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This paper proposes a general modeling framework adapted to the feedback control

of traffic flows in Eulerian models of the National Airspace System (NAS). It is shown

that the problems of scheduling and routing aircraft flows in the NAS can be posed as

the control of a network of queues with load-dependent service rates. We can then fo-

cus on developing techniques to ensure that the aircraft queues in each airspace sector,

which are an indicator of the air traffic controller workloads, are kept small. This paper

uses the proposed framework to develop control laws that help prepare the NAS for

fast recovery from a weather event, given a probabilistic forecast of capacities. In par-

ticular, the model includes the management of airport arrivals and departures subject

to runway capacity constraints, which are highly sensitive to weather disruptions.

I. Introduction

The frequent occurrence of air traffic delays in the National Airspace System (NAS), along

with the projected increase in demand, motivate the scheduling of flight operations to better utilize

available system resources. The process of planning operations in order to balance the available

capacity and the demand for resources is known as Traffic Flow Management (TFM). This task is

currently conducted manually by air traffic controllers (ATC), and contributes significantly to their

workload. In order to meet the increasing traffic demand, there is a desire to introduce a greater
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level of automation and decision support for air traffic management.

Research on the TFM problem has traditionally focused on developing open-loop policies for

scheduling aircraft operations. Due to the typical travel times of cross-country flights, open-loop

traffic flow management policies need to be determined 5-6 hours ahead of the time of operations.

Such policies prescribe the position of each aircraft in the system at each instant, and are obtained

by solving large-scale integer programs [1, 2]. This approach is difficult to scale to the scheduling

of approximately 40,000 flights a day, and typically does not address the many sources of uncer-

tainty present in the system. Weather, in particular, is a major source of disruption that requires

constant adjustment of the schedules. For instance, 66% of all NAS delays in 2009 were attributed

to weather [3]. Moreover, open-loop traffic flow management algorithms require precise weather

forecasts several hours ahead of time, which are arguably beyond the limits of even state-of-the-art

weather forecasting tools [4].

The disturbance attenuation properties of feedback control make closed-loop control policies

for the NAS very attractive. Attempts have been made to introduce some feedback in the decision

algorithms while still trying to optimize each aircraft trajectory [5, 6]. More recently, researchers

have started developing new models that are more tractable for the purpose of control, which

only record aircraft counts in specific control volumes of airspace rather than follow individual

aircraft. These aggregate flow models, called Eulerian models, are gaining popularity [7–11]. They

have been shown to have reasonable predictive capabilities [9–11], but in general these models

are less precise than trajectory-based simulation tools such as FACET [12] for high-fidelity system

simulation. On the other hand, their advantage is that they are sufficiently tractable and flexible for

the development of flow control policies, and can provide insight into system behavior. Importantly,

they are compatible with today’s traffic flow management system, which regulates traffic flow rates

rather than planning for individual aircraft [11]. Airport operations in the presence of adverse

weather are currently planned using the Collaborative Decision Making (CDM) paradigm, under

which airlines are allocated landing slots for their flights, given the planned arrival rates at the

airport [13]. Eulerian models that determine arrival rates at airports therefore can be used within

the CDM framework.
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Feedback control schemes using Eulerian models have been previously proposed, both in the

context of centralized traffic flow management [8, 14], and in a decentralized setting for networks

with a single origin and destination [15]. In this paper, we present a new Eulerian model for TFM

in the spirit of the two-dimensional Eulerian model of Menon et al. [8]. However, in contrast to

most prior work, our model can be used to control all resources of the NAS, rather than focusing

on high-altitude traffic [7–9]. The inclusion of airports is particularly important because they are

typically the bottlenecks of the system. Moreover, as shown in Section IID, our general model

captures as special cases other recent Eulerian models such as the CTM(L) model [9], while offering

additional modeling flexibility.

Eulerian models suggest strong parallels between approaches to air traffic flow management

and the control of stochastic networks. A survey of control approaches for other complex networks,

such as semiconductor manufacturing systems or the Internet [16], shows that discrete formulations

(typically based on deterministic integer programs or stochastic controlled Markov chains) have been

considered intractable and too detailed for the purpose of controlling realistic networks. As a first

approximation, the discrete effects are usually neglected and continuous traffic flows are considered

instead, much like Eulerian models of the NAS. For stochastic networks, these continuous traffic

flow models used for control purposes are also called fluid models. However, unlike some Eulerian

models of the NAS that involve partial differential equations [9], fluid models for stochastic networks

yield Ordinary Differential Equations (ODEs), thereby simplifying the analysis and control synthesis

tasks significantly. Such fluid models attempt to capture the average behavior of the system, and

are usually sufficiently tractable to design a rudimentary control policy. Unmodeled components

and variability in the dynamics are accounted for by appropriately modifying this basic policy. Our

model is adaptable to the use of standard network control tools, and in particular we present the

MaxWeight policy [17] that results in distributed feedback control laws for traffic flow planning

at different facilities. This policy reflects the control structure in the current system [18, 19], in

which facility (airport or sector)-level traffic planning is done locally through coordination with

neighboring facilities. Note that prior queuing network models of the NAS have generally been

developed with a view towards performance prediction and analysis, and not control [10, 20–22],
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which is our objective in this work.

At the TFM level, our goal is to provide high-level directives to air traffic controllers (ATCs)

prescribing the desired flow rates of aircraft traveling through constrained resources in the NAS.

These resources can be runways, metering points at certain airspace fixes, sectors, or flow constrained

areas during Airspace Flow Programs (AFPs) [23]. ATCs can implement these directives by issuing

orders at the path planning level, such as aircraft speed changes, vector for spacing or holding

patterns, which modify the time that an aircraft takes to travel between control boundaries. The

specific choices adopted by the ATC at the tactical level depend on the spatial configuration of

aircraft at the time of operations, and are not specified at the TFM level. As a consequence of this

hierarchical decomposition, a TFM directive may be modified by the ATC during a given period,

for example, due to path-planning or separation constraints. The deviation of the ATC actions with

respect to the TFM directives are treated as disturbances at the TFM level, and are accounted

for by the feedback form of the traffic flow control policies proposed. The development of models

for closed-loop TFM should balance precision, in order to minimize these lower level disturbances,

with tractability for real-time computations. As demonstrated in this paper, our model can also be

used to prepare the system for disturbances of larger magnitude, for example due to weather events,

by integrating probabilistic weather forecasts. This is arguably the most desirable feature of TFM

procedures, since local weather events can be greatly amplified by network effects in the absence of

proper congestion control.

The rest of the paper is organized as follows. Section II describes the general Eulerian model

that we use for TFM. We show how various capacity-limited NAS resources, including airports, can

be easily modeled in our framework. We also discuss how our model generalizes some previously

proposed Eulerian models. Section III describes some natural control policies for this system, namely

the First Come, First Served (FCFS) policy, the MaxWeight policy (a distributed network control

policy), and a strategy based on Model Predictive Control (MPC). In Section IV, the model is

modified to accommodate probabilistic capacity forecasts. The MPC controller can then be used

to mitigate the impact of weather disruptions, given such probabilistic forecasts. In Section V we

present some simulation results, including a small problem illustrating network congestion effects
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under the various policies due to sector capacity constraints, and a larger, more realistic TFM

scenario over part of the Western United States. Finally, Section VI summarizes our approach to

the TFM problem and describes some directions for future work.

II. Eulerian Model of the NAS for Network Control

In this section, we propose an Eulerian Model of the NAS that lends itself to network control

approaches. We also show that our model generalizes other existing Eulerian models of the air

traffic system [9]. Note that this model is not necessary to implement our simplest control policies

in Section III, namely the FCFS policy and the MaxWeight policy, which are model-free. Only the

MPC policy requires a model of the NAS dynamics for its implementation. However, this model

is used for all three policies to evaluate their expected performance in the simulated scenarios of

Section V.

To construct the network model that we use for TFM, we start by deciding the points or lines

through which traffic flow rates need to be determined. These boundaries, henceforth called control

boundaries, can consist of sector boundaries, runways, airspace fixes, intersections of major jet

routes, or other metering points. Adding more control boundaries provides more decision support,

but decreases the flexibility to adapt (at the tactical level) to factors not precisely modeled at

the TFM level. Each control boundary has an associated traffic flow direction (therefore physical

boundaries such as those of sectors correspond to two control boundaries, one for each flow direction).

