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Abstract— In this paper, we study the mean field control
of a large population of electric space heaters with linear
dynamics and saturation constraints on the inputs. The mean
field model is described by the fixed point of a system of
coupled partial differential equations. A numerical algorithm
is proposed to find this fixed point, which takes advantage of
the special form of the individual control problem. We derive
a decentralized control mechanism based on the mean field
equilibrium solution under which the mean temperature of the
population follows a set target temperature, while controls for
each device are generated locally and attempt to keep individual
temperature deviations small. We illustrate the results using
numerical simulations, and compare the solutions obtained to
the case where control inputs are unconstrained.

I. INTRODUCTION

With the increasing levels of renewable power generation
(wind turbines, solar panels) connected to power grids, it
is always important to balance between the load demand
and the generation. However, due to the intermittent char-
acteristics of renewable generation (which amounts to high
variability), auxiliary energy (such as bulk energy storage) is
often required to maintain such balance [1]. In this context,
the dispersed household devices (such as electric water
heaters, electric space heaters, heat pumps, refrigerators,
etc.), constitute a readily available source of energy to help
mitigate the variability of renewable power generation [2].
These devices are naturally present in the power system and
come in large quantities.

In order to utilize and control these dispersed devices, it
is desirable to develop a decentralized control mechanism,
which ideally should meet the following requirements: 1)
control actions should be computed locally by each device
yet preserve global optimality; 2) the level of data exchange
between the central authority and users should be kept to a
minimum; and 3) the disturbance to users load profile relative
to the uncontrolled situation should be kept small.

A class of decentralized control mechanisms for load
management of power systems were previously designed in
[3]–[5] based on the mean field game (MFG) equilibrium
solution of linear quadratic Gaussian (LQG) models with
integral control in the cost coefficients. For example, electric
space heaters with diffusion dynamics are controlled to col-
lectively reach a target temperature under a non-cooperative
framework in [3] and under a cooperative framework in
[4]. In [5] water heaters with Markovian jump-driven hot
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water demand models are used as agents under the mean
field control. The equilibrium solution concept used to derive
these decentralized control mechanisms is based on the ε-
Nash Equilibrium theorem derived in [6]. However, the cited
literature does not consider constraints on control inputs
when deriving optimal control laws. The power demands
of a large number of home appliances are controlled in a
decentralized fashion based on frequency regulation in [7],
and at equilibrium each agent is following a bang-bang-like
switching control under control and state constraints. The set
of feasible aggregated power trajectories are characterized
in [8] such that a population of thermostatically controlled
loads (TCLs) can follow them, where each TCL has a hybrid
dynamics and the mode switching rate is constrained. Mean
field problems under convex state and control constraints
are considered in [9], and several decentralized iteration
approaches and conditions to converge to a fixed point are
proposed.

In this paper, we extend the study of decentralized control
of a large number of space heaters as energy storage devices
initiated in [3], but we consider the case where the local
control inputs are constrained. Indeed, in most engineering
applications control inputs may be constrained due to phys-
ical or design limitations of the system. In the presence of
control input constraints, the formulation under the LQG
MFG setup fails to fully characterize the optimal control
solutions, and the mean field effect must be described by
partial differential equations (PDE’s) rather than ordinary
differential equations (ODE’s; see [10]).

The paper makes three contributions. First, when applying
a nonlinear optimal control law under saturation into the
dynamics, we produce a time varying random population
distribution, the mean of which is described by a PDE that we
characterize. We also present the fixed point mean field game
equations characterizing the limiting infinite population Nash
equilibrium, and describe a numerical algorithm to solve
and find the equilibrium solution as a fixed point. Second,
we argue that if all quantities converge to a steady-state
equilibrium, the latter must be the same in the constrained
and unconstrained cases. Thus it is only the transient dy-
namics which are affected by saturation effects. Third, we
develop sufficient conditions under which any device’s best
response involves either a single switching from saturated
to unsaturated control, or a control which never saturates,
and establish under these conditions a numerical scheme to
compute the aggregate response of the devices.

