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Abstract— As intelligent automation and large-scale dis-
tributed monitoring and control systems become more
widespread, concerns are growing about the way these systems
collect and make use of privacy-sensitive data obtained from
individuals. This tutorial paper gives a systems and control
perspective on the topic of privacy preserving data analysis,
with a particular emphasis on the processing of dynamic
data as well as data exchanged in networks. Specifically, we
consider mechanisms enforcing differential privacy, a state-of-
the-art definition of privacy initially introduced to analyze large,
static datasets, and whose guarantees hold against adversaries
with arbitrary side information. We discuss in particular
how to perform tasks such as signal estimation, consensus
and distributed optimization between multiple agents under
differential privacy constraints.

I. INTRODUCTION

An important concern raised by many of the emerging
distributed automated systems around us, from smart homes
and buildings to intelligent transportation systems and even
smart cities, is their heavy reliance on data collected from
private individuals and more generally from entities who
naturally would wish to preserve the confidentiality of their
own data [1]–[3]. Data obtained from these privacy-sensitive
sources is fused to estimate the current state of a target
system, with this estimate subsequently used for effective
decision making and control. Traditionally, much attention
has been focused on the design, improvement, and sophisti-
cation of these data processing technologies by assuming that
aggregators and decision makers are trustworthy. However,
this assumption turns out to be risky or undesirable in a
wide variety of situations, and even when it is valid, it does
not cover the many cases in which some analysis based
on the sensitive data is released publicly or to third-parties,
implicitly leaking some of the information contained in the
original datasets. An extreme example of this scenario was
the Netflix Prize: although the release format of the data
sets provided by Netflix was meant to preserve customer
privacy, the work [4] was able to identify individual users
by using side information, specifically film ratings on the
Internet Movie Database.

Another example is given by smart grids, where optimized
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power forecast, generation, and distribution might push net-
work operators and dispatch units to access fine-grained us-
age time series of consumers measured by advanced metering
infrastructures. It is well known, however, that these signals
reveal detailed information about the presence, absence and
even specific activities of a home’s occupants [5]. Similarly,
smart transportation services require traffic state estimates
and forecasts, which in turn rely on the on the measurement
of individual location traces by an increasingly large number
and variety of sensors, either static like induction loops and
cameras, or moving with the traffic like GPS devices [6] or
RFID tags [7] inside individual vehicles.

Similar issues arise for data analysis in a variety of other
areas, from economics to social networks and healthcare, and
are only amplified by the current trend within companies
and government agencies to collect ever more information
about private individuals. Hence, privacy preserving data
analysis, once a topic mostly of interest to statisticians
and econometrists [8], has received an increasing amount
of attention in the last decade. In particular, since offering
privacy guarantees for a system generally involves sacrific-
ing some level of performance, researchers have proposed
various quantitative definitions of privacy to evaluate the
resulting trade-offs rigorously. These definitions include k-
anonymity [9] and its various extensions [10], information-
theoretic privacy [11], or conditions based on observability
[12]–[14]. However, in the last few years the notion of
differential privacy, the focus of this paper, has emerged
essentially as a standard privacy specification [15], [16]. A
system processing privacy sensitive inputs from individuals
is made differentially private by randomizing its answers in
such a way that the distribution over published outputs is not
too sensitive to the data provided by any single participant.
As a result, it is provably difficult for an adversary, no matter
how powerful, to make inferences about individual records
from the published outputs, or even to detect the presence of
an individual in the dataset. Differential privacy is already
being employed by technological giants such Google and
Apple, making its way into commercial products. Google has
successfully implemented it in its web browser Chrome [17]
and also has several projects on tracking urban mobility using
differential privacy to ensure that no individual user’s journey
can be identified [18]. Apple recently announced that iOS
10 uses technologies for learning usage patters from a large
number of users without compromising individual privacy
using differential privacy [19].

The notion of differential privacy has also made its way
into systems and controls, where researchers have used it to
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design privacy-aware algorithms for a diverse set of objec-
tives, including control [20], [21], average consensus [22],
[23], network topology [24], estimation and filtering [25],
[26], and convex optimization [27]–[30]. Our goal in this
tutorial paper is to introduce the main concepts in differential
privacy and provide an overview of recent advances relevant
to control and network systems in this emerging area.

