in Fig. 2(a), with � � 	�

�
�. Let � be

the number of points, and suppose � � �� � �, � an integer. For
clarity we focus on path-TSP (the extension to the tour-TSP case is
easy, by adding a similar path in the reverse direction). The optimal
Euclidean path-TSP is shown on Fig. 2(a) as well. Suppose now that
a Dubins vehicle tries to follow the points in this order. Then for each
sequence of 5 consecutive points the vehicle will have to execute at
least two detour paths. For example, if the vehicle follows a direct path
between points 1 and 2, it follows from a simple geometric argument
that point 3 is in the disc 	� (see Fig. 1(b)). Moreover it is shown in

[10] that the set of possible headings at 2 are directed outside of	� as
shown on Fig. 1(b), whereas the direct paths from 2 to 3 are contained
in	�. Hence the path from 2 to 3 must be a detour path, i.e., of length
greater than 
	. The same argument shows that any direct path in the
sequence, in the vertical or horizontal direction, must be followed by a
detour path. Hence the length of a curvature constrained path through
points 1 to 5 in this order is lower bounded by �� � �
	. The length
of a Dubins path following the ETSP ordering will then be greater than
�� � ���� � 
	���.

On the other hand, a Dubins vehicle can simply go through all the
points on the top line, execute a U-turn of length at most 	
	 (con-
sidering ��� paths [6, p.28]), and then go through the points on the
lower line, providing an upper bound of ���� � �� � 	
	 for the op-
timal solution. We deduce that the worst case approximation ratio ��
of the algorithm for instances with � points is at least:

�� � ��� ����� 
	�

���� ���� ��
	
� (1)

In particular if we choose � � ����� �� for problem instances with �
points, we get �� � 
���.

For the nearest-neighbor heuristic, we use the instances shown
on Fig. 2(b), which includes the first configuration � (waypoint and
heading) chosen by the algorithm. Note that the �-segments starting
from a configuration � � ��� �� �� are circular arcs on one of the two
circles of radius 	 tangent to the direction � at ��� ��, denoted ���
and ��� respectively, boundaries of the closed disks denoted 	�� and
	��. If � is small enough, all the subsequent points are in the interior
of the discs 	�� or 	��, hence at Dubins distance greater than 
	 of
the initial configuration � (see [8]). The nearest neighbor heuristic
chooses one of these points and as � 
 �, it reaches this chosen point
by a Dubins path that tends to a circle of radius 	 and with a final
heading that tends to the initial heading (in the limit � 
 �, a non
trivial Dubins path from a point to itself is just a circle of radius 	
passing through the point). Overall it produces a path of length at least
�
	 (in fact, this length tends to ��
	 as � 
 �), whereas there is
clearly a (Dubins) straight path of length �� � ���� through these
points, for some constants �� and ��. Hence again �� � 
���.

Finally, for the Tang and Özgüner ordering, we close the path of Fig.
2(a) into a cycle to obtain the configuration of Fig. 2(c). The waypoints
are on two concentric circles of radius � and �� �, with � � � � 	.
The proof then follows the same steps as for the ETSP ordering. For
the proposed ordering, each direct path between two points must be
followed by a detour path, whereas a Dubins vehicle can turn around
each circle once and execute a single maneuver after covering the first
circle to reach the second circle.

B. An Algorithm Based on Heading Discretization

We now propose an algorithm for the DTSP which is inspired from
a procedure used for the curvature-constrained shortest path problem,
see [5]. It chooses a priori a finite set of possible headings at each
point. Suppose, for simplicity, that we choose � headings for each
point. We then construct a graph with � clusters corresponding to the
� waypoints, and each cluster containing � nodes corresponding to
the choice of headings. Then, we compute the Dubins distances be-
tween configurations corresponding to pairs of nodes in distinct clus-
ters. Finally, we would like to compute a tour through the � clus-
ters which contains exactly one point in each cluster. This problem
is called the generalized asymmetric traveling salesman problem, and
can be reduced to a standard asymmetric traveling salesman problem
(ATSP) over �� nodes [26]. This ATSP can in turn be solved di-
rectly using available software such as Helsgaun’s implementation of
the Lin-Kernighan heuristic [27], or using the ��
� approximation al-
gorithm of Frieze et al. [28].
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C. Performance Bound for � � �

Suppose that we choose � � � in the previous paragraph. Our al-
gorithm can then be described as follows:

1) Fix the headings at all points, say to 0, or by choosing them ran-
domly uniformly in ���� ��, independently for each point.

