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Abstract— We consider within the framework of Mean Field
Games theory a dynamic discrete choice model with an ad-
vertiser, where a large number of minor agents (e.g., con-
sumers) are choosing between two predefined alternatives while
influenced by social and advertisement effects. For example,
in schools, teenagers’ decisions to smoke are considerably
affected by their peers (social effect), as well as the ministry
of health campaigns against smoking (advertisement effect).
The advertiser is “Stackelbergian”, in the sense that it makes
its decision first and then the consumers make their choices.
We show for a continuum of minor agents that there exists
a Stackelberg solution. Moreover, when the minor agents are
initially uniformly distributed on a line segment, we give an
explicit form for the solution and characterize it by a scalar
describing the way the population of agents splits between the
destination points.

I. INTRODUCTION

Discrete choice models were initially developed in micro-
economics to analyze human choice behavior in the face
of a finite set of alternatives, e.g., the choice of a mode of
transportation [1], of a residential location [2], smoking deci-
sion in schools [3], etc. These choices are mainly influenced
by the others’ choices (social or peers effect), as well as
by some personal factors, such as the financial situation in
the residential location example. In some situations, a third
factor considerably affects the individual choices, namely
the “advertisement effect”. We call advertisement the effort
exerted by an advertiser to induce individuals to choose
one alternative over the others. For example, in its intent
to reduce the percentage of smokers among teenagers, the
government makes some investments in the form of cam-
paigns against smoking to encourage the teenagers not to
smoke. On the other hand, a teenager’s decision to smoke is
considerably affected by her peers’ decisions. A related topic
in differential game theory are the advertising competition
models [4]. In these models, the consumers are not part of
the game.

In this paper, we model within the framework of Mean
Field Games (MFG) theory situations where a large number
of agents (e.g., consumers) are making a choice among
two alternatives, while taking into account the social and
advertisement effects. The latter is produced by a domi-
nating agent/advertiser advertising for one of the choices.
The advertiser is “Stackelbergian” [5], that is it makes its
decision first, with the consumers deciding afterwards, i.e.
advertisement precedes consumption. We seek a Stackelberg
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solution. In case of initially uniformly distributed consumers,
we describe by a scalar the way the population splits between
the alternatives. This scalar is a fixed point of a well defined
finite dimensional operator.

The MFG methodology, which we follow in this paper, is
concerned with a class of dynamic games involving a large
number of agents interacting through the mass effect of the
group. It posits at the outset an infinite population to which
one can ascribe a deterministic although initially unknown
macroscopic behavior (i.e. a given flow of population prob-
ability distributions also known as the mean field). In view
of the vanishing influence of isolated individuals, a generic
agent’s best response is then described by a Hamilton-Jacobi-
Bellman (HJB) equation propagating backwards and parame-
terized by the macroscopic behavior. In turn, the macroscopic
behavior satisfies a forward Fokker-Planck (FP) equation pa-
rameterized by the generic agents’ best response. Candidate
sustainable macroscopic behaviors are then computed as the
fixed points, if they exist, of a suitable macroscopic to macro-
scopic behavior operator. The corresponding best responses
when applied to the practical (finite population) situation,
constitute, under adequate conditions, an approximate Nash
equilibrium (ε−Nash equilibrium) [6], [7].

Definition 1: Consider N agents, a set of strategy profiles
S = S1 × · · · × SN and, for each agent k, a payoff function
Jk(u1, . . . , uN ), ∀(u1, . . . , uN ) ∈ S. A strategy profile
(u∗1, . . . , u

∗
N ) ∈ S is called an ε−Nash equilibrium with

respect to the costs Jk, if there exists an ε > 0 such that for
any fixed 1 ≤ i ≤ N , for all ui ∈ Si, we have Ji(ui, u∗−i) ≥
Ji(u

∗
i , u
∗
−i)− ε, where u∗−i = (u∗1, . . . , u

∗
i−1, u

∗
i+1, . . . , u

∗
N ).

The MFG theory was originally developed in a series of
papers by Huang et al. [6]–[8], and independently by Lions
and Lasry [9]–[11]. Recently, Bensoussan et al. developed
in [12], [13] a Stackelberg MFG model where a dominating
agent plays first and then a large number of minor agents
make their decisions sequentially. In this case, the agents
seek a Stackelberg solution [5], [14]. This is in contrast to
the Nash equilibria sought in the minor-major agent games
as originally introduced by Huang [15].