Organization: Section II introduces the fundamental con-
cepts in differential privacy, along with motivational sce-
narios and the basic set of results on which the rest of
the exposition builds. Section III deals with the application
of differential privacy in estimation and filtering problems.
Section IV studies the trade-offs between differential privacy
and accuracy in the context of linear distributed control
systems for consensus. Section V examines the role of
differential privacy in solving distributed optimization prob-
lems. Finally, Section VI summarizes our conclusions and
outlines avenues for further research in differential privacy
for network systems.

Notation: We denote by N, R>0, and R, the sets of natural,
positive real, and real numbers, respectively. We denote the
set of d-dimensional real vectors and the set of m × d real
matrices by Rd and Rm×d. For x ∈ R, we denote its absolute
value by |x|. For x ∈ Rd, with d ∈ N∪{+∞} we define its
`p-norm by

‖x‖p =
( n∑
i=1

|xi|p
)1/p

,

where xi is the ith component of x. For G a linear time-
invariant (LTI) system, we let ‖G‖2 denote its H2 norm and
‖G‖∞ its H∞ norm.

A scalar random variable x obeys the Laplace distribution
with parameter λ (and zero mean), if its probability distri-
bution function satisfies

p(x) =
1

2λ
exp(−|x|

λ
).

We write this as x ∼ Lap(λ). The definition extends to n-
dimensional random vectors by using the `1-norm, namely,
x ∼ Lap(λ, n) if

p(x) =

(
1

2λ

)n
exp(−‖x‖1

λ
).

The components of the Laplace random vector are indepen-
dent.

II. FOUNDATIONS OF DIFFERENTIAL PRIVACY

The purpose of this section is to introduce the concept of
differential privacy. We start by giving a formal definition
of differential privacy and discuss its implications. Then, we
discuss several important properties of differential privacy.
In the end, we introduce a number of commonly used
mechanisms that guarantee differential privacy. These mech-
anisms often serve as the building blocks for designing more
complicated mechanisms, as we illustrate in the forthcoming
sections.

A. Motivation for Differential Privacy

Throughout the paper, we consider the setting of protecting
the privacy of individual users whose information is stored
collectively as a database. Examples of a database include
patient records in a hospital, salaries of employees of a
company, or census records, to name a few. The database is
used to extract useful aggregate information from the users,
and the result is often available to the public. For example,
one may be interested in computing the average salary of all
employees from a database of salaries.

One may wonder how the publicly available result,
which only contains aggregate information of all users in
a database, can compromise the privacy of any individual
user. This can, nevertheless, happen in certain extreme cases.
Consider the following example. Suppose n voters participate
in an anonymous vote that involves two candidates, Alice and
Bob. Suppose the result of the vote shows that n− 1 people
voted for Alice, and one person voted for Bob. Then, the
person who voted for Bob is able to learn from the result
that all other people voted for Alice. Such a result apparently
compromises the privacy of the n− 1 people who voted for
Alice, even though the process is anonymous.

Aside from the extreme case in the previous example,
the privacy of individual users can also be compromised in
the presence of side information. Consider the example of
computing the average salary of employees from a salary
database. It is true that one cannot generally infer the salary
of any particular user in the database from the average salary.
However, a powerful adversary who is able to collaborate
with all but one user in the database is able to obtain the
exact salary of that remaining user by learning from the
average, even if that user is not willing to collaborate with
the adversary.

We are now faced with a dilemma: on the one hand, we
would like to release useful aggregate information from a
given database; on the other hand, we need to make sure
that no one can infer the information of any individual user,
regardless of the released result and the presence of possible
side information. The notion of differential privacy squarely
addresses this dilemma. The notion of differential privacy
may differ from our common understanding of privacy:
privacy is not treated as a binary concept (i.e., either being
private or non-private) but is instead measured on a level that
changes continuously from total privacy to non-privacy.

The basic idea used by differential privacy is to “perturb”
the exact result before release. As one can imagine, the
amount of perturbation affects both the usefulness of the
result and the level of privacy. The more perturbation used,
the less useful the result and the higher the level of privacy.
As will be seen in later sections, such a trade-off between
usefulness of the result and level of privacy can often be
quantified and provide guidelines on choosing an appropriate
level of privacy.
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B. Definition of Differential Privacy

1) Terminology and Definition: In differential privacy,
user information that needs to be protected is contained in a
set (called database) D, in which each element corresponds
to information from an individual user. For convenience, we
denote by D the universe of all possible databases of interest.
The quantity (to be released to the public) that we would like
to compute from a database D is modeled by q(D) for some
mapping q (called query) that acts on D; the range of q is
denoted by Q.