The rest of the paper is organized as follows. Section 2
presents the MFG model to control the mean temperature
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of a large population of electric heaters under constrained
control inputs. In Section 3 we analyze the control policy,
present our sufficient conditions for at most single switching
best response policies of individuals given a posited mean
field, develop the fixed point equations characterizing the
associated equilibrium mean field, and propose a numerical
algorithm for their solution. In Section 4 we illustrate the
equilibrium solution under constrained control inputs by
simulation.

II. MEAN FIELD GAME MODEL WITH CONSTRAINED
CONTROL INPUTS

We consider a large population of N space heating devices
(agents of the game) in the power grid. It is assumed that a
central authority (either the power system authority or an
“aggregator” managing the group of devices) would like
the mean state of all agents to follow a target trajectory.
We assume that the dynamics of each agent i ∈ [N ] :=
{1, . . . , N} are described by the following process

dxi

dt
= −a(xi − xa) + buitot, t ≥ 0,

where a > 0, b > 0, uitot is the control action, and xa
is the outside ambient temperature. Let xi0 ∈ R be agent
i’s random initial condition, distributed according to some
known probability density function (pdf) ρ0. We assume
xa < xi0, ∀i ∈ [N ]. Each device heater wants naturally to
remain at its initial temperature, which requires a (constant)
control

uifree := ab−1(xi0 − xa).

Such uifree is considered a free control and is not penalized
in the cost function defined below. Hence, we are only
interested in the control effort ui that is required to deviate
from xi0 so as to drive the population mean temperature
towards a target temperature set by the authority and denoted
y. Hence by writing uitot = ui + uifree, we can reformulate
and simplify the process model to

dxi

dt
= −a(xi − xi0) + bui , f(xi, ui), t ≥ 0. (1)

Under the control constraint, it is the total control uitot =
ui + uifree that is constrained to a common set of values
uitot ∈ Utot , {u|umin ≤ u ≤ umax} for all N agents.
The constraints umin and umax need to be chosen carefully
in order to make sense physically. Specifically, we must
have 0 ≤ umin ≤ min{uifree,∀i ∈ [N ]}, and umax ≥
max{uifree,∀i ∈ [N ]}. These are imposed because at t =
0 all uifree should fall within the admissible control set
[umin, umax]. Also, the minimum control uitot that agent i
can exert is to not heat, hence umin ≥ 0. Hence we have
the admissible control ui ∈ U i , {u|umin − uifree ≤ u ≤
umax − uifree}, where umin and umax meet the conditions
mentioned above. Note in particular that the constraint set
for ui depends on the agent i.

As in [3], the goal is to move the average temperature of
the agents’ population to the target y, while keeping each

individual temperature relatively close to its initial value.
In particular, we want to avoid controls ui that move each
individual temperature xi to y. This motivates the definition
of the following cost function for each agent i [3]

Ji(u
i, u−i) =

∫ ∞
0

e−δt[(xi−z)2qt+(xi−xi0)2q0+(ui)2r]dt,

(2)
where δ, q0, r are positive constants and the temperature z
serves as a direction signal to all agents, such that all agents
should move toward z but not beyond. The penalization
coefficient qt, defined below, is calculated according to the
integrated difference between the mean field temperature of
the entire population and the constant target y

qt =

∣∣∣∣λ ∫ t

0

(x̄− y)dt

∣∣∣∣+ kc, (3)