2) Compute the ��� � �� Dubins distances between all pairs of
points.

3) Construct a complete graph with one node for each point and edge
weights given by the Dubins distances.

4) We obtain a directed graph where the edges satisfy the triangle in-
equality. Compute an exact or approximate solution for the asym-
metric TSP on this graph.

Next we derive an upper bound on the approximation ratio provided
by this algorithm. Let us first introduce some results and notation that
will be used in this derivation. We denote the Euclidean distance be-
tween two locations � � ��� �� and �� � ���� ��� by ����� ��.
The Dubins distance between two configurations 	 � ��� 
� and
	� � �� �� 
�� is denoted ��	�	�� (note that ��	�	�� �� ��	�� 	�).
The first theorem is taken from [14, Theorem 3.4].

Theorem 4: There exists a constant � � ��
��	��
��
� such that for
any two configurations 	 � ��� 
� and 	� � �� �� 
�� we have

��	�	�� � ����� �� � ���


From the trivial bound ��	�	�� � ����� ��, we obtain the fol-
lowing corollary of Theorem 4.

Corollary 5: Consider two choices of headings 
, 

 at point � and

�, 

� at point� �, with corresponding configurations	, 
	,	�, 
	�. Then
we have

��
	� 
	�� � � �
���

����� ��
��	�	��


Now denote by �

������ the headings fixed in the first step of the al-
gorithm, and by �
	� � ���� 

���

�
��� the corresponding configurations

at the waypoint ��� � ���� ����
�
���. Let � be the minimum Euclidean

distance between any two waypoints

� � ���
� ���

��������


As in the previous corollary, since ��
	� � 
	�� � ����� ��� �
��������, we have

���
����

��
	�� 
	��

��
	� � 
	��
� � �

���

�

 (2)

With this bound on the arc distances, we can use a modified ver-
sion of Christofides algorithm, also due to Frieze et al. [28], to obtain a
��� �� � ������ approximation for the ATSP in step 4. The time com-
plexity of the first three steps of our algorithm is �����. To solve the
ATSP, we can run the two algorithms of Frieze et al. [28] and choose
the tour with minimum length, thus obtaining an approximation ratio
of ��� ������ ��� �� � �������. This step solving the ATSP runs in
time �����, so overall the running time of our algorithm is �����.
The following theorem then describes the approximation ratio of our
algorithm.

Theorem 6: Given a set of � points in the plane, the algorithm de-
scribed above with � � � returns a Dubins traveling salesman tour
with length within a factor

��� � �
���

�
�����

�

�
� �

���

�

�

of the length of the optimum tour. The running time of this algorithm
is �����.

Proof: Call ��� the optimal value of the DTSP, �� the corre-
sponding optimal permutation specifying the order of the waypoints,
and �	�� �

�
��� the optimal configurations. We have

��� �

���

���

��	�� ���� 	
�
� ������ ���	�� ���� 	

�
� ����

�����	�� �
�
���� �

��


Considering the permutation �� for the graph problem (where the edge
weights are the distances ���
	�� 
	���) and 
�� the optimal permutation
for the graph problem, we have

���
	��� 
�
�� � ���
	��� �

�� � � �
���

�
���	�� �� �

��

where the last inequality follows from Corollary 5. We do not obtain
the optimal permutation for the ATSP on the graph in general, instead
we use the approximation algorithm mentioned above. Calling 
� the
permutation obtained, we have