Example 2.1: (Salary database): For a database contain-
ing the salaries of a group of people, we can define D =
{di}ni=1, where di ∈ R>0 is the salary of user i (assuming
no minimum denomination). Suppose someone is interested
in the average salary of people in the database. Then the
query can be written as q(D) =

∑n
i=1 di/n. •

Differential privacy is able to guarantee that the result of
computation on a database does not change much when any
single user in the database changes its information. In other
words, preserving privacy is equivalent to hiding changes
in the database. Formally, changes in a database is defined
by a symmetric binary relation on D × D called adjacency
relation and is denoted by Adj(·, ·); two databases D and D′

that satisfy Adj(D,D′) are called adjacent databases.

Definition 2.2 (Adjacent databases): Two databases D =
{di}ni=1 and D′ = {d′i}ni=1 are said to be adjacent if there
exists i ∈ {1, . . . , n} such that dj = d′j for all j 6= i.

When differential privacy was first proposed [15], the
adjacency relation was defined in a slightly different way:
two databases are adjacent if and only if one database is a
result of adding/removing one user from the other database.
The motivation behind the original definition is to hide the
participation of any individual in the database; a typical
example is a database of patients with a certain type of
disease (e.g., AIDS). Definition 2.2 generalizes the original
notion of adjacency relation in order to handle databases
consisting of numeric values. In fact, as we illustrate later,
this definition can be extended further to incorporate more
complex objects, such as vector norms and databases of
functions.

Besides the conditions stated in Definition 2.2, we often
also need some constraint on the difference between di
and d′i as a design choice. Recall that differential privacy
guarantees that any two adjacent databases D and D′ are
nearly indistinguishable, the choice on constraining the dif-
ference between di and d′i determines the “granularity” that
an individual’s value can be protected, as will be illustrated
in the following example.

Example 2.3: (Salary database – cont’d): Consider again
the database of salaries in Example 2.1. We can define an ad-
jacency relation as in Definition 2.2 with |di−d′i| ≤ $1,000.
Then the privacy guarantee given by a differentially private
mechanism would become “an adversary cannot determine

the salary of any user in the database within an accuracy
of $1,000 (with high probability)”. Note, however, that the
adversary may, however, still be able to tell that some user’s
salary is $1 versus $10,000. Alternatively, if it is publicly
known that the maximum salary for any person is dmax, we
can define an adjacency relation with |di − d′i| ≤ dmax. In
this way, the salary of each user is fully protected. Namely,
an adversary cannot know anything about the salary of any
user except that it lies within [0, dmax] (which is public
knowledge). •

As we mentioned in Section II-A, directly making q(D)
available to the public may cause users in the database
to lose their privacy. In order to preserve privacy, for any
given query q, one needs to develop a mechanism M that
approximates q. Naturally, the range of M is the same as that
of q, i.e., range(M) = range(q) = Q. In the framework
of differential privacy, all mechanisms under consideration
are randomized. Namely, for a given database, the output of
such a mechanism obeys a certain probability distribution. A
mechanism that acts on a database is said to be differentially
private if it is able to ensure that two adjacent databases are
nearly indistinguishable (in a probabilistic sense) from just
looking at the output of the mechanism.

Definition 2.4 (ε-Differential privacy [15]): Given ε ≥ 0,
a mechanism M preserves ε-differential privacy if for
all R ⊆ range(M) and all adjacent databases D and D′

in D, it holds that

P [M(D) ∈ R] ≤ eεP [M(D′) ∈ R] . (1)

The probability measure in (1) is taken from the probabil-
ity space used for defining the randomized mechanism M .
The constant ε indicates the level of privacy: smaller ε im-
plies higher level of privacy. Notice that the relationship (1)
also implies

P [M(D′) ∈ R] ≤ eεP [M(D) ∈ R]

due to the symmetric nature of the adjacency relation. The
notion of differential privacy promises that an adversary
cannot tell from the output of M with high probability
whether data corresponding to a single user in the database
have changed. It can be seen from (1) that any non-constant
differentially private mechanism is necessarily randomized.