Definition 2: Consider N + 1 agents, a set of strategy
profiles S = S0 × · · · × SN , and for each agent k, a
payoff function Jk(u0, . . . , uN ), ∀(u0, . . . , uN ) ∈ S. Sup-
pose that agent 0 is the dominating agent. A strategy profile
(u∗0, . . . , u

∗
N ) ∈ S is called a Stackelberg solution w.r.t. the

costs Jk, if there exists a map T from S0 to S1× · · · ×SN ,
such that for all u0 ∈ S0, T (u0) is a Nash Equilibrium
w.r.t. Jk, k = 1, . . . , N , and u∗0 = min

u0∈S0

J0(u0, T (u0)), with

T (u∗0) = (u∗1, . . . , u
∗
N ).
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In the model considered in this paper, the only randomness
lies in the agents’ initial conditions, and the control strate-
gies, while expressed as state feedback laws, correspond in
effect to open loop policies. Unlike [12], [13], in this paper,
the dominating agent’s optimal control problem involves a
dynamic constraint that depends non-linearly on the minor
agents’ macroscopic behavior and the dominating agent’s
state. An explicit Stackelberg solution is thus possible only in
some special cases, for example, uniform initial distribution
on a line segment of the minor agents.

The main contribution of this paper is to introduce an
“advertising” model in which both the consumers and ad-
vertiser are part of the game. Moreover, it describes the way
the population of consumers splits between the alternatives
under the social and advertisement effects. The mathematical
model is introduced in Section II. In Section III, we solve
the limiting problem and show the existence of a Stackelberg
solution. In Section IV, we consider the case of initially
uniformly distributed minor players and give an explicit form
of the solution. In this case, we describe by a scalar λ the
way the population splits between the alternatives under the
social and advertisement effects. In Section V, we provide
some numerical simulation results, while Section VI presents
our conclusions.

Remark 1: For the proofs of theorems and lemmas, we
refer the reader to [16].

A. Notation

The following notation is used throughout the paper. We
fix a generic probability space (Ω,F , P ) and denote by
E(X) the expectation of a random variable X . The indicator
function of a subset X is denoted by 1X . The transpose of
a matrix M is denoted by M ′. We denote by Ik the identity
k × k matrix. We denote the matrix product MM ′ by M2.
Throughout this paper, L2([0, T ],Rm) is endowed with the
inner product 〈f, g〉 =

∫ T
0
f(t)′g(t)dt, and the induced norm

is denoted by ‖.‖2.

II. MATHEMATICAL MODEL

We consider a dynamic non-cooperative game involving
N minor agents and one dominating agent/advertiser with
respective dynamics

ẋi = Axi +Bui i = 1, . . . , N, (1a)
ẏ = A0y +B0v, (1b)

where xi ∈ Rn, x0
i and ui ∈ L2([0, T ],Rm) are the state,

initial state and control input of the minor agent i, while
y ∈ Rn1 , y0 and v ∈ L2([0, T ],Rm1) are the state, initial
state and control input of the dominating agent. We assume
that the initial conditions x0

i , i = 1, . . . , N , are independent
and identically distributed (i.i.d.) random vectors on some
probability space (Ω,F , P ) with distribution P0.

The minor and dominating agents are associated with the

following individual (non-convex) cost functions:

Ji(u, v) = E
[ ∫ T

0

{q
2

∥∥xi − αx̄−K(p2)y
∥∥2

(2a)

+
r

2

∥∥ui∥∥2
}

dt +
M

2
min
j=1,2

(∥∥xi(T )− pj
∥∥2
)]
,

J0(v, u) = E
[ ∫ T

0

r0

2

∥∥v∥∥2
dt +

M0

2

∥∥x̄(T )− p2

∥∥2
]
, (2b)

for i = 1, . . . , N , where u = (ui, u−i), x̄ = 1/N
∑N
i=1 xi,

α ≥ 0, q, r, r0,M,M0 > 0, and pj ∈ Rn, j = 1, 2, are the
possible ultimate destination choices. The matrix K(p2) ∈
Rn×n1 is a function of the destination point p2. M is a large
number, which incites the final state to be close to one of
the two destinations at time T .