���
	��� 
��

� ��� �����
�

�
� �

���

�
���
	��� 
�

��

� ��� � �
���

�
�����

�

�
� �

���

�

�

���


We note that the bound provided by Theorem 6 is in fact worse than
the bound available for the “Alternating Algorithm” (AA) of Savla et
al. [17]. AA uses the optimal ETSP ordering, and keeps every other
edge in the optimal Euclidean tour. These edges are straight lines fol-
lowed by the vehicle, which must then connect the end of a straight
line with the start of the next one by a Dubins path. The theoretical
performance bound for our algorithm matches that of AA if we as-
sume that the ATSP in step 4 is solved to optimality. However, exper-
iments suggest that our algorithm performs in fact significantly better
in general than AA when the waypoint distances are smaller than the
turning radius (see Section V). Moreover, our algorithm can be used to
potentially improve on the performance of any algorithm, such as AA.
Indeed, we can fix the headings in step 1 to be those chosen by the par-
ticular algorithm. Then, assuming that the ATSP in step 4 can be solved
to optimality, we obtain a tour at least as good as the one produced by
the initial algorithm.

D. On the ��� Term in Approximation Ratios

Note that every approximation ratio mentioned so far contains a ���
term, where � is the minimum Euclidean distance between any two
waypoints. This term is particularly problematic for densely distributed
waypoints, although it seems in general too pessimistic for points in
general positions. Now the naive algorithm which considers all possible
waypoint permutations and runs for each permutation the algorithm of
Lee et al. to determine the headings [10] provides a tour within 5.03
of the optimum and runs in time ��� � ���. We have also obtained an
algorithm that runs faster than the naive algorithm, in time ���� � ���,
and achieves an approximation ratio of ������� [29]. Designing an
efficient approximation algorithm for the DTSP with an approximation
ratio free from this ��� term is an open problem.

V. NUMERICAL SIMULATIONS

Fig. 3 presents simulation results comparing the practical perfor-
mance of different algorithms proposed for the DTSP. Points are gen-
erated randomly and uniformly in a 10	 10 square and we fix � � �.
All the TSP tours (symmetric and asymmetric) are computed using the
software LKH [27]. We compare the performance of the Alternating
Algorithm (AA) [17], the nearest neighbor heuristic (NN) of Section II,
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Fig. 3. Average tour length versus number of points � in a 10� 10 square, on
a log-log scale. The average is taken over 30 experiments for each given number
of points. Note that with � � ��, the worst tour length observed among the 30
experiments was at most 15% longer than the average shown here, for all algo-
rithms. The heading of AA is always included in the set of discrete headings in
our algorithm (Section IV-C), except for the randomized case. Hence the dif-
ference between the AA curve and the one-discretization level curve shows the
performance improvement obtained by only changing the waypoint ordering.

and the algorithm described in Section IV-B. Compared to our algo-
rithm with the headings chosen randomly in step 1, we see that the per-
formance of AA is similar for low point densities. In fact, AA clearly
outperforms the randomized heading version of the algorithm if the
waypoints are very sparsely distributed and the optimal tour tends to
become the same as the optimal Euclidean tour. However, in scenarios
with waypoints densely distributed with respect to the vehicle turning
radius, which arise for example for UAVs in urban environments, or
loitering weapons flying at high speed [19], large performance gains
can be obtained by our algorithms over AA.

As mentioned at the end of Section IV-C, even with just one dis-
cretization level, we can use the same headings as AA, and compute the
solution of the ATSP using these headings (see step 4 in Section IV-C).
This clearly always performs at least as well as AA, and the figure
shows the significant performance improvement due to only changing
the ordering, as the number of points increases. Also shown on the
figure are the performance curves for an increasing number of dis-
cretization levels. With 5 discretization levels, a tour through 100 points
can be computed on a standard laptop in about one minute, requiring
the solution of an ATSP with 500 points, well below the limits of
state-of-the-art TSP software. The asymptotic lower bound shown is
taken from [15]. In particular, it is known that for the specific case of
waypoints uniformly distributed in a rectangle, as in our experiments,
the average length of the DTSP scales as ���� [14], [15]. In fact in this
case Savla et al. [14] have proposed an algorithm that is not based on
the ETSP ordering and returns a tour whose length is within a constant
factor of the optimum (in Table I, the theoretical upper bound for this
algorithm with our problem parameters is ������� but numerical ex-
periments seem to suggest a smaller constant [14]).