where λ, kc > 0, and x̄ = 1
N

∑N
i=1 x

i is the mean tempera-
ture of the population. The cost function Ji is defined so that
any agent i feels the pressure qt built up from the difference
between the mean field temperature x̄ of the population and
the target temperature y. In the case where y < x̄0, we
are asking all population to reduce the temperature, and
we must have x̄ ≥ y > z > xa. If qt is to achieve a
steady-state, then x̄ must approach y asymptotically. At this
point, all agents reach an individualized, initial condition
dependent steady-state and maintain the population mean
temperature at y. kc is a positive constant term, which
provides some initial pressure to all agents at the start of
the control horizon. As qt is calculated based on mean
temperature x̄, and the latter becomes deterministic as the
number of agents goes to infinity, qt can be viewed in
the limit as a given function of time t, and we then write
Ji(u

i, qt). For a posited qt trajectory, each agent chooses its
best response ui∗ = arg minui∈Ui Ji(u

i, qt) to minimize Ji
while respecting the control constraint. By defining the value
function Vi(x

i, t) as the optimal cost to go starting from
xi at time t, we write the Hamilton-Jacobi-Bellman (HJB)
equation for agent i to find optimal ui∗ under constraint

−∂Vi
∂t

= inf
ui∈Ui

(
L(xi, ui, t) +

∂Vi
∂xi

f(xi, ui)

)
, (4)

where

L(xi, ui, t) =
1

2
e−δt[(xi − z)2qt + (xi − xi0)2q0 + (ui)2r],

f(xi, ui) = −a(xi − xi0) + bui.

A. MFG Approximation

As in the usual MFG set up, we consider a limiting infinite
population situation where the mass effect x̄ characterizing
qt, the weight in the cost function of individual agents, is
posited as given. The solution of the HJB Equation describes
the optimal control ui∗ as a best response to the mass behavior
for each agent i. However, in contrast to the standard linear
quadratic MFG setup, the dynamics (1), the cost function in
(2) and the constraint set U i depend throughout the control
horizon on the initial condition of the particular agent. To
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address this difficulty, we still view the population of agents
as a continuum, but approximate the mass dynamics by
discretizing the agents’ initial temperature pdf ρ0. First, we
partition the set of initial temperatures into disjoint intervals
Θk, k = 1 . . . ,K. We define mΘk(x, t) to be the temperature
pdf conditional on the initial temperature falling in the set
Θk. For Θk, k = 1, . . . ,K, the initial conditional pdf
mΘk(x, 0) is supported and uniform over the intervals Θk.
Moreover, we attach to a set Θk a single control policy, taken
to be the one associated with the particle initially at the mean
temperature θ̄k within Θk. In practice we compute θ̄k as the
empirical mean temperature of the agents falling within Θk.

We can then compute mΘk(x, t) using the advection
equation

∂mΘk(x, t)

∂t
+

∂

∂x
{mΘkvθ̄k} = 0, (5)

where vθ̄k := fk(x, uθ̄k∗ ) = −a(x∗− θ̄k)+buθ̄k∗ . The optimal
control uθ̄k∗ is obtained from the HJB equation

−∂Vk
∂t

= inf
u∈U θ̄k

(
Lk(x, u, t) +

∂Vk
∂x

fk(x, u)

)
. (6)

Finally, in order to calculate the mean x̄ of the mass, we
have

x̄ =

∫ +∞

−∞
xm(x, t)dx, (7)

where the mean-field m(x, t) is computed as

m(x, t) =
1

K

K∑
k=1

mΘk(x, t)

(∫
Θk

ρ0(α)dα

)
.

The MFG equation system to solve consists of (3), (5), (6)
and (7), with k = 1, . . . ,K. A fixed point must be found for
this system, in the sense that starting from a posited family
of mΘk(x, t) flows, one recovers the same mΘk(x, t) when
solving the advection equations under the associated optimal
control laws for each k.