In developing Eulerian models, we are interested in controlling the aircraft counts in certain

control volumes rather than individual aircraft trajectories. A control volume is delimited by an

input and output control boundary, that is, all the traffic associated with it enters through the

same control boundary and exits through the same one. Control volumes can overlap, for example,

due to intersecting traffic flows. Within a control volume, we have one or more queues, also called

buffers. Using several queues in the same control volume allows us to separate the traffic based on

distinct characteristics, such as destinations. Fig. 1 shows an example of an Eulerian model with

five control volumes and two distinct flows.
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Fig. 1 Five control volumes and their corresponding abstract buffer model. The situation

depicted here corresponds to two routes merging and then diverging. Each control volume

except E supports two flows with distinct characteristics (e.g., different destinations, as de-

scribed Section IIB 1), and each flow is associated with one buffer. Buffers 8 and 9 have

the same flow type (destination), which allows us to include routing decisions at the output

boundary of volume C. Each buffer has an associated maximum throughput function, as

discussed in Section IIA. In this case, the buffers associated with the same control volume

have the same maximum throughput function. Thick gray lines represent additional resource

constraints coupling the control variables of different buffers, as described in Sections II B 1

and IIB 2.

A. Maximum Throughput of a Single Buffer

We consider discrete-time models, and choose a suitable time-discretization T to model the

system dynamics. This time period also determines the frequency of updates to flow rate directives.

The number of aircraft in buffer i at time kT , k ∈ N, is denoted Qi(k). Every buffer is associated

with a control volume (see Fig. 1), and hence to an input and an output boundary. The maximum

rate at which traffic can flow out of a buffer during any time period depends on the number of
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aircraft that it contains. The aircraft count associated with buffer i follows the dynamics

Qi(k + 1) = Qi(k) +Ai(k) +
∑
j∈Ii

Uji(k)−
∑
l∈Oi

Uil(k), (1)

0 ≤ Ui(k) :=
∑
l∈Oi

Uil(k) ≤ Di(k), ∀k ≥ 0. (2)

Here, Ai(k) is the number of external arrivals in buffer i during the the (k + 1)th period (that is,

time interval [kT, (k+ 1)T )), originating from unmodeled parts of the system (e.g., pushbacks from

airport gates, flights entering the modeled airspace, etc.). Ui(k) is the number of departures from

buffer i during the same period, and is controlled by the ATC. It is the sum of components Uil(k),

which represent the number of aircraft transiting from buffer i to buffer l, allowing for routing

decisions at the output boundary of buffer i. Such tactical routing decisions can help accommodate

dynamically changing conditions in the network, such as the impact of weather on capacities [14].

We denote by Ii the set of buffers sending aircraft to buffer i, and Oi is the set of buffers to which

buffer i sends aircraft. For example, on Fig. 1 we have I6 = {2, 4} and O6 = {8, 9}. In this section,

we focus on the quantity Di(k), which is the maximum possible number of departures from buffer

i during the (k + 1)th period. Note that there is an additional nonnegativity constraint, Qi(k) ≥ 0,

which will generally be automatically satisfied by imposing the condition Di(k) ≤ Qi(k) + Ai(k).

We assume that Ui(k) can depend on Qi(k) as well as Ai(k) and Di(k), therefore these quantities

must be determined prior to determining Ui(k). Evaluating Di(k) is a simple trajectory prediction

problem for the typical values of T used in flow control (say 1-15 min). These values Di(k) can be

determined at the tactical level by the ATC and communicated to the TFM level at each period.

In general, the travel times of aircraft through a control volume vary due to differences in

speeds, trajectories and environmental factors such as wind speed. Since it is not tractable to

keep track of all these variations exactly, we treat them as disturbances on a nominal aggregate

model. At the TFM level, we assume a stochastic model of the number of arrivals {Ai(k)}k∈N and

maximum number of departures {Di(k)}k∈N in Equations (1) and (2). Moreover, we assume that

for a given load level Qi(k) = Qi, the variables Di(k) have the same conditional expectation denoted

µi(Qi) = E[Di(k)|Qi(k) = Qi]. We call the function µi the maximum throughput function for buffer

i. Usually, the same function µi can be used for all buffers in the same control volume, unless traffic
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flows are differentiated based on characteristics such as aggregate trajectories or velocities. In order

for this to be a reasonable model of the maximum number of aircraft departures in a period, the

control volume should be large enough relative to the sampling period that aircraft cannot typically

enter and leave the volume during the same period. A significant number of such aircraft would

require modifying the model such that the function µ depends on A(k).

Intuitively, µi should increase with Qi, since an increase in traffic in a volume reduces the

time between departures from the volume. However, µi remains bounded due to the minimum

required separation distance between aircraft, which limits the rate at which aircraft can cross the

exit boundary of the control volume. In general, we expect µi to be a concave saturating function,

as depicted on Fig. 2. The exact values of the function depend on the geometry of the control

volume and the typical aircraft trajectories between its boundaries. Note that µ(0) = 0, and µ(1)

is approximately inversely proportional to the typical minimum travel time of an aircraft through

the region (measured in increments of length T ). For the simulation results shown on Fig. 2, we

assume that aircraft can travel at up to 500 knots, that the control volume length is 100 nm with a

simple narrow linear geometry in which all aircraft strictly follow each other, and use ATC directives

asking that aircraft entering the volume set their velocity to the maximum possible while respecting

the separation constraint with the previous aircraft. The sampling period T is 10 min. Note that

for the purpose of evaluating µi, we can consider the situation where the control volume contains

only buffer i. The interactions among flows of different buffers within the same control volume are

modeled as additional constraints on the control variables Ui, as discussed in Section II B 1.

Fig. 2 also assumes that successive aircraft crossing the exit boundary of this control volume

are separated by at least 2 min. This results in the saturation of the curve at 5 departures per

time period. For control volumes that are not subject to such explicit metering constraints, the

saturation phenomenon still persists due to the mandatory minimum separation between aircraft

(currently 5 nmi in enroute airspace). In our example, this would result in a curve saturating at a

value of at most 16 aircraft per period instead of 5. Finally, we note that if the length of the time

period (T ) is changed from T1 to T2, the resulting curve µi(Qi) can be obtained by scaling the curve

for T1 by T2/T1.
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In this paper, we assume that quantitative models of the maximum throughput curves of the

buffers are available, and we leave the discussion of this system identification step largely to future

work. In the simulations of section V, we assume simple throughput curves similar to the one shown

on Fig. 2, which is well adapted however to many regions of airspace with well-defined jet routes.

As pointed out below in subsection II B 4, some previous work describes how to fit these curves

using historical data when the buffers model surface operations [24, 25]. For airborne traffic, more

ATC actions are available than for ground traffic, and it is unlikely that historical data alone will be

sufficient to reconstruct the complete throughput curves. The quantitative modeling step can then

be done for each control volume first using trajectory based simulation tools, including a model of

the actions available to the ATC, as done for the curve of Fig. 2. Much more extensive work is

done in chapter 3 of Bayen’s thesis [26], where aircraft trajectories and available ATC actions in

a given region are modeled using hybrid automata. The author develops a simulator subsequently

used to predict flight times, but this approach could be used to predict the throughput curves as

well. This work is validated against historical data, which shows good agreement of the simulation

results with observations in the real system. Such a combination of simulation and validation based

on empirical data can be used more generally to fit the throughput curves quantitatively.

B. Additional Resource Constraints

We construct a network model of the NAS using as building blocks control volumes containing

buffers that follow the dynamics of Equations (1) and (2). Traffic flows in different buffers compete

for limited airspace resources, resulting in additional linear constraints on the control variables,

which are described in the following paragraphs.

1. Shared Buffers within a Control Volume

Given a control volume containingm buffers with (output) controls U1, . . . Um (see the definition

in (2)), the control vector for the exit boundary of the volume is denoted by

U(k) = [U1(k), . . . , Um(k)]T .
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2 min

100 nmi

Fig. 2 Maximum throughput for the exit boundary of a simple linear control volume. The

empirical curve of the mean number of departures per period was obtained via discrete-event

simulation, with random arrivals. The error bars show the empirical variance of the number

of departures per period. In this example, the exit boundary includes an explicit metering

constraint, specifying a mandatory minimum separation of 2 min between successive aircraft.

If several distinct flows carry a significant number of aircraft, the bounds Di(k) in Equation (2) can

be large for several values of the index i and the exit boundary of the volume might not be able

to accommodate
∑m

i=1Di(k) departures in a single period. It may therefore be necessary to give

priority to certain flows over others, i.e., to schedule the flows at the control boundaries. We add

scheduling constraints of the form

cT (k)U(k) =

m∑
i=1

ci(k)Ui(k) ≤ r(k), ∀k ≥ 0. (3)

In general we take ci(k) = 1 for all i, and then r(k) is simply the maximum number of aircraft that

can cross the boundary at period k. However, we may prioritize certain flows by varying ci, and

adjust r appropriately.