In certain cases, it is also useful to consider a relaxed
and more general notion of differential privacy called (ε, δ)-
differential privacy, which is defined as follows.

Definition 2.5: ((ε, δ)-Differential privacy [15]): Given
ε, δ ≥ 0, a mechanism M preserves (ε, δ)-differential privacy
if for allR ⊆ range(M) and all adjacent databases D and D′

in D, it holds that

P [M(D) ∈ R] ≤ eεP [M(D′) ∈ R] + δ. (2)

It can be seen from Definition 2.5 that the notion of (ε, δ)-
differential privacy reduces to ε-differential privacy when
δ = 0. The introduction of the additive term δ in (2)
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yields a weaker privacy guarantee than ε-differential privacy.
When δ > 0, even if ε is small, it can still happen that
P [M(D) ∈ R] is large compared to P [M(D′) ∈ R]; as a
result, one can still potentially tell whether the input database
is D or D′.

2) Choosing the Privacy Level: One useful interpretation
of differential privacy can be made in the context of detection
theory [31], [32]. The interpretation also provides a guideline
for choosing the level of privacy ε when implementing
differentially private mechanisms. Consider a simple case
involving a binary database D = {di}ni=1 ∈ {0, 1}n,
and the goal of the adversary is to infer the value di of
a particular user i from the output of an ε-differentially
private mechanism M . The inference procedure used by
the adversary can be modeled as the following detection
rule: report di = 1 if the output of M lies in some
set R∗ and di = 0 otherwise. Let D be the database with
di = 1 and D′ be the one with di = 0. We are interested
in the probabilities of two types of detection errors: false
positive probability pFP = P [M(D′) ∈ R∗] (i.e., di = 0,
but the detection rule reports di = 1) and false negative
probability pFN = P [M(D) /∈ R∗] = P [M(D) ∈ Q\R∗].
For a good detection rule, both probabilities are desired
to be small. Since D and D′ are adjacent, we know from
Definition 2.4 that

P [M(D) ∈ R∗] ≤ eεP [P(M(D′) ∈ R∗] ,
P [M(D′) ∈ Q\R∗] ≤ eεP [M(D) ∈ Q\R∗] ,

which lead to

pFN + eεpFP ≥ 1 and eεpFN + pFP ≥ 1. (3)

The conditions (3) imply that pFN and pFP cannot be both
too small. In particular, we have

pFN + pFP ≥
2

1 + eε
. (4)

Namely, these conditions limit the detection capability of
the adversary so that the privacy of user i is protected. For
example, if ε = 0.1 and the false negative probability pFN =
0.05, then the false positive probability pFP ≥ max{1 −
eεpFN, e

−ε(1 − pFN)} ≈ 0.94, which is quite large. The
relationship (4) provides a guideline for choosing ε when
implementing a differentially private mechanism. Often, the
error probabilities pFN and pFP are more straightforward to
specify than the level of privacy ε. Once the lower bounds
for pFN and pFP are specified, one can choose ε accordingly
from the relationship (4).

C. Properties of Differential Privacy

Differential privacy enjoys several important properties.
First, differential privacy is immune to post-processing.
Namely, without any additional knowledge on the original
database, no one can perform computation on the output of
a differentially private mechanism and make the result less
private. This property has an important direct consequence.
Recall that the output of a differentially mechanism is often

released to the public, after which the released result can be
potentially utilized arbitrarily by other parties. The immunity
to post-processing guarantees that no privacy can be further
lost through the handling by other parties. The property of
immunity to post-processing is formalized below.

Theorem 2.6 (Post-processing [33]): Suppose a mecha-
nism M : D → Q preserves ε-differential privacy. Then for
any function f , the (functional) composition f ◦ M also
preserves ε-differential privacy.

Next, we introduce a number of composition rules that
are often used for constructing new differentially private
mechanisms from existing ones. The sequential composition
rule given in the following is useful when one needs to
release multiple quantities computed from the same database.

Theorem 2.7 (Sequential composition [33]): Suppose a
mechanism M1 preserves ε1-differential privacy, and another
mechanism M2 preserves ε2-differential privacy. Define a
new mechanism M(D) := (M1(D),M2(D)). Then the
mechanism M preserves (ε1 + ε2)-differential privacy.