Table I shows the empirical growth rates for the different algorithms
obtained by linear regression based on the simulation results presented
in Fig. 3. With 10 discretization levels, the rate is close to optimal on
such random inputs. Note also the good asymptotic performance of the
nearest neighbor heuristic, which moreover is much easier to compute
than the other heuristics. It is useful in practice to include the headings
of this nearest neighbor heuristic as part of the set of headings used in
the discretization of Section IV-B. Finally, Fig. 4 shows an example of

TABLE I
EXPERIMENTAL GROWTH OF THE AVERAGE DUBINS TOUR LENGTHS FOR

THE DIFFERENT ALGORITHMS, WHEN THE WAYPOINTS

ARE DISTRIBUTED RANDOMLY AND UNIFORMLY IN

A 10-BY-10 SQUARE (EXTRACTED FROM FIG. 3)

Fig. 4. Dubins tours through 50 points randomly distributed in a 10� 10
square. The turning radius of the vehicle is 1. (a) Alternating Algorithm (b) 10
discretization levels.

tours through 50 points computed using the Alternating Algorithm and
our algorithm using 10 discretization levels.

VI. CONCLUSION

This technical note provides a proof of the NP-hardness of the Du-
bins Traveling Salesman Problem, thereby justifying the focus on ap-
proximation algorithms. We describe hard problem instances for which
the existing algorithms approximate the best Dubins tour only within
a factor ����. We also discuss how one can essentially improve the
practical performance of the existing heuristics by solving an asym-
metric traveling salesman problem once a set of possible headings at
each point is chosen. Establishing the existence of a polynomial-time
algorithm that provides an approximation ratio free from the ��� factor
appearing in this technical note remains an open question.
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Comments on “Structural Invariant Subspaces of Singular
Hamiltonian Systems and Nonrecursive Solutions of

Finite-Horizon Optimal Control Problems”

Augusto Ferrante and Lorenzo Ntogramatzidis

Abstract—In this note it is shown that the main result of [1], concerning a
characterization of a pair of structural invariant subspaces associated with
the extended symplectic system, is a particular case of a result presented in
[2] and [3] within a more general and rigorous context. We also analyse the
proof of the main result of [1], and the way such result is used to accomodate
the boundary conditions in the solution of a finite-horizon linear quadratic
optimal control problem.

Index Terms—Algebraic Riccati equations (AREs), extended symplectic
difference equation (ESDE), Hamiltonian differential equations (HDE),
linear-quadratic (LQ).

I. INTRODUCTION

The paper under discussion presents a method to solve a fi-
nite-horizon general linear-quadratic (LQ) optimal control problem by
using a formula which parameterizes the set of trajectories generated
by the extended symplectic difference equation (ESDE). The idea
of solving finite-horizon LQ problems by exploiting expressions of
the trajectories generated by the Hamiltonian differential equations
(HDE) in the continuous time or the ESDE in the discrete time is not
new. It originated in [5] and [6] for the continuous time, and in [7] for
the discrete time. We must note that these papers are not cited in [1].
The expressions parameterizing the trajectories of HDE and ESDE
given in these first contributions hinge on particular solutions of the
associated algebraic Riccati equations (AREs). While controllability
of the given system was required in these first papers, because both the
stabilizing and anti-stabilizing solutions of the ARE were involved,
in more recent publications it was shown that generalizations of the
same technique are possible under much milder assumptions: namely,
sign-controllability in the continuous case, see [2, Section 1.4] and
[4], and modulus controllability in the discrete case, see [2, Section
2.4] and [3]. These assumptions are to date the weakest conditions that
guarantee existence of solutions of an ARE. Sign-controllability and
modulus-controllability are weaker assumptions than controllability,
stabilizability and anti-stabilizability. They generically hold even
in the extreme case when � is the zero matrix. This active stream
of research not only produced the theoretical background which is
necessary for the application of these techniques to more general types
of systems, but it also considerably enlarged the range of optimization
problems that can be successfully addressed. In particular, in [4] and
[3] it is shown that the parameterization technique described above can
be applied to (continuous and discrete) finite-horizon LQ problems
with the most general form of affine constraints at the end-points (thus
encompassing the standard, the fixed end-point and the point-to-point
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