Example 1: Consider a group of N teenagers choosing
before a time T between smoking (p1) or not smoking (p2).
At time t, teenager i’s smoking inclination is modeled by
a variable xi(t) ∈ [−1, 1], where the value −1 correspond
to a nonsmoker, while 1 represents a full smoker. The effort
exerted by i at time t to change its status is modeled by
ui(t) ∈ R. For example, |ui| would represent the amount
of money paid by i to increase (extra cigarettes) or de-
crease (medical treatment) its status. On the other hand, the
government investments against smoking is modeled by a
variable v ∈ R. The variable y represents the effectiveness
of the advertising investment. The influence exerted by the
advertisement on the teenagers’ smoking status is modeled
by K(p2)y, where K(p2) := p2 = “Do Not Smoke” = −1.
A teenager, in the process of choosing between not smoking
or smoking, minimizes the cost (2a), which penalizes along
the path the deviation from the peers smoking status x̄ and
the government nonsmoking advertisement K(p2)y, as well
as the effort to change the smoking status. Moreover, the
teenager should be by time T a smoker (p1) or nonsmoker
(p2) ) lest he/she be considered undecisive by its peers. Thus,
lack of a decision by time T is strongly penalized in the final
cost. On the other hand, the government tries to minimize
its advertisement investments (the running cost of (2b)), and
should convince by time T the teenagers to be nonsmokers.
Failure to sway a majority of teenagers away from smoking
results in a strong penalty in the final cost.

III. MEAN FIELD STACKELBERG COMPETITION

In a Stackelberg competition, the dominating agent (DA)
plays first and then the minor agents (mA) make their deci-
sions. The agents solve the game as follows. On the one hand,
given the DA strategy v, the mA play a Nash equilibrium
with respect to their individual costs Ji(ui, u−i, v), i =
1, . . . , N . On the other hand, to compute its optimal strategy,
the DA constructs a function that maps its strategies v to the
corresponding mA Nash equilibrium (u∗i (v), u∗−i(v)), if it
exists uniquely. Subsequently, by implementing this map in
its cost, the DA computes its optimal strategy by minimizing
J0(v, u∗i (v), u∗−i(v)).

In view of (2a)-(2b), the DA/mA interact with the mA
through the mean field term x̄. An efficient methodology to
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solve dynamic games involving a large number of weakly
coupled agents is the MFG approach. We start by assuming
a continuum of mA to which one can ascribe a deterministic
although initially unknown mean trajectory x̄. Then, the
limiting game consists of (i) a representative (generic) agent
of state x and initial state x0, where x0 is a random vector
of distribution P0, and (ii) the DA defined in (1b). The state
x satisfies (1a). The generic agent and DA limiting cost
functionals are respectively,

J(u,x̄, v) =

∫ T

0

{q
2

∥∥x− αx̄−K(p2)y
∥∥2

+
r

2

∥∥u∥∥2
}

dt

+
M

2
min
j=1,2

(∥∥x(T )− pj
∥∥2
)
, (3a)

J̄0(v,x̄) =

∫ T

0

r0

2

∥∥v∥∥2
dt +

M0

2

∥∥x̄(T )− p2

∥∥2
, (3b)

where x̄ = E[x], in view of the assumed independence of
the agents’ random initial conditions. The cost functionals
(3a)-(3b) are those of the mA/DA, where the average of the
minor agents is replaced by an assumed given deterministic
trajectory x̄.

In the following subsection, we show that there exists, for
any DA strategy v, a mA Nash equilibrium. Moreover, we
characterize each equilibrium by a scalar λ describing the
way population of mA splits between the alternatives under
the social effect and the advertisement effort v.

A. mA Nash Equilibrium

Given the DA strategy v associated with an influence
state trajectory y(t), t ∈ [0, T ], we start by computing
the generic agent’s best response to x̄. The cost function
(3a) can be written as the minimum of two independent
Linear Quadratic Regulator (LQR) optimal tracking prob-
lems, each associated with one of the two destination points.
J(u, x̄, v) = min

(
J1(u, x̄, v), J2(u, x̄, v)

)
, where

Jj(u, x̄, v) =

∫ T

0

{q
2

∥∥x− αx̄−K(p2)y
∥∥2

+
r

2

∥∥u∥∥2
}

dt

+
M

2

∥∥x(T )− pj
∥∥2
,

with j = 1, 2. Accordingly, we define the basin of attraction
D(x̄, y), such that if the generic agent is initially in D(x̄, y),
then the LQR optimal tracking problem corresponding to p1

is the less costly, and the generic agent goes towards p1.
Otherwise, it goes towards p2. The representative agent’s best
response u∗ satisfies [17]

u∗ = −1

r
B′n

−ṅ = A′n+ q
(
x− αx̄−K(p2)y

)
,

(4)

with n(T ) = M
(
x(T ) − p11D(x̄,y)(x0) − p21D(x̄,y)c(x0)