2. Intersecting and Merging Flows

Consider the scenario depicted in Fig. 1. The input boundary of sector C coincides with the

output boundaries of sectors A and B. Let U (1) and U (2) denote the control vectors associated with

sectors A and B respectively, which support two flows each. At the merge point, suppose we cannot
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accommodate the sum of the maximum flow rates of A and B, and increasing the flow rate out of

one volume requires reducing the flow rate out of the other. This aspect can be incorporated by

imposing linear constraints on the control vectors of the form

cT1 U
(1)(k) + cT2 U

(2)(k) ≤ r, (4)

for some vectors c1, c2, and some scalar r. Here again c1, c2 can be all-one vectors, in which case

r represents the maximum number of aircraft that can enter volume C per period. Note that

constraint (4) is not active if the volumes are only lightly loaded and the resulting bounds Di(k) in

Equation (2) are small. The parameters in (4) could also be time varying.

Intersections of major jet routes can be handled similarly, and competition between flows for

passage through limited airspace resources can be modeled by additional linear constraints of the

form

C(k)U(k) ≤ R(k), (5)

where C(k) is a matrix, U(k) is the vector of all control variables for the problem, and R(k) is a

vector. Each limited resource contributes one or more constraints to Equations (5).

3. Sector Load Capacities

We can add bounds on the vectors Q(k) to impose limits on the sector capacities. In general,

these constraints take the linear form

MQ(k) ≤ S(k), (6)

where M is a matrix and S a vector, which can again be time varying.

4. Airport Resources

An airport is modeled using arrival queues (aircraft waiting to land, which are associated with

air traffic flows in the vicinity of the airport), and one or more departure queues (aircraft on the

ground waiting to take-off). All queues have dynamics of the form given by Equations (1) and (2).

Since arrivals and departures at an airport share ground resources, the arrival and departure control
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Fig. 3 Capacity envelope observed at Newark airport, under optimal conditions [27]. Any

pair of arrival/departure allocation rates within the polytope is achievable. This polytope

corresponds to constraints of the form (5), and depends on the airport runway configuration

[28].

vectors are also subject to resource constraints. If Ud is the control vector for the departure queues

and Ua is the control vector for the arrival queues, the global vector U = [UT
a , U

T
d ]T is again subject

to linear constraints of the form (5), as discussed by Gilbo [28, 29]. These constraints depend on

runway configurations and can be determined empirically or analytically [27, 28]. An example is

shown in Fig. 3. These linear constraints (5) are not necessarily active in low traffic conditions

due to the potentially more restrictive conditions (2). For the maximum departure throughput µd,

we can consider a model incorporating aircraft from the time they pushback from the gate [24, 30].

The airport transit zone then constitutes the control volume. In this model, we have a nonlinear

maximal throughput curve for departures that depends on the number of aircraft in transit between

the gates and the runway, has the form shown in Fig. 2, and can be fitted using historical data

[24, 25, 30]. Additional queues can be used to model the possibility of reordering aircraft between

pushback and takeoff time, for example at taxiway intersections [31].

5. Building Larger Models

Using the basic building blocks presented in the previous sections, it is straightforward to

construct larger networks adapted to the control of traffic flows in the NAS. We illustrate this
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process in Section V. Consider, for example, a model incorporating the scheduling and routing of

aircraft between origin-destination (O-D) pairs along a set of possible preferred routes. Within each

control volume, we separate flows into distinct buffers based on their O-D pair, indexed by m. A

flight trajectory corresponds to a path through the set of control boundaries. We can index buffers

by their associated input and output boundaries as well as O-D pair, in other words, Qm
ij (k) is the

load at period k for O-D pair m in the control volume going from boundary i to boundary j. The

dynamics of this buffer are then given by

Qm
ij (k + 1) = Qm

ij (k) +Am
ij (k) +

∑
s∈I(i,m)

Um
sij(k)−

∑
t∈O(j,m)

Um
ijt(k), (7)

∑
t∈O(j,m)

Um
ijt(k) ≤ Dm

ij (k), 0 ≤ Um
ijt(k), ∀t ∈ O(j,m),

where I(i,m) and O(j,m) are the set of all control boundaries preceding i, and the set of all control

boundaries following j respectively, that are on an allowed route between the OD pair m. Am
ij

denotes the number of external arrivals of O-D pair m in the control volume going from boundary i

to boundary j. The variable Um
ijt corresponds to aircraft of O-D pair m routed through the control

boundaries i, j and then through the control boundary t. We note that other choices of models are

clearly possible [32]; for example, one can use the index m to differentiate buffers in control volumes

based only on the destination airport rather than the OD pair.

C. General Discrete Model

In previous sections we have seen that, after discretization of the airspace into control volumes

carrying flows separated based on characteristics relevant to the TFM problem, we obtain a network

model with dynamics that can be written in matrix form as

Q(k + 1) = Q(k) +B U(k) +A(k), ∀k ≥ 0 (8)

MQ(k) ≤ S(k), ∀k ≥ 0 (9)

C1U(k) ≤ D(k), ∀k ≥ 0 (10)

C2(k)U(k) ≤ R(k), ∀k ≥ 0 (11)

U(k) ≥ 0, ∀k ≥ 0. (12)
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The matrix B consists of +1’s and −1’s and is the incidence matrix [33] for a graph whose nodes

are the buffers and whose edges connect successive buffers. In addition, there are nonnegativity

constraints Q(k) ≥ 0, which can usually be automatically enforced through the constraints (10) (see

Subsection IIA). The difference between model (8) and queueing network models studied in the

literature on communication or manufacturing networks [16] is the addition of the load dependent

constraint (10), modeling the fact that the number of aircraft in a sector influences the maximum

rate at which aircraft can leave the sector. However, we note that if all components of Q(k) are

large, then D(k) tends to a constant vector. Therefore, for high loads and when considering stability

issues, we expect the analysis to be close to the one developed for standard queueing network models.

D. Comparison with Other Eulerian Traffic Flow Management Models

Several previous Eulerian models can be represented as special cases of our model (8), which

is not surprising since the latter only depends on the flow-balance equation (1). Menon et al. [7]

propose a model inspired by the the Lighthill-Whitham-Richards (LWR) partial differential equation

(PDE), traditionally used to model road traffic, and its discretization known as the Cell Transmission

Model (CTM) [34, 35]. The control strategies they propose rely on linear systems theory, and do not

account for crucial state and control constraints present in the system. A refined model is presented

in a later paper by the same authors [8], and a model predictive control strategy is proposed to

handle these constraints. Similar models are used by Sridhar et al. [11], and by Sun and Bayen

[36]. These models tend to emphasize particular choices (based on geometry, size, etc.) of control

volumes, whereas our discussion in the previous sections left these choices largely open, depending on

the particular region and problem under consideration (a modeling example is presented in Section

V). More important, in our view, is the fact that the dynamics in all these cases can be represented

by the flow-balance equation (8), with a proper choice of control variables.

For example, let us see how we can write the recently proposed CTM(L) model [36] as a special

case of our model. Flights going from one boundary of a sector to another are aggregated, and the

model represents these flights along the links of a graph. Only traffic above 24000ft is considered,

and aircraft climbing to and descending from this altitude are represented as external arriving and
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departing flows [36]. All aircraft in a given link fly at an aggregate speed, obtained from historical

ASDI/ETMS data. A link is divided into cells, where each cell corresponds to one minute of flight

time. For example, if it takes 10 minutes for a flight to cross a link, then the link is divided into 10

cells. A link is thus a linear succession of cells. The state of each cell is the number of aircraft in that

cell. If link i is decomposed into mi cells, then we can write the dynamics of cell p ∈ {1, . . . ,mi} as

Qi
p(t+ 1) = Qi

p(t) +Ai
p(t) + U i

p−1,p(t)− U i
p,p+1(t), (13)

where the superscript indicates the link and the subscript the cell number. The external arrivals

Ai
p(t) come from aircraft ascending to the altitude considered. Descending aircraft which exit the

flow can be easily taken into account by adding to a term −U i
p,exit(t) to Equation (13). For the

boundary cells p = 1 in (13), p − 1 represents the last cell of the previous link traversed by the

aircraft, and similarly for p = mi, p + 1 is the first cell of the next link. Sun and Bayen [36]

choose to control the number of aircraft delayed (i.e., the number of aircraft remaining in the same

cell for the next time step), hence their control variables are Ũ i
p−1,p(t) = Qi

p−1(t) − U i
p−1,p(t) and

Ũ i
p,p+1(t) = Qi

p(t)− U i
p,p+1(t). Equation (13) then yields

Qi
p(t+ 1) = Qi

p−1(t)− Ũ i
p−1,p(t) + Ũ i

p,p+1(t) +Ai
p(t). (14)

These are, in fact, the exact dynamics presented by Sun and Bayen [36] (Section III.A.1) at the

link level (see also Equation (9) in their paper). The saturation constraint (10) is omitted however,

and replaced by the simpler linear constraint U i
p,p+1(t) ≤ Qi

p(t). This forces the authors to use

very small control volumes (of the order of about 10 nautical miles) in order to obtain a reasonable

model. With small control volumes, each cell contains very few aircraft, and hence operates in

the linear part of the throughput curve. The drawbacks of such a model are the large number of

control volumes, most of which remain empty most of the time, and the inflexibility introduced at

the interface with the tactical level, since with such small volumes, the Eulerian model effectively

attempts to control each aircraft individually, rather than leaving this task to the ATC.