III. STRUCTURE OF THE OPTIMAL POLICIES

Note that in (4), L(xi, ui, u−i, t) is a time variant function.
For our further analysis, we perform a change of variable
to make it time invariant. Denote x̃i = e−

δt
2 xi, x̃i0 =

e−
δt
2 xi0, z̃ = e−

δt
2 z, and ũi = e−

δt
2 ui. Then we can rewrite

(4) using the new variables (x̃i, ũi), which gives

−∂Ṽi
∂t

= inf
ũi∈Ũi

(
L̃(x̃i, ũi) +

∂Ṽi
∂x̃i

f(x̃i, ũi)

)
, (8)

where

L̃(x̃i, ũi) =
1

2
[(x̃i − z̃)2qt + (x̃i − x̃i0)2q0 + (ũi)2r],

f(x̃i, ũi) = −a(x̃i − x̃i0) + bũi

Ũ i = {ũi|ũmin − ũifree ≤ ũi ≤ ũmax − ũifree}

In general, assuming qt is a given function (itself depend-
ing on a posited m(x, t)), an optimal solution (ũi∗, x̃

i
∗) to

(8) can be obtained numerically using dynamic program-
ming. Let (ũi∗, x̃

i
∗) be an optimal solution to (8), we can

define an costate variable p̃i and the Hamiltonian function
H̃(p̃i, x̃i∗, ũ

i
∗) such that

p̃i ,
∂

∂x̃i
Ṽi(x̃

i, t),

H̃(p̃i, x̃i∗, ũ
i
∗) = L̃(x̃i∗, ũ

i
∗) + p̃if(x̃i∗, ũ

i
∗).

(9)

Then for all admissible controls ũi ∈ Ũ i, we must have

H̃(p̃i, x̃i∗, ũ
i
∗) ≤ H̃(p̃i, x̃i∗, ũ

i). (10)

Hence an optimal solution to (8) also satisfies (9) and (10),
which are conditions for Pontryagin’s Maximum Principle
(PMP). As PMP accommodates constraints more easily, we
will look for control solution in an analytic format based on
PMP conditions. From (9) and (10), we get

(ũi∗)
2r + bp̃iũi∗ ≤ (ũi)2r + bp̃iũi. (11)

The inequality in (11) can be expressed in terms of
(ui, xi, pi) using the earlier change of variables. By denoting
π̃i = πi and s̃i = e−

δt
2 si, the following control law for

ui ∈ U i can be obtained

ui∗ =

 ui−, h(pi) < ui−
h(pi), h(pi) ∈ [ui−, u

i
+] ,

ui+, h(pi) > ui+

(12)

where for an agent i, h(pi) = −br−1pi, ui− = umin−uifree is
the lower bound of the constraint U i, and ui+ = umax−uifree
is the upper bound of the constraint.

An exact optimal control law can be derived by following
some PMP-based approaches (see [11], [12] for example),
but the procedure to compute such optimal solution is
complex.

A. Single Switching Control Policies

To continue our analysis we implement a control policy
where controls can switch from saturation to unsaturation at
most once. For a linear quadratic (LQ) tracking problem, the
costate pi(t) is of the form

pi(t) = πi(t)xi(t) + si(t),

where πi and si are two functions to determine.
From PMP, pi(t) should satisfy the costate equation

ṗi = (a+ δ)pi − qt(xi − z)− q0(xi − xi0). (13)

While based on (12), on a given qt path, control could go
in theory from unsaturation to saturation, and then back to
unsaturation several times, we shall impose conditions on
qt that would make pi(t) monotonic and thus would allow
saturation, if any, only at the start of the control horizon
until some time ti∗. Past ti∗ the optimal control becomes
unsaturated for the rest of the control horizon. Considering
without loss of generality the temperature decrease case, we
thus require dpi

dt ≤ 0. From (13), this imposes a condition
on qt whereby,

qt ≥
(a+ δ)pi

xi − z
+ q0

xi0 − xi

xi − z
. (14)
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In what follows, we produce a lower bound q−t on qt and
an upper bound for the right hand side of (14). In order to do
so, we shall assume that δ is small enough that the steady-
state mean temperature trajectory x̄ asymptotically reaches
the target y. At such steady-state, qt reaches a constant value
q∞t . It turns out that q∞t is the unique constant weight such
that the mean of all individual initial condition dependent
temperature steady-states is equal to y.