)
and

D(x̄, y) =
{
x0 ∈ Rn|J1,∗(x0, x̄, v)− J2,∗(x0, x̄, v) ≤ 0

}
=
{
x0 ∈ Rn|β′x0 ≤ δ + ∆

(
αx̄+K(p2)y

)}
,

where Jj,∗(x0, x̄, v) is the optimal cost of the LQR optimal
tracking problem associated with pj , ∆ is a linear form on
L2([0, T ],Rn), such that for all x ∈ L2([0, T ],Rn)

∆(x) = (5)

Mq

r
(p1 − p2)′

∫ 0

T

∫ η

T

φ(η, T )′B2φ(η, σ)x(σ) dσdη,

φ is the state-transition matrix (STM) of 1
rΓ(t)B2 −A′ and

Γ̇ =
1

r
ΓB2Γ− ΓA−A′Γ− qIn, Γ(T ) = MIn

β = Mφ(0, T )(p2 − p1)

δ =
1

2
M(‖p2‖2 − ‖p1‖2) +

M2

2r
p′2

∫ 0

T

(
φ(η, T )′B

)2

dη p2

− M2

2r
p′1

∫ 0

T

(
φ(η, T )′B

)2

dη p1.

Given the macroscopic behavior x̄ and the DA influence
function y(t), the generic agent’s best response is uniquely
determined. Now, for a given y(t) trajectory, we study the
existence of a consistent macroscopic behavior x̄, i.e., such
that x̄ is the mean of the generic agent’s state at the (x̄, y(t)
dependent) equilibrium. By taking the expectations of the
right and left hand sides of (1a) and (4), one can show that
x̄ satisfies the following Mean Field equation system (MF)

˙̄x = Ax̄− 1

r
B2n

−ṅ = A′n+ q(1− α)x̄− qK(p2)y
(6)

with x̄(0) = µ0, n(T ) = M(x̄(T )− pλ), λ = P0

(
D(x̄, y)

)
,

and pλ = λp1 + (1 − λ)p2. Note that λ is the fraction of
minor agents that goes towards p1.

Assumption 1: The following Riccati equation has a
unique solution:

Π̇ + ΠA+A′Π− 1

r
ΠB2Π + q(1− α)In = 0, (7)

with Π(T ) = MIn.
Note that if α ≤ 1, then (7) has a unique solution [18, page

23]. For more details about the the existence and uniqueness
of solutions of (7), one can refer to [19]. Denoting Φ as the
STM of A− 1

rB
2Π, define the following entities:

R(t) = Φ(t, 0)

R̄(t) =
M

r

∫ t

0

Φ(t, σ)B2Φ(T, σ)′dσ (8)

Ξ(y)(t) = −q
r

∫ t

0

∫ σ

T

Φ(t, σ)B2Φ(τ, σ)′K(p2)y(τ)dτdσ

F (λ, y) = P0(Hλ(y))

Hλ(y) =
{
x0 ∈ Rn|β′x0 ≤ δ + ∆

(
K(p2)y

)
+ α∆

(
Rµ0 + R̄pλ + Ξ(y)

)}
.

(9)

In the following lemma, we show that there exists a one to
one map between the fixed point paths x̄ and the fixed points
of the finite dimensional function F (., y). The existence of
the latter is guaranteed under the following assumption.
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Assumption 2: We assume that P0 is such that the P0-
measure of hyperplanes is zero.

Using techniques similar to those used in [17, Theorem
6], one can show the following Lemma.

Lemma 1: Under Assumptions 1 and 2, the following
statements hold:

1) x̄(t) is a solution of the MF equation system (6) if and
only if it can be written under the form:

x̄(t) = R(t)µ0 + R̄(t)pλ + Ξ(y)(t), (10)

where λ = F (λ, y) (i.e. λ is fixed point of F (., y)
defined in (9)).

2) The function F (., y) has at least one fixed point λ
(equivalently the MF equation system has at least one
solution).

To prove the first point, we consider λ at first as a
parameter. In this case, (6) is a linear forward-backward
differential equation parameterized by λ. Under Assumption
7, n can be written as an affine function of x̄, i.e. n(t) =
Π(t)x̄(t) + β(t), where β is a well defined function. By
replacing this form of n in (6), one can show that x̄ is equal
to (10). Thus, a fixed point path x̄ is of the form (10), where
λ = P0(D(x̄, y)) = P0(D(R(t)µ0+R̄(t)pλ+Ξ(y)(t), y)) =
P0(Hλ(y)) = F (λ, y). Hence, λ is a fixed point of F (., y),
for fixed y(t). The converse is proved by a simple verification
argument.