To our knowledge, the saturation constraint (10) described in Fig. 2 and in [24, 25, 30] is in fact

ignored in all prior Eulerian models of the NAS, yielding particularly unrealistic models in the case

of high-density operations. Moreover, many Eulerian models consider a single type of flow, with the
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exception of the CTM(L) model [36], which differentiates aircraft based on their OD pairs. Even in

the CTM(L) model, the interactions between different flows, leading to the scheduling, routing, and

other resource constraints (11), are not included. Note that the possibility of prioritizing certain

flows over others is crucial for proper congestion control across a network in general [16]. This

possibility is also easier to exploit in air traffic than in road traffic due to the prevailing control

structure.

Other models proposed by Ball et al. [13], and Mukherjee and Hansen [14] are also Eulerian

models, since they regulate aircraft counts rather than optimize individual aircraft trajectories.

Our model is a generalization of the ones presented in these papers, which in particular consider a

single destination airport, and focus on integer programming formulations that can efficiently solve

TFM problems in this setting. In contrast, we treat the various quantities as continuous in our

optimization scheme described in the section III C, and use naive rounding techniques for those

quantities that require an integer solution. The rationale for this is that the TFM model (8) is

intended to be an approximation of the system dynamics, and the actual dynamics is expected to

deviate from this model at the tactical level. Under such conditions, the actual impact of obtaining

and implementing the optimal integer solution of the full, disaggregate TFM model is not easy to

quantify.

III. Control Strategies

Having presented an Eulerian model of NAS operations, we now develop algorithms to determine

appropriate decisions U(k) for the control of the system (8)-(12). A number of control techniques

for such network models have been investigated in the past decades, particularly in the context of

communication and semiconductor manufacturing systems [16]. We note that the state and control

constraints in particular, neglected in the original work of Menon et al. [7], play a fundamental role

in the analysis of a network’s stability and performance. For example, simple scheduling problems

typically correspond to a square invertible constant matrix B, which in turn implies the control-

lability of a version of the model that neglects the control constraints; yet in practice not all such

models are stabilizable.
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We describe below three natural control strategies, which have very different computation and

implementation requirements, and can be used for scheduling and routing aircraft through the

NAS. The first strategy is the well-known First Come, First Served (FCFS) policy, and is arguably

close to the strategy currently adopted by air traffic controllers. The MaxWeight policy [17] is a

distributed policy with very few implementation requirements, much as the FCFS policy. It can

be used for routing, scheduling, and load balancing and tends to reduce overload in downstream

sectors compared to the FCFS policy. Both these policies can be used under nominal conditions

and do not depend on the model developed in Section II. In contrast, the third approach is a Model

Predictive Control (MPC) strategy that has greater implementation and information requirements,

and is more suitable for use in uncertain and changing capacity scenarios such as bad weather days,

as discussed in Section IV.

A. First Come, First Served Policy

In the FCFS policy, resource limited facilities such as runways and control boundaries are

assigned to aircraft in the order of their arrival in the queues corresponding to that facility. Nearly

all airspace and airport resources are currently allocated using the FCFS policy, since it is considered

to be both fair, and simple to implement by air traffic controllers [37, 38]. For example, in the

absence of other control mechanisms such as ground delay programs and of finer modeling of the

taxiway (see Section II B 4), aircraft at airport gates would be scheduled to use the runway in the

order in which they are ready to pushback. In its pure form considered here, the policy does not

implement rerouting, congestion control, or any other feedback mechanism, and it does not take

into account the potentially different costs of waiting in different queues (for example, the cost

difference between ground and airborne delays). It simply pushes the aircraft through the control

boundaries as soon as possible. Specifically, to determine U(k) we first set U = 0. Then we increase

U by unit increments in the order in which aircraft arrived at the various facilities, until we cannot

increase any coordinate of U because the constraints (9), (10), (11) would then be violated. This

policy can be implemented independently locally, since only the buffers that share a resource need

to coordinate. Since air traffic control networks can be expected to the acyclic, this policy should
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be stable in general [39] and have good throughput properties under nominal conditions. However,

in case of reduced landing capacity at an airport, the FCFS policy quickly saturates the terminal

airspace with aircraft waiting for their turn to land, which in turn creates uncontrolled upstream

congestion due to sector capacity constraints.

B. Distributed MaxWeight Policy

The celebrated MaxWeight or maximum back pressure policy for network control [17], which

was previously proposed by the authors for air traffic control [32], can be obtained as follows. At

period k, the network is in state Q(k) = Q, and we can also observe the current values of the

parameters M,S,C1, D,C2, R,A in (8). Consider the quadratic Lyapunov function

V (Q) =
1

2
QT ΞQ,

where Ξ is a diagonal weighting matrix with positive coefficients ξi, and define the Lyapunov drift

DV (Q,U) = E[V (Q(k + 1))− V (Q(k))|Q(k) = Q,U(k) = U ].

We have immediately

DV (Q,U) ≤ QT Ξ(BU + E[A(k)]) + β, (15)

where

β =
1

2
max
u

E[(BU(k) +A(k))T Ξ(BU(k) +A(k))|U(k) = u].

Assuming the process A has a finite second moment, then β is a finite constant because the maxi-

mization in its definition is over the feasible control vectors, which is a bounded set.

The MaxWeight policy aims at minimizing the upper bound on the Lyapunov drift by minimiz-

ing the first term on the right hand side of (15). In other words at period k, in state Q(k) = Q of

the network we apply the control

UMW (Q) ∈ arg min
U∈U

QT ΞBU, (16)

where U = {U |C1U ≤ D,C2U ≤ R,U ≥ 0,M(Q+BU +A) ≤ S}. The choice of Ξ is left open here

and allows the controller to prioritize certain flows over others [32].
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1. Implementation Requirements of MaxWeight

The interesting fact about the MaxWeight policy, as given by Equation (16), is that the mini-

mization can be performed in a distributed way, due to the sparsity pattern of the matrices B,C1, C2.

Recall that B is the incidence matrix of a directed graph whose nodes are the buffers and edges are

present between successive buffers. Moreover, note that exactly one control variable is associated

with each such edge, specifying the number of aircraft that are allowed to transit from one buffer

to the next. Denoting the set of edges by E , Equation (16) can be written explicitly as

UMW (Q) ∈ arg min
U∈U

∑
e∈E

Ue(ξe+Qe+ − ξe−Qe−), or,

UMW (Q) ∈ argmax
U∈U

∑
e∈E

Ue(ξe−Qe− − ξe+Qe+), (17)

where e− and e+ denote the buffers at the beginning and end of edge e respectively. Let πe(Q) =

ξe−Qe− − ξe+Qe+ denote the (weighted) “pressure” on edge e when the network is in state Q. We

see then from Equation (17) that each control variable Ue for which πe < 0 should be set to 0.