For example, in the case of the salary database, one may
wish to release both the average and the standard deviation
of the salaries. As implied by Theorem 2.7, one can design
two differentially private mechanisms for the average and the
standard deviation separately and later combine them with
the level of privacy given by Theorem 2.7. Theorem 2.7 also
reveals a fundamental fact about differential privacy: more
privacy is lost as more queries are made to the same database
and released to the public.

It should be noted that the privacy guarantee given by
Theorem 2.7 can be loose and may not be the best guarantee.
This is because Theorem 2.7 does not take into account
the correlation between M1 and M2. Consider the trivial
case where in the joint mechanism, M2(D) simply repeats
the output produced by M1(D). In this case, adding M2

does not reveal any additional information about the database
compared to using M1 alone. Namely, the joint mechanism
M is ε1-differentially private, whereas Theorem 2.7 says that
M is 2ε1-differentially private.

For certain applications, the mechanism we would like to
design is a result of adaptive composition of several other
mechanisms. This is common in iterative computation (such
as in optimization algorithms), where the result of each step
depends on the result from previous steps. The adaptive com-
position rule given in the following gives privacy guarantees
for cases that involve iterative computation.

Theorem 2.8: (Adaptive composition [33]): Consider a
mechanism M1 : D → Q1 that preserves ε1-differential pri-
vacy, and another mechanism M2 : D×Q1 → Q2 such that
M2(·, y1) preserves ε2-differential privacy for any y1 ∈ Q1.
Define a new mechanism M(D) := M2(D,M1(D)). Then
the mechanism M preserves (ε1 + ε2)-differential privacy.
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The adaptive composition rule generalizes the post-
processing rule (cf. Theorem 2.6), because any function f
that does not depend on the database can be treated as a 0-
differentially private mechanism. It is also straightforward
to see that the adaptive composition rule generalizes the
sequential composition rule (cf. Theorem 2.7).

The post-processing rule and composition rules also hold
for (ε, δ)-differential privacy. For the composition rules, the
final privacy guarantee becomes (ε1 + ε2, δ1 + δ2) when the
original mechanisms are (ε1, δ1)- and (ε2, δ2)-differentially
private. However, one can actually relax the guarantee for δ
in favor for a smaller ε, as stated in the following result. For
simplicity, the theorem considers the case of composing k
mechanisms, each of which is (ε, δ)-private.

Theorem 2.9: (Advanced composition [33]): For all
ε, δ, δ′ ≥ 0, the mechanism formed by adaptive composition
of k mechanisms with (ε, δ)-differential privacy preserves
(ε′, kδ + δ′)-differential privacy with

ε′ =
√

2k log(1/δ′)ε+ kε(eε − 1). (5)

When eε is close to 1, the right-hand side of (5) is
dominated by the first term. Compared to the (kε, kδ)-privacy
guarantee given by the original composition theorem, the
new guarantee then ensures a slower degradation of ε at
the rate of O(

√
k) (instead of O(k)), at the expense of

introducing an extra additive factor δ′.

D. Differentially Private Mechanisms

We now present a number of commonly used mechanisms
that preserve differential privacy. This is by no means an
exhaustive list of differentially private mechanisms, and the
mechanisms in the list are not necessarily optimal mech-
anisms (defined as the one that achieves the best accu-
racy/utility for a specified privacy level). Interested readers
can refer to related work [32], [34] on the discussions about
optimal mechanisms.

1) Laplace Mechanism: When the range of query Q
is R, one commonly used differentially private mechanism
is the Laplace mechanism [15]. The Laplace mechanism
works by introducing additive noise drawn from the Laplace
distribution.

Theorem 2.10 (Laplace mechanism [33]): For a given
query q with range(q) = R, let ∆ = maxD,D′ |q(D) −
q(D′)| be the sensitivity of q. Then the mechanism M(D) =
q(D) + w with w ∼ Lap(∆/ε) preserves ε-differential
privacy.

The Laplace mechanism reveals an intrinsic trade-off
between privacy and accuracy of the result. Notice that the
mean squared error of the result is given by

E[M(D)− q(D)]2 = var(w) =
2∆2

ε2
.