By solving the backward equation in (6) and replacing the
solution n in the forward equation, it can be shown as in [17]
that the limiting macroscopic behaviors at the equilibrium x̄
satisfy the following integro-differential equation

˙̄x = L(x̄, y)(t), (11)

where x̄(0) = µ0 and

L(x̄, y)(t) = (A− 1

r
B2Π)x̄

+
M

r
B2Φ(T, t)′F̄ ◦∆

(
αx̄+K(p2)y)

)
(p1 − p2)

+
M

r
B2Φ(T, t)′p2 −

q

r
B2

∫ t

T

Φ(σ, t)′K(p2)y(σ)dσ

F̄ (s) = P
(
β′x0 ≤ δ + s

)
. (12)

Using techniques similar to those used in [17, Theorem
9], one can show that in the case of a finite population of N
agents, the strategy profile (u∗i , u

∗
−i), defined in (4) for any

DA strategy v, is an ε−Nash equilibrium with respect to the
costs Ji, i = 1, . . . , N defined in (2a), where ε goes to zero
as N increases to infinity.

To compute its optimal strategy, the DA should be able,
for each strategy v, to anticipate uniquely the mA Nash
equilibrium. In the following, we define a condition under
which the uniqueness of the mA equilibria holds.

Assumption 3: We assume that F̄ is differentiable with
respect to λ and |dF/dλ|(λ, y) < 1 for all λ ∈ [0, 1] and
y ∈ L2([0, T ]).

Note that Assumption 3 can be satisfied if the initial
spread of the minor agents is sufficient. In fact, dF/dλ =

α∆
(
R̄(p1−p2)

)
dF̄ /ds (here the linear form ∆ defined in (5)

acts on the function R̄(t)(p1−p2)). If the probability density
function dF̄ /ds of βx0 is strictly bounded by 1/|α∆

(
R̄(p1−

p2)
)
|, then Assumption 3 is satisfied.

Example 2: If x0 has a Gaussian distribution N (µ0,Σ0)

with 2πβ′Σ0β >
(
α∆
(
R̄(p1 − p2)

))2

, then Assumption 3
is satisfied.

Under Assumption 3, the function F (λ, y) − λ has a
negative derivative w.r.t. λ. Therefore, one can state the
following theorem.

Theorem 2: Under Assumptions 1, 2, and 3, given the
DA strategy v, F (., y) has a unique fixed point λ. Thus,
the mA limiting game admits a unique Nash equilibrium.
Moreover, the mA macroscopic behavior x̄ satisfies the
integro-differential equation (11).

B. DA Optimal Control Problem
Under Assumptions 1, 2, and 3 and given the DA strategy

v, the unique mA Nash equilibrium is fully determined by
(11). The DA optimal control problem is then defined as
follows:

min
v∈L2([0,T ])

J̄0

(
v, x̄(v)

)
s.t. ẏ = A0y +B0v and ˙̄x = L(x̄, y)(t). (P1)

Because of the linear form ∆ defined in (5), the dynamic
constraint (11) is a nonlinear integro-differential equation,
where the vector ˙̄x at time t depends on the entire path
x̄(σ), σ ∈ [0, T ]. Therefore, (P1) is a nonstandard optimal
control problem, and the standard dynamic programming
method cannot be applied. We solve the problem via the
calculus of variations method [20]. We start at first by
proving the existence of an optimal control law v∗.

Theorem 3: Under Assumptions 1, 2 and 3, the DP opti-
mal control problem (P1) has an optimal control law v∗.

Having proved the existence of an optimal control law,
we now characterize the optimal solution v∗, as the solution
of a certain differential equation, see Theorem 4 below. In
the following, we denote by v∗ the optimal control law, y∗

the optimal DA state and x̄∗ the corresponding mA optimal
mean field. The idea of the following analysis is to derive
a first variation condition on the cost functional in (P1) by
considering a perturbation v = v∗ + ηδv, where η ∈ R,
and δv ∈ L2([0, T ]). This condition is, as it is shown below
(16a)-(16b)-(17), a Backward functional ordinary differential
equation (BODE) involving the optimal control law v∗. We
start by computing the Gâteaux derivatives [20] of y and x̄
at v∗ in the direction δv:

d

dη
y(v∗ + ηδv)