The control variables for the edges for which πe ≥ 0 can be determined by solving local linear

programs in which priority is given to edges that are subject to higher pressure. Firstly, for each

buffer it is necessary to know the load in the downstream buffers in order to compute the pressure

on each of the edges involving this buffer. Two different ATCs might be in charge of two successive

buffers, but these controllers can easily communicate to determine the pressure on the edge between

them, since successive buffers are in neighboring control volumes. Secondly, the nonzero entries in

the rows of C1 and C2 and the capacity constraint MQ(k + 1) ≤ S can couple control variables

that involve shared resources. The linear program (17) can then be separated into independent

linear programs, each involving a set of coupled control constraints. In the constraints described in

Section II, the rows of C1 couple only the routing decision variables for the same buffer, if two or

more downstream buffers are available. The rows of C2 are scheduling constraints for resources that

can accommodate limited traffic flows. A control variable is only coupled with those other control

variables with which it competes for resources. For example in Fig. 1, the controllers in charge

of sectors A,B and C need to communicate with each other to determine the pressures and their

control variables, but the controllers of sectors A and B need not communicate with the controllers
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of sectors D and E in order to implement the MaxWeight policy.

Finally, in many cases, the local optimization problems do not require any computation or

explicit optimization procedure. Consider for example a pure scheduling constraint of the form

N∑
i=1

Uei ≤ R, (18)

where the control variables Uei do not appear in any other constraints in (11) and are only subject

to the throughput constraints 0 ≤ Uei ≤ Dei (i.e., no routing variables are involved). Moreover,

assume for now that the current load allows the capacity constraints (9) of the sectors receiving

traffic from the buffers involved in (18) to be met by any choice of control. The controllers must

then optimize the corresponding part of the objective function
∑N

i=1 πeiUei , subject to the constraint

(18). Assume, for simplicity of notation, that πe1 ≥ πe2 ≥ πeN , and assume πe1 ≥ 0. Then the

MaxWeight policy proceeds iteratively as follows: It first sets Ue1 to min{De1 , R}. At step l, it has

set the variables Ue1 , . . . , Uel−1
with the highest pressure to their maximum value Dei , except for

Uel−1
if constraint (18) became active. If this constraint is not yet active and if πel ≥ 0, it sets Uel

to min{Del , R −
∑l−1

i=1 Uei}. If the volume capacity constraints (9) can become active, calculations

might again be required for a rigorous optimization procedure. However, a good heuristic is still to

increase the control values iteratively on the links until none can be increased without violating the

constraints. For many situations of interest, the local decisions for the MaxWeight policy can be

similarly obtained without explicitly solving a linear program.

Remark Instead of the implementation described in the previous paragraph, we can consider the

following variation of MaxWeight for scheduling a utilization-limited resource, which might be prefer-

able from the perspective of fairness between different flows. We increase the variables by unit

increments, until none of them can be increased any further because some constraint would then

be violated or all the pressures are negative. At each step, we increment the control variable e for

which the pressure πe is maximum, and update the state of the queues accordingly, by subtracting

1 from Qe− and adding 1 to Qe+ . We then update the pressure values and repeat the process.

It is worth emphasizing again that the implementation of the MaxWeight policy requires very

little information, similarly to the FCFS policy and in contrast to the more demanding MPC con-
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trol law presented next, for example. In particular, we do not need to know the departure rates at

airports, or the throughput functions µ. We have seen that decisions are based only on the local

information regarding the loads of the queues. These minimal information requirements can be an

advantage, providing an inexpensive yet efficient way to guide TFM decisions under nominal con-

ditions. For complex scenarios involving significant weather perturbations, where non-local policies

such as ground holding programs must be implemented based on geographically-distributed infor-

mation, such a policy becomes less effective. Simulation results illustrating this point are presented

in Section IV.

2. Stability of MaxWeight

Asymptotic stability considerations for the NAS do not appear to be relevant at first glance,

since the system could always be drained of the remaining aircraft overnight, when no new departures

are scheduled. However, for network models such as (8)-(12), asymptotic stability results provide

some insight about the short term behavior of the system as well. For example, a single unstable

queue (i.e., a queue for which the arrival rate is strictly larger than the service rate) simply builds

up load linearly with time on average, and hence becomes quickly unmanageable in a system like

the NAS, where buffers have limited capacity. The behavior for a network of queues is similar [16],

and in an unstable network some queues will quickly become unacceptably large. For this reason,

it is useful to know if a TFM control policy can stabilize the NAS under nominal conditions.

Let us assume that the arrival vectors are independent and identically distributed, with

E[A(k)] = α, ∀k. Under the MaxWeight policy, the state vector Q(k) then evolves as a Markov

chain. The network is said to be stable if for each initial condition Q(0) = x, the average cost

ηx = lim sup
n→∞

1

n

n−1∑
k=0

E[‖Q(k)‖∞], (19)

is finite. In the absence of the capacity constraints (9) and with constant throughput functions µ

rather than the nonlinear ones considered here, the MaxWeight policy is known to be stabilizing for

any network that is stabilizable [16]. Define

δ(Q) = E
[

min
U∈U

QT Ξ(BU +A(k))
∣∣∣Q(k) = Q

]
,
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which is the average minimum achievable value for first term on the right-hand side of (15) (note

that the constraint set U is stochastic here). Now assume that there is a positive constant C and

ε > 0 such that

for all x with ‖Q‖∞ > C, we have δ(Q) < −ε‖Q‖∞. (20)

For a constant throughput function µ, this condition is necessary for the network to be stabilizable

[16], and one can expect that this condition is also a necessary stabilizability condition for our

problem with load-dependent throughput curves. Intuitively, this can be seen because {BU+A|U ∈

U} is the set of velocity directions in which the control can steer the network dynamics (8). For

stability, at each value of the state Q there should be (at least on average) a velocity vector in

this set steering the state toward a bounded rectangle around the origin. This is essentially what

condition (20) says. Now this condition is also sufficient for stability. Indeed, it implies that under

the MaxWeight policy

DV (Q) := E[V (Q(k + 1))− V (Q(k))|Q(k) = Q] ≤ −ε‖Q‖∞ + b, ∀‖Q‖∞ > C, (21)

which in turn implies the stability of the network as a consequence of the Foster-Lyapunov criterion

[16, Theorem 8.0.3]. Note that in general, condition (20) is not easy to check, as it is non-trivial

to verify if a network is stabilizable (for constant throughput functions, this can be done via linear

programming [16]). In practice however, the need rarely arises to use it directly.

C. Model Predictive Control

Model Predictive control (MPC) [40] is a general tool that is well suited for the feedback control

of constrained systems of the form (8)-(12). Menon et al. previously proposed to use MPC to control

a deterministic Eulerian model of the NAS [8]. We also use MPC for the weather scenario considered

in Section IV. To obtain a feedback control law via MPC for the general problem (8)-(12), we proceed

as follows. We fix a time horizon length of K ≥ 0. At period k0, we can observe the state Q(k0), the

number of arrivals A(k0), and maximum number of departures D(k0) for the period. We determine
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U(k0) by solving the following convex program with variables Q = {Qk}1≤k≤K+1,U = {Uk}0≤k≤K

min
Q,U

f(Q,U) (22)

subject to (23)

Q1 = Q(k0) +BU0 +A(k0)

Qk+1 = Qk +BUk + α(k0 + k), 1 ≤ k ≤ K

MQk ≤ S(k0 + k), 1 ≤ k ≤ K + 1 (24)

C1U0 ≤ D(k0) (25)

C1Uk ≤ µ(Qk), 1 ≤ k ≤ K (26)

C2(k0 + k)Uk ≤ R(k0 + k), 0 ≤ k ≤ K, (27)

Uk ≥ 0, 0 ≤ k ≤ K,

where f is chosen to be a convex function of Q, for example a linear objective

f(Q,U) :=

K∑
k=1

γTk Qk +

K∑
k=0

γ̃Tk Uk + γTK+1QK+1, (28)

for some positive vectors {γk, γ̃k}k. We use the certainty-equivalence heuristic [41] which consists

of replacing A(k) and D(k) of (8) and (10) by their average values α(k) and µ(Qk) for k > k0.

The program (22) is convex if we assume that µ is concave, which is generally true, as seen, for

example, in Fig. 2. Finally, following a standard MPC approach we impose a high terminal cost,

i.e. γK+1 >> γk for k ≤ K in our experiments.

Upon solving the optimization problem (22), we obtain a sequence of vectors U0, . . . , UK , which

are real-valued. We round-off the first vector U0, and use it as a control directive U(k0) = U0 for

the current period. We discard the other vectors U1, . . . , UK . At the next period, we repeat the

procedure to obtain a new control vector, after observing the new values of Q, A and D. The convex

program (22) can be solved using efficient interior point methods for various choices of objective

and throughput functions [42]. For example, we can consider the linear objective function (28), and

an approximation of the maximal throughput functions of the piecewise linear form

µi(Qi) = min
1≤j≤mi

{aTijQi + bij , µi,sat}.
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Then the constraint cTi U ≤ µi(Qi) can be rewritten as mi affine constraints (see Fig. 4 for the case

mi = 1).

cTi U ≤ aTijQi + bij , j = 1, . . . ,mi (29)

cTi U ≤ µi,sat.