Proposition 3.1: The unique q∞t can be computed by

q∞t = c1
x̄0 − y
y − z

, (15)

where c1 = a(a+δ)r+b2q0
b2 .

To see this, first note that the steady-state at y is incon-
sistent with control saturation, because all trajectories are
monotone decreasing (in temperature decrease case), and
persistent saturated controls would send temperatures to the
ambient temperature xa where xa < z. So at equilibrium,
one can rely on the steady-state equations from the uncon-
strained case.

In the unconstrained case, πi and si must satisfy the
following Riccati equation [13]

π̇i = (2a+ δ)πi − qt − q0 + b2r−1πi2,

ṡi = (a+ δ + b2r−1πi)si − aπixi0 + qtz + q0x
i
0,

(16)

By substituting the optimal control into (1), we get,

ẋi = (−a− b2r−1πi)xi − b2r−1si + axi0. (17)

At steady-state, we have π̇i = 0, ṡi = 0, and ẋi = 0, and
solving (16) and (17) gives,

q∞t =
a(a+ δ)r + b2q0

b2
xi0 − xi∞
xi∞ − z

, (18)

where xi∞ denotes the steady-state temperature for agent i.
Given that at steady-state, the mean temperature x̄∞ = y,

we can compute q∞t in terms of x̄0 and y by taking expected
values of both sides in (18), and get the result in (15).

By applying a constant q∞t on any initial condition xi0, we
can produce a state trajectory xi−(t) and a costate trajectory
pi−(t), such that

(a+ δ)pi−
xi− − z

+ q0
xi0 − xi−
xi− − z

≥ (a+ δ)pi

xi − z
+ q0

xi0 − xi

xi − z
. (19)

By applying the same constant q∞t to x̄0, we produce a
trajectory x̄−0 (t) below x̄0(t) such that,

q−t + kc = λ

∣∣∣∣∫ t

0

(x̄−0 (τ)− y)dτ

∣∣∣∣+ kc < qt. (20)

Note that this is in view of the monotonicity of the best
response to the level of the weighting term of (xi − z)2 in
the cost function. Therefore by combining (14), (19), and
(20) we can write a sufficient condition under which pi(t) is
monotonically decreasing for the temperature decrease case.

qt + kc > q−t + kc ≥
(a+ δ)pi−
xi− − z

+ q0
xi0 − xi−
xi− − z

≥ (a+ δ)pi

xi − z
+ q0

xi0 − xi

xi − z
.

(21)

For the rest of the paper, we assume that the above
condition is verified for all initial conditions and all times,
which would produce single switching behaviors for the best
responses.

For a given qt that meets the condition in (21), and for
any initial condition xi0, the control will be saturated by ui−
at t = 0 until some switching point ti∗. From ti∗ to the end
of the control horizon, control is unsaturated and follows the
optimal policy −br−1pi. The ti∗ can be determined whenever
−br−1pi(ti∗) = ui− is satisfied. For some agent i, we could
have

∣∣−br−1pi(0)
∣∣ ≤ ui− at t = 0, in which case ti∗ = 0 and

controls are unsaturated all the time.

IV. COMPUTATION OF THE EQUILIBRIUM SOLUTION

In this section, we analyze and find the equilibrium
solution (m(x, t), {u∗}) that solves the MFG system.