Namely, as ε becomes smaller (i.e., more privacy is pre-
served), the result becomes less accurate. To illustrate how

the Laplace mechanism can be applied, we give in the
following a simple example on computing the average salary
while preserving differential privacy.

Example 2.11: (Salary database –cont’d): Consider the
database of salaries given in Example 2.1, with the query
q(D) = 1

n

∑n
i=1 di (average salary). Suppose di ∈ [0, dmax],

where dmax is the maximum salary, and we use the adjacency
relation with |di − d′i| ≤ dmax as in Example 2.3. Then the
sensitivity of q can be obtained as follows:

∆ = max
D,D′

|q(D)−q(D′)| = 1

n
max

i∈{1,...,n}
max
di,d′i

|di−d′i| =
dmax

n
.

From Theorem 2.10, we know that the (randomized) mech-
anism M(D) = 1

n

∑n
i=1 di + Lap

(
dmax

nε

)
preserves ε-

differential privacy. Notice that the magnitude of the Laplace
noise is inversely proportional to the number of users in the
database. In other words, with more users in the database,
we can introduce less noise in order to achieve the same
privacy guarantee. This matches our intuition that it is easier
to preserve individual privacy with more participating users.
•

The Laplace mechanism can be generalized to the mul-
tidimensional case for queries that lie in Rk. Suppose the
sensitivity of query q, defined as

∆ := max
D,D′

‖q(D)− q(D′)‖∞ ,

is bounded. One way to achieve ε-differential privacy is
to add i.i.d. Laplace noise Lap(k∆/ε) to each component
of q, which is guaranteed by the sequential composition
theorem (cf. Theorem 2.7). However, a similar mechanism
that requires less noise can be adopted in this case by
using the fact that the `2-sensitivity ∆2 of the query is also
bounded:

∆2 := max
D,D′

‖q(D)− q(D′)‖2 ≤
√
k∆.

Theorem 2.12: For a given query q, let ∆2 =
maxD,D′ ‖q(D)− q(D′)‖2 be the `2-sensitivity of q. Then
the mechanism M(D) = q(D) + w, where w is a ran-
dom vector whose probability distribution is proportional
to exp(−ε ‖w‖2 /∆2), preserves ε-differential privacy.

2) Exponential Mechanism: Another useful and quite
general mechanism is the exponential mechanism. This
mechanism requires a scoring function u : Q × D → R.
Although the scoring function can be chosen arbitrarily,
there is often a natural choice when the query corresponds
to the optimal solution to an optimization problem. For
minimization problems, one can usually choose the negative
objective function as the scoring function. The exponential
mechanism ME(D;u) guarantees ε-differential privacy by
randomly reporting q according to the probability density
function

exp(εu(q,D)/2∆u)∫
q′∈Q exp(εu(q′, D)/2∆u) dq′

, (6)
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where

∆u := max
x

max
D,D′ : Adj(D,D′)

|u(x,D)− u(x,D′)|

is the sensitivity of the scoring function u.

Theorem 2.13 (Exponential mechanism [35]): The expo-
nential mechanism ME is ε-differentially private.

Compared with the Laplace mechanism, the exponential
mechanism is more general in that it does not restrict the
query to be numeric. However, it is generally difficult to
obtain the probability density function (6) in closed form.
In practice, the exponential mechanism is more widely used
in cases where the range Q is finite, so that the probability
density function (6) has finite support and can be computed.
In the context where the query is the optimal solution to an
optimization problem, the exponential mechanism provides
guarantees on the quality of the approximate solution. When
the range Q is finite, i.e., |Q| < ∞, the exponential
mechanism has the following probabilistic guarantee on the
suboptimality with respect to the scoring function.

Theorem 2.14: (Probabilistic guarantee on suboptimal-
ity [35]): Consider the exponential mechanism ME(D;u)
acting on a database D under a scoring function u. If Q is
finite, i.e., |Q| <∞, then ME satisfies

P
[
uopt − u(ME(D;u), D) ≥ 2∆u

ε
(log |Q|+ t)

]
≤ e−t,

where uopt = maxq∈Q u(q,D).

It is also possible to obtain the expected suboptimality
using the observation that if a random variable X satisfies:
(1) X ≥ 0 and (2) P [X ≥ t] ≤ e−αt for some α > 0, then
it holds that E[X] ≤ 1/α.