In this case, the constraints (26) are replaced by linear constraints and the program (22) becomes

Q

μ(Q)

Fig. 4 Simple piecewise-linear approximation of the throughput curves used in the MPC

optimization step, see (29).

a linear program.

As mentioned in Section IID, we use a naive rounding procedure to obtain an integer-valued

control vector U from U0 at each period. Namely, starting from U = 0, we increase the coordinates

of the control vector by unit increments in the FCFS order, until we reach the rounded value of

U0 or until we cannot increase them because the constraints (25), (27) for k = 0 or (24) for k = 1

would be violated. An alternative approach would be to solve the program (22)-(27) as an integer

program, producing directly an integer solution for U0. In view of the heuristic nature of the MPC

approach, and because the TFM model is itself only an approximation of the real system dynamics,

quantifying the performance impact of using a better rounding procedure is complicated and hard to

justify. The feasibility of the MPC approach requires that the ATCs have enough time to implement

the directives. Therefore, we need the computation of (22) to be finished in a time much shorter

than the time period T , which is in general not possible using integer programming for realistic

models.
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IV. Weather Management

Our discussion so far assumed that parameters such as the average capacities at control bound-

aries and volumes were known. However, if a region experiences bad weather, its capacity to ac-

commodate traffic flows can be greatly reduced and vary stochastically. Weather forecasts useful for

detailed aircraft route planning are becoming increasingly available for TFM [43]. In this section, we

consider the systematic integration of probabilistic weather forecasts within TFM decision-making

in the NAS. Currently, some limited forms of flow management procedures take weather into ac-

count, such as Ground Delay Programs (GDPs) and Airspace Flow Programs (AFPs) [23]. We

would like to generalize and coordinate such programs in a more systematic way, while incorpo-

rating real-time information in a feedback loop. We extend the MPC approach of Section III C to

the situation where the capacity constraints evolve randomly in time according to a probabilistic

forecast. Hence we assume for modeling and control that the weather forecast has been translated

into a capacity forecast for control boundaries and control volumes. This subject is currently being

actively investigated [4, 23, 43].

A. A Model Integrating Weather Uncertainty

We assume that the weather state over the region of interest can be classified in a finite num-

ber of states, following current practice for establishing airspace flow programs (AFPs) [23] and

classifying the capacity region of airports [27]. We also assume that the weather state evolves

as a Markov chain {w(k)}k≥0 on a finite state-space W, with time-varying transition matrix

P(w(k + 1) = w′|w(k) = w) = [P (k)]ww′ . The transition matrix is assumed known, provided by

the from probabilistic forecast. Note that we can use such a model to represent weather scenarios

of the form considered by Ball et al. or Terrab and Odoni [1, 13], for example. The weather state

influences the parameters appearing in the constraints (9)-(11) of the model described in Section

IIC, namely the capacity vectors S,R and the matrices C1, C2,M . The vector R describes the

number of aircraft that control boundaries can accommodate, hence depends on the weather state,

and is decided by traffic management initiatives such as AFPs [23]. That the matrix C2 changes

with the weather state is evident from the fact that this matrix includes the models of the capacity
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envelopes of airports (see Section II B 4). These envelopes vary in shape according to the weather

state [27]. Hence we replace the constraints (11) by C2(w(k), k)U(k) ≤ R(w(k), k). We can also in-

clude weather-related changes in the throughput function µ to obtain a function µ(Q,w) depending

on the load and weather state.

B. Certainty-Equivalent MPC

We can now develop a certainty-equivalent model predictive controller (CE-MPC) similar to

the one described in Section III C. Namely, at period k0, we observe the weather state w(k0), and

we replace the constraints (24)-(27) by

E[M(w(k0 + k))|w(k0)]Qk ≤ E[S(w(k0 + k), k0 + k)|w(k0)], 1 ≤ k ≤ K (30)

C1(w(k0))U0 ≤ D(k0)

E[C1(w(k0 + k))|w(k0)]Uk ≤ E[µ(Qk, w(k0 + k))|w(k0)], 1 ≤ k ≤ K (31)

C2(w(k0))U0 ≤ R(w(k0))

E[C2(w(k0 + k), k0 + k)|w(k0)]Uk ≤ E[R(w(k0 + k), k0 + k)|w(k0)], 1 ≤ k ≤ K, (32)

where the expectations in the constraints (30), (31), (32) can be computed recursively for the next

K stages at the cost of essentially K matrix multiplications of size |W| × |W|. The optimization

problem is still convex, and a linear program under the assumptions stated in Section III C. Note

that constraint (30) can lead to infeasibility issues in the optimization procedure, for example if the

capacity of a volume drops significantly below the current value of the load because the weather

state changes. One could also ask that the capacity constraints be met with high probability, e.g.

P
[
M(w(k))Q(k) ≤ S(w(k), k)

∣∣∣w(k0)
]
≥ 1− ε,

for some specified ε. Such chance constraints can be approximated so that the MPC computations

remain tractable, see e.g. Nemirovski and Shapiro [44]. In the simulation section, we assume that

the constraints (30) on the state do not vary with the weather state, i.e., we use the constraint (24)

instead of (30).
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V. Simulation Results

A. Network Congestion due to Capacity Constraints

Our first simulated scenario illustrates the following well-known congestion phenomenon. Due

to sector capacity constraints (see (9)), a local weather event can create upstream congestion and

thereby impact a priori unrelated traffic flows. The situation is depicted on Fig. 5. Airport 1 sends

traffic to airports 2 and 3. The sampling period is set to T = 5 min. We include the control coupling

constraints

U1(k) + U4(k) + U9(k) ≤ R1(k) (departure runway utilization at airport 1)

U2(k) + U5(k) ≤ R2(k) (limited handoff rate B → C)

U3(k) ≤ R3(k) (landing rate constraint at airport 2).

We take R1(k) to be independent and identically distributed (iid) with mean 4T/3 (i.e., on average

one plane can leave every 45 s from airport 1), R2(k) iid with mean T (one plane can cross the

boundary B → C every minute on average), and under nominal conditions R3(k) are iid with mean

T (one plane can land at airport 2 every minute). The throughput curves are taken to be piecewise

linear as on Fig. 4, with the distances shown on Fig. 5 converted to throughput curves assuming the

simple geometry of Fig. 2 (the separation distance used here is 10 nmi). The external arrival rates

at queues 4 and 1, i.e., the rate of pushback from the gates for the two different flows, are 0.30T

and 0.25T respectively. Note that the flow from airport 1 to airport 3 can take a short or a long

route, as decided by the routing control U4 or U9 at queue 4. Finally, we have capacity constraints

in two regions. Region B can only contain 30 aircraft overall, and region D around airport 2 can

only contain 11 aircraft. That is, we must enforce Q2(k) +Q5(k) ≤ 30 and Q3(k) ≤ 11 for all k ≥ 0.

When a region reaches its capacity, it does not accept incoming traffic any more and the traffic is

queued in the region upstream. Under these nominal conditions, the FCFS policy has an acceptable

behavior and in particular stabilizes the system, see Fig. 5.

The capacity constraint in region B is particularly problematic however, since it couples the

traffic flows to airports 2 and 3. Indeed, suppose that queue 3 incurs a sudden drop in throughput

because region D around airport 2 is subject to a bad weather event reducing the landing capacity

drastically. Namely, assume now that R3(k) are i.i.d. with mean T/5. Hence on average one aircraft
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can land at airport 2 every five minutes instead of five previously. In this case, it is not possible

to stabilize the flow going from airport 1 to airport 3, and long lines necessarily form in queues

1, 2, 3. By using the same FCFS policy however, it turns out that the flow from airport 1 to airport

3 becomes unstable as well, as illustrated on Fig. 6 (a). The reason is that as queue 3 becomes

saturated, the length of queue 2 grows and does not leave enough capacity resources to queue 5. As

a result, the backlog at queue 4 grows dramatically even though this traffic is not directly headed

to the region impacted by the weather event.
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Fig. 5 Small scenario with geographic capacity constraints and a local bad weather event in

region D. In the absence of bad weather (nominal conditions), the FCFS policy stabilizes the

system, as shown on the right of the figure (100 periods of length T = 5 min each shown).

Queues 1− 6 start with 5 aircraft each.