∣∣∣
η=0

:= δy

d

dη
x̄(v∗ + ηδv)

∣∣∣
η=0

:= δx̄,

(13)

where,
d

dt
δy = A0δy +B0δv, δy(0) = 0

d

dt
δx̄ = L1(δy)(t) + L2(δx̄)(t), δx̄(0) = 0,
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and L1 (resp. L2) is a continuous linear operator from
the Hilbert space L2([0, T ],Rn1) (resp. L2([0, T ],Rn)) to
L2([0, T ],Rn) (resp. L2([0, T ],Rn), such that for all z1 ∈
L2([0, T ],Rn1) and z2 ∈ L2([0, T ],Rn),

L1(z1)(t) = −q
r
B2

∫ t

T

Φ(σ, t)′K(p2)z1(σ)dσ

+
M

r
ξ∗∆

(
K(p2)z1

)
B2Φ(T, t)′(p1 − p2)

L2(z2)(t) = (A− 1

r
B2Π)z2(t)

+
Mα

r
ξ∗∆

(
z2

)
B2Φ(T, t)′(p1 − p2)

ξ∗ =
dF̄

ds

(
∆
(
αx̄∗ +K(p2)y∗

))
. (14)

To extract the Gâteaux derivatives δy and δx̄ from the
expressions of L1 and L2, we need to compute the relevant
adjoint operators. We recall from [21] that the adjoint oper-
ator of a linear continuous operator G defined on a Hilbert
space H1 is the linear continuous operator G∗ defined on
a Hilbert space H2 satisfying for all x ∈ H1 and y ∈ H2

〈G(x), y〉 = 〈x,G∗(y)〉. Using Fubini-Tonelli’s theorem [22],
one can show that the adjoint operators of L1 and L2 are
respectively

L∗1(z)(t) =
q

r
K(p2)′

∫ t

0

Φ(t, σ)B2z(σ)dσ

+ ξ∗K(p2)′H(t)

∫ T

0

Φ(T, σ)B2z(σ)dσ

L∗2(z)(t) = (A− 1

r
B2Π)′z(t)

+ ξ∗αH(t)

∫ T

0

Φ(T, σ)B2z(σ)dσ,

(15)

for all z ∈ L2([0, T ],Rn), where

H(t) =
M2q

r2

∫ t

0

φ(η, t)′B2φ(η, T )dη(p1 − p2)2.

Given an optimal control law v∗, we define the following
BODE:

−Ṗ = A′0P + L∗1(Q)(t) (16a)

−Q̇ = L∗2(Q)(t) (16b)

with P (T ) = 0 and Q(T ) = M0(x̄∗(T )−p2). We now state
the main result of this paper.

Theorem 4: Under Assumptions 1, 2, and 3, if v∗ is an
optimal control law of (P1) and the corresponding BODE
(16a)-(16b) has a unique solution (P,Q), then

v∗ = − 1

r0
B′0P. (17)

In the following, we study the existence and uniqueness
of solutions of (16a)-(16b). Given the function Q, equation
(16a) is a linear Ordinary Differential Equation (ODE) which
has a unique solution. Thus, it is sufficient to study the
second equation (16b). We define the matrix

Σ = α

∫ T

0

∫ T

σ

(
Φ(T, σ)B

)2

Φ(τ, T )′H(τ)dτdσ. (18)

Assumption 4: Either ξ∗ is equal to zero or 1/ξ∗ is not
an eigenvalue of Σ, where ξ∗ is defined in (14).

Assumption 4 can be satisfied, for example, in the follow-
ing two cases:

1) If the initial spread of the agents is sufficient (dF̄ /ds
is low enough).

2) If dF̄ /ds is bounded, and T is small enough.
In fact, ξ∗Σ is in both cases negligible with respect to In.
Hence, 1/ξ∗ is not an eigenvalue of Σ.

Lemma 5: Under Assumption 4, (16b) has a unique solu-
tion.

Theorem 3 asserts that the DA can always act optimally.
Multiple optimal control laws v∗ may exist, each charac-
terized by (16a)-(16b)-(17). To compute its optimal strategy,
the DA should solve the coupled nonlinear forward-backward
functional differential equations (1b)-(11)-(16a)-(16b), where
v in (1b) is equal to (17). Once the DA plays v∗, the mA act
subsequently as follows. Each mA computes the unique fixed
point of F (, .y∗), the corresponding macroscopic behavior
(10) and its best response (4) to this behavior.