A. Discretization and Numerical Solution of Advection
Equation

It is recognized that the advection equation in (5) is a
balance equation and conservative. Therefore, if one wishes
to conserve probability, a discretization based on finite vol-
ume methods is recommended [14]. By discretizing the x−t
plane with time-step k = ∆t and x-step h = ∆x, we define
a grid with points (xj , tn) where xj = jh, j = 0, 1, 2, . . .
and tn = nk, n = 0, 1, 2, . . .. The solution mΘk(x, t) should
satisfy the integral form of the conservation laws. Denote
g(mΘk) := mΘkvθ̄k . Then we have

∫ xj+1/2

xj−1/2

mΘk (x, tn+1)dx =

∫ xj+1/2

xj−1/2

mΘk (x, tn)dx−[∫ tn+1

tn

g(mΘk (xj+1/2), t)dt−
∫ tn+1

tn

g(mΘk (xj−1/2), t)dt

]
.

(22)

We define Mn
j as an approximation to the cell average of

mΘk(x, tn) for x ∈ [xj−1/2, xj+1/2) at tn, and the numer-
ical flux F (Mn

j ,M
n
j+1) which is the average "probability

current" through xj+1/2 over the time interval [tn, tn+1].

Mn
j '

1

h

∫ xj+1/2

xj−1/2

mΘk(x, tn)dx,

F (Mn
j ,M

n
j+1) ' 1

k

∫ tn+1

tn

g(mΘk(xj+1/2), t))dt.

Accordingly the integral form of the conservation laws in
(22) can be expressed as

Mn+1
j = Mn

j −
k

h
[F (Mn

j ,M
n
j+1)− F (Mn

j−1,M
n
j )]. (23)

Using a finite difference method such as Lax-Friedrichs or
Lax-Wendroff [14], we can numerically solve for Mn

j which
is approximation to the solution mΘk(x, t) on the defined
grid. For example, if we use the Lax-Friedrichs scheme,
which has the following form

Mn+1
j =

1

2

(
Mn
j+1 +Mn

j−1

)
− k

2h

(
g(Mn

j+1)− g(Mn
j−1)

)
.
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We can therefore write the expression F (Mn
j ,M

n
j+1) as

F (Mn
j ,M

n
j+1) =

h

2k
(Mn

j −Mn
j+1)

+
1

2

(
g(Mn

j ) + g(Mn
j+1)

)
.

(24)

Using initial density M0
0 = mΘk(x0, 0), we can get the

propagation of an approximated solution Mn
j on the defined

grid points (xj , tn) from (23) and (24).

B. Equilibrium Solution by Iteration Approach

As the equilibrium solution is a fixed point of the MFG
system, we can compute it using an iterative approach. Given
initial mass density m(x0, 0), we first make an arbitrary
guess of a family of mΘk(x, t)0 as the fixed point. Then
we compute a q0

t from mΘk(x, t)0. We inject the computed
q0
t into the MFG system and get a new candidate fixed

point mΘk(x, t)1 and a new q1
t by following the optimal

control law and solving the advection equations. We repeat
the procedure until mΘk(x, t) converges to a fixed point,
from which we get the equilibrium solution (m∗(x, t), {u∗}).
During each iteration, each qt candidate obtained should
satisfy the condition in (21), in order to guarantee the single
switching behaviors of the control law.

V. SIMULATIONS

In the numerical study, we make the following assump-
tions. The distribution of initial temperature is uniform be-
tween 18 and 28 degrees, hence the initial mean temperature
is 23 degrees. We wish to achieve a target mean temperature
y of 22 degrees over a 4 hours horizon, and set parameter
z in (2) to 17 degrees so every device will tend to decrease
their temperature. Other parameters used in the simulation
are as follows: a = 0.03, b = 0.2, r = 1, q0 = 200, λ =
40, kc = 5.207. The constraint we impose is that the total
control (ui + uifree) must be always greater than zero, as it
is inadmissible to have a negative control to cool down the
space. Hence for ui, the constraint is ui ≥ −uifree.