There are various solutions to this issue. Perhaps the most straightforward is to set separate

capacity constraints in region B for the two flows. For example by replacing Q2(k) + Q5(k) ≤ 30

with Q2(k) ≤ 15 and Q5(k) ≤ 15, we guarantee enough resources to queue 5 to ensure that the

FCFS policy still stabilizes the flow from airport 1 to airport 3, see Fig. 6 (b). For this particular

choice, we recover stability of the flow originating from 4. Problems with this approach for more

complex scenarios include the difficulty of determining appropriate individual thresholds and of

setting many thresholds as the number of different flows in a region grows, the fact that it requires

the knowledge of the various traffic flow rates, and its potential lack of flexibility and reactivity in

the case of dynamically changing weather conditions.
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(a) Sample path for the FCFS policy.
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(b) Sample path for the FCFS policy with decoupled

constraints in region B. Queue 4 now remains stable.

Fig. 6 Same example as in Fig. 5, but in the event of bad weather, showing the results of the

FCFS and modified FCFS (decoupled constraints for region B) policies.

The MaxWeight policy can also keep the flow through queues 4 − 5 − 6 stable, even in the

absence of decoupled capacity constraints, and is therefore perhaps more flexible in this case. In the

case where no routing is allowed, maintaining stability of this flow requires giving a clear preference

to queue 5 with respect to queue 2 however, and this is accomplished by setting the weight matrix

Ξ such that for example ξ4 >> ξ5 >> ξ1 and ξ1 = ξ2. With such a choice, any slight imbalance

Q4 > Q5 gives priority to aircraft in queue 4 over aircraft in queue 1 to take off from airport 1.

Similarly, if routing is allowed, one can specify a preference for the shortest route by the choice

of weights. By changing these weights dynamically, one can give preference to certain flows in the

system. There is however no quantitative way of choosing the weights in general. A sample path of

the queue trajectories for the MaxWeight policy with routing allowed is shown on Fig. 7 (a).

Finally, we can implement the MPC controller of Section III C, again for the scenario with

reduced throughput in region D. The cost is set to be linear as in (28), with K = 15, γk = 18

the eight-dimensional all-one vector, and γK+1 = 50 × 18. The advantage of this control law is

that it leaves only few parameters to adjust, e.g. K and the magnitude of the final cost, and in

this case also stabilizes the flow from airport 1 to 3, see Fig. 7(b). One can specify a cost measure

in the optimization problem in terms of the vectors Q and U . In this case, our cost (excluding

the final cost) is the expected total number of aircraft in the system over the optimizing horizon,
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hence we indirectly attempt to minimize the total time spent in the system by all aircraft, which

is also an indirect measure of all delays. The potential drawbacks of this controller however is

that its implementation requires a lot of information to be sent to a central computing location at

the beginning of each period, namely the aircraft counts in each queue, the external arrival and

throughput rates, the weather state, etc.
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(a) Sample path for the MaxWeight policy with

routing.
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(b) Sample path for the MPC policy.

Fig. 7 Same example as in Fig. 5, but in the event of bad weather, showing the results of the

MaxWeight and MPC policies.

To help evaluate the performance of the different policies, we compute over 100 sample simula-

tions the cost measured by the total cumulative number of aircraft in the system during 100 periods

(each of length T = 5min). That is, the cost for a single run is
∑100

k=0 1
T
8Q(k). The performance

histograms for FCFS, FCFS with decoupled constraints, MW with routing and MPC are shown on

Fig. 8. Statistically, there is no advantage in using the MPC policy in this simple scenario over the

FCFS policy with properly decoupled constraints for Q5 and Q2, except for the fact that the MPC

approach is more systematic and avoids the problem of choosing bad individual thresholds, which

could happen in more complex scenarios. Note that even though the FCFS policy performs poorly

on average as discussed above, it has the best cost in a few simulation samples, where most likely

the asymptotic instability of queue 4 did not start manifesting itself significantly over the first 100

periods.
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Fig. 8 Performance histograms over 100 simulations, with bad weather over region D.

B. A Larger TFM Scenario

Finally, we illustrate the modeling of a larger TFM scenario over a portion of the western part

of the United States and discuss the performance of the three control policies for this problem.

The airspace modeled is primarily within the Oakland Air Route Traffic Control Center (ZOA),

and we consider the airports at Los Angeles (LAX), San Francisco (SFO), Seattle (SEA), Portland

(PDX), and Las Vegas (LAS). External traffic also enters the system, mainly via the major routes

coming from the east towards SFO, LAX and SEA. After identifying the major routes supporting

most of the traffic, we define control boundaries at which we would like to regulate traffic rates,

and the corresponding control volumes. Separating traffic flows with different destinations within

control volumes (see Section II), we obtain the queueing network shown on Fig. 9. It consists of

50 queues, with most of the control variables consisting of scheduling decisions, and with a few

routing decisions available. The capacity envelopes for the airports are obtained from the 2004

Airport Capacity Benchmark Report [27]. The throughput functions for the control volumes are

only approximately identified, based on the length of the control volumes, the required separation

distance (5 nmi), and assuming simple linear traffic flows in the volumes, as on Fig. 2. In order

to solve the MPC optimization problem as a linear program, these throughput curves are then
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Fig. 9 Network model for TFM in the simulated system. Thick gray lines correspond to control

variables coupled via the linear constraints (10), (11). All queues start initially empty. We

also show the automaton describing the probabilistic weather evolution as well as a sample

trajectory of a queue in the system under the MaxWeight policy. The red dashed line shows

the evolution of the weather state for that sample, namely S −H −M −H − T .

approximated by piecewise linear functions consisting of just two pieces, as shown in Fig. 4. The

departure rates at airports and other external arrival rates are shown on Fig. 9. Simulations of

the scenario are run for eight hours, with sampling period T = 4 min, resulting in a discrete-time

problem with 120 periods.

For this system, we simulate a bad weather event around San Francisco that changes the capacity

envelope at SFO airport according to the data given in the 2004 Airport Capacity Benchmark

Report [27]. The event also reduces the capacity in certain other regions in a more limited fashion,

in particular at the major traffic intersection East of SFO, and at LAX. We assume that after

some initial period during which the system operates at optimal capacity (starting state S), the
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Table 1 Typical computational requirements per period to solve the linear program for the

MPC heuristic. Computations were done using MATLAB and CVX [45, 46] on a standard

desktop with a 3.06GHz Intel Core 2 Duo processor and 4GB of RAM.

K Nb variables Nb constraints Computation time (s)

8 (32 min) 2120 744 ≤ 1s

23 (92 min) 6063 2227 ≤ 3s

38 (152 min) 9995 3699 ≤ 5s

weather changes at some random time to one of 2 states: medium (M) or high (H) weather impact.

In the H state, SFO allows no departures and accepts only 10 arrivals per hour; M corresponds

to Marginal conditions at SFO in the capacity benchmark [27]. The Markov chain modeling the

weather dynamics can jump between these 2 states for some time, but eventually reaches a final

absorbing state (terminal state T), in which the capacity is again optimal. The structure of the

probabilistic model is shown in Fig. 9. The transition probabilities from the initial state used

in the simulations are as follows. We set PSS(k) = 1 for k ≤ 13 (i.e., no bad weather for the

first 52 min). For 13 ≤ k ≤ 102, we set PSS(k) = 1 − p(k) with p(k) := (e4(k/120) − 1)/(e4 − 1),

PSM(k) = 0.2 p(k), PSH(k) = 0.8 p(k). Finally, PST(k) = 1 for k ≥ 103, a transition that is taken if

the bad weather scenario is avoided. All queues except the ones receiving external arrivals (i.e., the

queues 1, 4, 24, 6, 10, 12, 15, 17, 29, 32, 36, 40, 44) have a bounded capacity of 20 aircraft. In addition,

the complex intersection east of san francisco is also subject to a capacity bound

Q19(k) +Q25(k) +Q39(k) +Q41(k) +Q50(k) ≤ 20,∀k ≥ 0, (33)

and the region around three of the SFO arrival queues is subject to the constraint

Q3(k) +Q9(k) +Q43(k) ≤ 15,∀k ≥ 0. (34)

We simulate the different policies presented above using the model of Section II. FCFS does

not include the possibility of routing, and only the shortest routes can be chosen by the aircraft.