In view of the nonlinear functional (14) of x̄∗ and y∗,
finding an explicit solution of (1b)-(11)-(16a)-(16b) is non
trivial. Noting that dF̄ /ds is the probability density function
of β′x0 − δ (see (12)), one can hope to compute an explicit
solution in case this random variable is uniformly distributed,
i.e. dF̄ /ds is piecewise constant. In the following section,
we investigate this case.

IV. CASE OF UNIFORM INITIAL DISTRIBUTION

In this section, we study a special case where the minor
agents’ initial conditions are uniformly distributed on a line
segment. More precisely, we assume that β′x0 − δ has a
uniform distribution U([−a1−c/2, a2+c/2]), where a1 > 0,
a2 > 0, and c > 0. We show in this case that if the initial
spread of the minor agents is sufficient (see Assumption 5
below), then there exists a unique Stackelberg solution. There
are two distinct destination points and we describe the way
the population of minor agents splits between the two.

The function F̄ is piecewise differentiable. Therefore,
we need an alternative to Assumption 3, under which the
uniqueness of the mA Nash equilibria holds. Moreover, in
order to apply the variational methods of Subsection III-B,
we require F̄ to stay in a differentiable domain for all the
DA strategies, which is the case when the mA agents are
spread enough (see Lemma 7 below).

Assumption 5: We assume that c > Mα
∣∣∣∆(R̄(p1−p2)

)∣∣∣.
Under Assumption 5, given the DA strategy v, the mA

limiting game admits a unique Nash equilibrium by virtue
of Theorem 2.

Theorem 6: Under Assumptions 1, 2 and 5, the DA opti-
mal control problem (P1) has an optimal control law v∗.

Lemma 7: Under Assumptions 1, 2 and 5, there exists
c0 > 0 independent of v such that for all c > c0, there exists
a unique mA Nash equilibrium corresponding to λ ∈ (0, 1).

For the rest of the analysis, we assume that c > c0. In this
case, the unique fixed point λ corresponding to a DA optimal
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control law v∗ is in (0, 1). Since F is differentiable in (0, 1),
one can use techniques similar to those used in Theorem 4
to show that v∗2 satisfies (17) (provided that the Assumptions
1, 2 and 5 are satisfied, and 1/c is not an eigenvalue of Σ
defined in (18)).

In the following, we characterize the Stackelberg solution,
that is, the DA optimal state y∗ and the corresponding
mA macroscopic behavior captured here by x̄∗ . The pair
(x̄∗, y∗) satisfies (1b)-(6)-(16a)-(16b)-(17). We define the
states h = (x̄∗, y∗, q1), d = (n, P,Q, q2), where q1(t) =∫ t

0
Φ(T, σ)B2Q(σ)dσ and q2(t) =

∫ T
t

Φ(T, σ)B2Q(σ)dσ.
(h, d) satisfies

ḣ = K1(t)h+K2(t)d

ḋ = K3(t)h+K4(t)d
(19)

with h(0) = h0 = (µ0, y
0, 0) and d(T ) = K5h(T ) + Kλ,

where K1(t) = diag(A,A0, 0),

K2(t) =

k1 0 0 0
0 k2 0 0
0 0 k3 0

 K5 =


MIn 0 0

0 0 0
M0In 0 0

0 0 0

 ,

K3(t) =


−q(1− α)In qK(p2) 0

0 0 k4

0 0 −αH(t)/c
0 0 0

 ,

K4(t) =


−A′ 0 0 0

0 −A′0 0 −K(p2)′H(t)/c
0 0 k5 −αH(t)/c
0 0 −k3 0

 ,
Kλ = −

(
Mpλ, 0,M0p2, 0

)
, k1 = − 1

rB
2, k2 = − 1

r0
B2

0 ,

k3 = Φ(T, t)B2, k4 = −K(p2)′
(
q
rΦ(t, T )+H(t)

c

)
and k5 =

−(A− 1
rB

2Π)′.
The equation system (19) is a system of coupled nonlinear

Forward-Backward differential equations. In fact, the final
condition d(T ) depends through λ non-linearly on the path
(x̄∗(σ), y∗(σ)), σ ∈ [0, T ]. To solve this system, we start
by considering λ as a parameter. The equation system is
then a system of coupled Linear Forward-Backward ordinary
differential equations parameterized by λ that we denote λ-
LFBODE. Under Assumption 6 below, one can solve the
λ-LFBODE, and give an explicit solution parameterized by
λ. By replacing the parameterized solutions in the expression
of λ = P0(D(x̄∗, y∗)), we construct a one-to-one map
between the solutions of (19) and the fixed points of a
finite dimensional operator acting on λ. Thus, we start by
considering λ in Kλ as a parameter.