We initialize the iteration process by using q−t . Figure
1 illustrates the evolution of qt at each iteration which is
constructed from the solutions to the MFG system until con-
vergence. In all iterations, the condition in (21) is respected.
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i 17
i 18

Fig 1. Iteration approach to find equilibrium in terms of qt

Figure 2 shows the propagation of mass density m∗(x, t)
computed from mΘk(x, t) at the converged equilibrium. We
start from an initial mass with uniform distribution, and at
steady state the mass shifts towards lower temperature and
we arrive at another uniform distribution. Note that we are
using the Lax-Friedrichs scheme, which is a first order finite
volume method and the edges of the uniform distribution at
steady- state are smeared off. By using a finer x − t grid
plane, we can reduce the smearing effects such that steady-
state mass shapes more similar to a uniform distribution,
but the CFL (Courant–Friedrichs–Lewy; see [14]) condition
must always be satisfied in order to ensure stability of the
numerical method. Also, note that the partition Θk of initial
temperatures should be sufficiently refined in order to avoid
significant ripples in the transient mass probability density.
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Fig 2. Propagation of mass density at equilibrium solution

In Figure 3 we take a few particle samples whose initial
temperatures are randomly taken from the initial uniform
distribution. We show the single switching behaviors of con-
trol trajectories {ui∗}, and the corresponding state trajectories
{xi∗} at equilibrium. From the setup of the quadratic cost
function in (2), the particles with higher initial temperatures
feel more pressure to quickly decrease the temperature;
however, due to the presence of the control constraint, their
rates of temperature decrease are constrained at t = 0
(trajectories in red color). On the other hand, particles
starting from lower initial temperatures feel less stress to
decrease temperature, and their controls are not affected by
the control constraint (trajectories in blue color). It is seen
that the mean temperature of the population remains at the
desired target temperature of 22 degrees at steady state.

The derived model can also be used in the unconstrained
case by simply removing the constraint and let ui ∈ R, ∀i.
It is verified that under the same iteration approach we get
an equilibrium solution identical to that in [3].

In the next experiment, we wish to explore the difference
in state trajectories under constrained versus unconstrained
cases. In particular we are interested in the mean temperature
and particle samples starting from the extreme initial temper-
atures. Figure 4 shows the comparison results. For particles
starting from 28 degrees, as the imposed control constraints
limit their rates of decrease since the start of the control
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horizon, the temperatures do not fall as fast as they do in the
unconstrained case. As a consequence, qt increases due to a
larger error recorded between x̄ and y, as compared to the
unconstrained case at the same point in time. With a larger qt,
particles starting from 18 degrees are pressured to contribute
more to reduce the global mean temperature. However, they
do not feel enough stress to completely make up the gap
caused by the constrained particles. Once controls become
unsaturated, the constrained particles continue to decrease
more than they would do in the unconstrained case, while
the particles with low initial temperatures start to contribute
less correspondingly. Eventually at steady-state, all particles
including the mean temperature have the same values as
those in the unconstrained case. This result is expected as
all controls fall within the saturation limits at steady-state.
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Fig 3. Trajectories of controls (top) and states (bottom) for
particle samples from the mass
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Fig 4. State trajectories comparisons of control constrained vs.
unconstrained cases: mean temperature trajectories (top); particle
with high initial temperature (middle); particle with low initial
temperature (bottom)

VI. CONCLUDING REMARKS

The non-linearity of the optimal control law under control

constraints makes the computation of the MFG fixed point
more challenging than in the linear quadratic case, requiring
the solution of coupled PDE’s, which moreover depends on
the initial conditions of the agents. We describe a feasible
optimal control policy with single switching behaviors and
an algorithm to compute an approximation of the fixed point.
We verify that the steady-states in the constrained case are
identical to those in the unconstrained case. For future work,
the existence and uniqueness of the fixed point of the con-
strained MFG equation system remains to be proved, while
the sufficient condition in (21) must be further analyzed.
Also, we wish to extend the analysis to the stochastic case
where a noise process is included in (1). Finally, extensions
of the analysis to the multidimensional case, including non
diffusion models (electric water heating loads) would be of
interest.
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