Routing is allowed in MaxWeight, which can take advantage of alternate paths to direct traffic

out of saturated areas. Note that the computation times of the MaxWeight and FCFS policy at

each period are negligible, and recall that these policies do not exploit the knowledge of the model
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parameters nor that of the transition probabilities in the weather automaton. We also use the

CE-MPC controller in the linear programming form described in Section IVB. The cost function

we optimize in the MPC objective (28) consists of a time-invariant cost γ1 = . . . = γK = 150,

γK+1 = 100 γ1, γ̃k = 0. At each time period, the MPC algorithm involves solving a linear program

with a few thousand variables and constraints, a computation that can be done in a few seconds, as

summarized in Table 1. We solve the linear programs with Matlab and the optimization modeling

package CVX [45], without trying to improve the computational performance by employing a more

sophisticated LP solver. Once the MPC control directive for the period is obtained, the rest of

the period would be available for the ATC to implement it, which is compatible with the short

computation time of the MPC heuristic. Setting the horizon K for MPC to 32, 60 and 92 minutes in

3 different sets of experiments (hence K = 8, 15, and 23 time periods, respectively), it was found for

this scenario that essentially no performance gain could be obtained by increasing the MPC horizon

beyond 32 minutes. This suggests that at the levels of uncertainty considered in this scenario, open-

loop planning for larger horizons based on expected average dynamics provides no useful additional

information. It was observed however that increasing the horizon of the MPC controller tends to

reduce the sensitivity of its performance to the choice of the performance metric of interest for the

system.

Simulation results obtained from 100 simulations in each set of experiments are shown in Fig.

10. The FCFS policy has good throughput performance under nominal conditions, and hence is

often an adequate low complexity policy to use. Here we define throughput as the the total number

of aircraft landing during the simulation. It is purely local and sends aircraft forward as soon as

possible however, which has detrimental effects in the case of bad weather reducing throughput

through control boundaries. In our scenario, the landing rate at SFO during bad weather (state M

or H) is not sufficient to accommodate all incoming flows, in particular the large one coming from the

East direction. As a result, queue 40 is unstable under any policy. A drawback of the FCFS policy

however is that it also quickly saturates the intersection East of SFO, blocking the North/South

traffic between SEA/PDX and LAX. That is, we find that under the FCFS policy the departure

queues Q24 and Q17 are unstable, see Fig. 11, even though the other policies can maintain these
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Fig. 10 Histograms of the performance results for 100 simulations, for a scenario with proba-

bilistic forecasts as described on Fig. 9. Each simulation corresponds to an eight hour interval.

On the left, we show the total cumulative number of aircraft in the system during the eight

hour duration of the simulation. In other words, an aircraft is counted once for every period

in which it remains in the system. On the right, we show the throughput of the policies, that

is, the total number of aircraft that landed during the simulation.

queues stable. This is the case of the MaxWeight policy for example. The results reported on Fig.

10 however show a worst performance for MaxWeight than for FCFS for this problem, and it was

found in this case that MaxWeight suffers from a somewhat lacking throughput at the relevant

time scale and its better stability properties compared to FCFS were significant only for longer

horizons. Overall, the conclusions that MaxWeight can mitigate the coupling effects between flows

when compared to FCFS at basically the same implementation cost, already illustrated in subsection

VA, make this policy still worth considering at least locally for regions supporting complex flow

35



0 50 100 150
0

2

4

6

8

10
Q17

Period #

# 
of

 A
cf

t
0 50 100 150

0

2

4

6

8

Q24

Period #

# 
of

 A
cf

t

0 50 100 150
0

20

40

60

80

100

120
Q40

Period #

# 
of

 A
cf

t

0 50 100 150
0

20

40

60

Q17

Period #

# 
of

 A
cf

t

0 50 100 150
0

10

20

30

40

50

60

Q24

Period #

# 
of

 A
cf

t
0 50 100 150

0

20

40

60

80

Q40

Period #

# 
of

 A
cf

t

Fig. 11 Sample path of the trajectories of initial queues for the flows starting East, South, and

North, over a period of 12 hours (180 periods) with a bad weather event simulated according

to the automaton shown on Fig. 9. The top line shows the MaxWeight policy and the bottom

line the FCFS policy. No policy can stabilize queue 40 due to the lack of landing capacity

at SFO. In addition, the congestion at the intersection East of SFO created by the FCFS

policy prevents the other flows to cross and destabilizes them. The MaxWeight policy does

not exhibit this issue, although it might increase the congestion on the East flow even more.

patterns.

Again the MPC policy was found to perform best, but requires the dynamical model of the

buffers (throughput functions) as well as the knowledge of the transition probabilities of the weather

automaton. In particular it stabilizes the North/South flow, by controlling the departure rates at

initial queues to avoid saturating the intersection. Note also that in general, airborne delays are

more costly than ground delays [47], which is the main reason (along with safety concerns) for

implementing ground holding programs. It is straightforward to take this aspect into account in the

MPC approach, by adjusting the coefficients γi accordingly for the different queues to the cost of

a delay of one time period at the associated geographic region. In contrast, FCFS and MaxWeight

have no direct means of distinguishing different costs for aircraft waiting at different queues and need

to be complemented by additional rules to avoid large airborne queues. MaxWeight tends to behave
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somewhat better than FCFS in this regard however, at least before hard capacity constraints on

the sector aircraft counts are reached, because it requires a positive “pressure” between the ground

departure queues and the first airborne queue before ordering aircraft to take-off. Finally, note

that the MPC controller could have been optimized to maximize the throughput, by replacing the

cost mentioned above for example by 100QK+1 +
∑K

k=0 γ̃
T
k Uk, where γ̃k,i = −1 if Uk,i controls the

output of an arrival queue at an airport (i.e. the queues 3, 9, 14, 23, 43, 46, 49, 35, 37) and γ̃k,i = 0

otherwise.

VI. Discussion and Conclusions

A. Summary on Modeling and Control for TFM

Let us summarize the methodology proposed to optimize TFM strategies over a given region

of interest and mention some future work needed to put this framework into practice. We start by

defining control boundaries, with control volumes defined as a byproduct. The geometry of these

boundaries and volumes is strongly influenced by the preferences of the air traffic controllers at the

tactical level. Namely, control boundaries are placed where it is most convenient for ATCs to impose

rate restrictions, e.g. at sector boundaries and usual metering points. Also, a sampling period is

defined, loosely depending on the size of the control volumes and on the capability of the ATCs to

execute most flow rate directives over the time period. Once this is done, the control structure is

hierarchical, with the TFM level issuing flow directives to the ATC level at the beginning of each

period. These directives specify the number of aircraft of different types (e.g. different destinations)

allowed to cross each boundary during the period. At the TFM level, the different types of aircraft

are organized in different buffers. The ATCs try to execute the TFM directives during the time

period, and at the end of the period report the new aircraft count in each volume to the TFM level,

which might differ from the expected one if some directives could not be implemented. Deviations

with respect to the directives is treated as a disturbance and taken into account by the feedback

form of the policies.

How much information the TFM level needs to issue directives at the beginning of each period

depends on the particular control strategy implemented. For the simplest strategies, e.g. FCFS and
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MaxWeight, the necessary information is minimal, and no dynamic model of the system is necessary.

Namely, the TFM level requires a prediction of the maximum number of aircraft of each type that

the ATCs can send through a control boundary during the period (the vector D(k)), the aircraft

count in the volumes at the beginning of the period (the vector Q(k)), and the knowledge of the rate

constraints (11) and capacity constraints (9). For these strategies, the separation of the controller

into two layers is in fact rather unnecessary as the policies require no or very few computations.

We have shown examples of undesirable congestion effects exhibited by myopic policies such as

FCFS and MaxWeight however, in particular due to coupled capacity constraints. Hence we pre-

sented an MPC strategy that takes a more global view of the TFM optimization problem. However,

it requires much more information and computations for its implementation. Departure rates at

airports and the linear rate constraints (11) are relatively easy to obtain [27, 28]. MPC also requires

the dynamic throughput model for each volume in the form of the functions µ(q). Finally, the MPC

procedure can incorporate and plan using weather forecasts in the form of stochastic predictions of

future volume capacities and rate constraints at control boundaries.

B. Conclusion

This paper presented an improved Eulerian model that can be used to develop closed-loop

control policies for the NAS and that takes into account all air traffic resources, including airport

capacity envelopes. The model is very flexible and provides decision support to air traffic controllers

to control traffic flow rates at the control boundaries of their choice. We present simulation results for

the performance of natural control strategies for the system, with different information requirements.

We believe that the proposed model is particularly useful in developing planning strategies during

extreme weather events, where coordination of NAS resources at distant locations is necessary.

Future work will consider the interface between the TFM level and the lower tactical level in more

details, in order to properly identify the maximum throughput curves required by our model, and

to validate the developed control laws using more precise trajectory-based simulations.
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