Assumption 6: The following generalized Riccati equa-
tion has a unique solution

Ẇ = K4W −WK1 −WK2W +K3, (20)

with W (T ) = K5.

For more details about the the existence and uniqueness of
solutions of (20), one can refer to [19].

Theorem 8: Under Assumption 6, the λ-LFBODE has a
unique solution (h, d). Moreover, d = Wh+ S, where S is
the unique solution of

Ṡ = (K4 −WK2)S, S(T ) = Kλ. (21)
We consider respectively Φ1 and Φ2 the STM of K1 +

K2W and K4 −WK2, and we define

Fu(λ) = P0(Hλ)

Hλ =
{
x0 ∈ Rn|β′x0 ≤ δ+

∆
((
αIn,K(p2), 0

)′(
R1h0 +R2Kλ

))}
R1(t) = Φ1(t, 0)

R2(t) =

∫ t

0

Φ1(t, σ)K2(σ)Φ2(σ, T )dσ.

(22)

Using techniques similar to those used in Lemma 1, one can
show the following result.

Theorem 9: Under Assumptions 1, 2, 5, and 6, (19) has
a unique solution (h, d), where d = Wh+ S and

h(t) = R1(t)h0 +R2(t)Kλ, (23)

where λ is the unique fixed point of Fu in (22).
Theorem 9 describes the unique way the limiting popu-

lation splits between the destination points under the social
and advertisement effects. In fact, the fixed point λ is the
fraction of minor agents that chooses p1. One can apply
the bisection method to find λ. Once λ is computed, the
agents can compute the vectors (h, d = Wh+ S), where h
is given by (23). The dominating player can then compute its
optimal strategy (17), where P is the second component of
d. Furthermore, the minor players can predict their limiting
macroscopic behavior, the first component of d, and compute
their optimal strategies (4). The minor agents’ strategy profile
is an ε−Nash equilibrium with respect to the minor players
costs.

V. SIMULATIONS

To illustrate the collective choice mechanism in the pres-
ence of social and advertisement effects, we consider a group
of 6000 agents initially uniformly distributed on the segment
[−25, 5]. The agents are choosing between p1 = −20 and
p2 = 20. The social effect is represented by αx̄, where α =
0.5. We consider two scenarios. In the first one, the agents
make their choices in the absence of an advertisement effect
(K(p2) = 0), while in the second scenario, a dominating
agent advertises for p2. The advertisement effect is modeled
in the cost by K(p2)y = p2y, where y is the (influence) state
of the dominant agent. We set T = 3s, A = 0.5, B = 0.5,
A0 = −0.1, B0 = 0.1, y0 = 0, q = 10, r = r0 = 10,
and M = M0 = 2000. In the absence of an advertisement
effect, λ = 0.84 is the unique fixed point of Fu defined in
(22). Accordingly, 84% of the minor agents go towards p1

(Fig. 1). On the other hand, the presence of advertisement
for alternative p2 increases from 16% to 87% the fraction of
minor agents that go towards p2 (Fig. 2).
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Fig. 1. Evolution of the density of minor players in the absence of
advertisement effect - 16% of the minor agents go towards p2 = 20. In
the absence of an advertisement effect, the majority of the population goes
towards p1.
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Fig. 2. Evolution of the density of minor players in the presence of
advertisement effect - 87% of the minor agents go towards p2 = 20. Under
the advertisement effect, the majority of the population goes towards p2.

VI. CONCLUSION

We introduce in this paper a dynamic collective choice
model in the presence of social and advertisement effects.
In this model, a large group of minor consumers choose
between two alternatives while influenced by their average
and an advertisement effect. The latter is exerted by a
Stackelbergian dominating advertiser aiming at convincing
the population of minor agents to choose p2. We consider
the limiting infinite population game and derive conditions
under which a Stackelberg solution exists. In case of minor
agents initially distributed uniformly on a line segment, we
characterize the solutions by a vector (λ, 1 − λ) describing
the way the population of consumers splits between the

alternatives. The scalar λ is a fixed point of a well defined
finite dimensional operator. Finally, it is of interest for future
work to extend the results to the case of multiple competitive
advertisers, with multiple potential choices.
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