Theorem 2.15 (Expected suboptimility): Under the as-
sumptions of Theorem 2.14, the exponential mecha-
nism ME(D;u) satisfies

E [uopt − u(ME(D;u), D)] ≤ 2∆u(1 + log |Q|)/ε.

Similar to the Laplace mechanism, we can see from both
Theorems 2.14 and 2.15 the trade-off between optimality and
privacy: the suboptimality gap of the response ME(D;u)
increases as ε becomes smaller.

3) Gaussian Mechanism: For the relaxed notion of (ε, δ)-
differential privacy and when the query is numeric, a com-
mon choice is the Gaussian mechanism, which introduces
additive Gaussian noise to the query.

Theorem 2.16 (Gaussian mechanism [33]): For a given
query q, let ∆2 = maxD,D′ ‖q(D)− q(D′)‖2 be the `2-
sensitivity of q. Then, for ε ∈ (0, 1) and δ > 0, the
mechanism M(D) = q(D) + w preserves (ε, δ)-differential
privacy when w is a random vector whose entries are i.i.d.
zero-mean Gaussian with variance σ2 = κ2δ,ε∆

2
2, with κδ,ε =√

2 log(1.25/δ)/ε.

The Gaussian mechanism indicates that, for certain ap-
plications (such as in linear systems), the notion of (ε, δ)-
differential privacy may be favored over ε-differential privacy
even with its weaker privacy guarantees. This is because
the Gaussian mechanism often simplifies the analysis of the
performance of the mechanism, due to the fact that any
linear transformation of a Gaussian random vector remains
Gaussian.

4) Design of Differentially Private Mechanisms: The
mechanisms presented above (Laplace, exponential, and
Gaussian) are quite general and straightforward to imple-
ment. For implementing these algorithms, the only quantity
that one needs to compute is the sensitivity. Although the
sensitivity can be easy to compute for simple queries (e.g.,
the average), it may be difficult to compute for complicated
queries (e.g., the optimal solution of a nonlinear optimization
problem). When the queries are complicated, a common
strategy is to decompose the query under investigation so
that the sensitivity of each part of the query can be easily
computed. For example, although the sensitivity of the opti-
mal solution of a nonlinear optimization problem may not be
easy to compute, the sensitivity of the intermediate results
used to iteratively compute the optimal solution is often
much easier to compute. Then, by using the composition
rules from Section II-C, one can construct the desired private
mechanism.

III. DIFFERENTIALLY PRIVATE FILTERING

An important trend motivating this section is the increasing
emphasis on systems processing streams of dynamic data
collected from many sources around us, from websites and
smartphones to surveillance cameras, smart meters and house
thermostats. The production of useful statistics in real-time
(road traffic state estimate, power consumption in a small
neighborhood, detection of disease outbreaks) subject to
privacy constraints on the input signals brings new challenges
to the fields of signal processing, systems and control.

A. Generic Architecture for Privacy Preserving Filtering

In general, the goal is to compute an approximation of a
desired output signal while providing a differential privacy
guarantee on the space of input signals from which this
output is computed. In words, it should be hard to infer just
from looking at the published output signal which of two
adjacent input signals was used. As we mentioned above (cf.
our discussion after Definition 2.2), we have some freedom in
the choice of adjacency relation on the space of input signals,
which allows us to model various situations. In essence, the
adjacency relation captures which signals we want to make
indistinguishable. The difficulty is in producing outputs that
are useful, i.e., close according to some performance measure
to the signals we would like to have in the absence of
privacy constraint, see Figure 1. Ideally, we would also want
to obtain trade-off curves characterizing the fundamental
limit in terms of achievable utility for a given privacy level,
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although this topic is currently mostly unexplored for the
processing of real-time signals.

Figure 1 depicts an architecture for the approximation of
a desired signal in a differentially private way, which has
proved useful [25], [36] when trying to optimize utility for a
given requested level of privacy, i.e., given parameters (ε, δ)
in the differential privacy definition. In fact, this architecture
appears to be useful in a broader context than differentially
private filtering. It can be recognized in the work of Li
and Miklau [37] on providing differentially private answers
to linear queries about static databases, in [11], where
quantization is used to enforce an information theoretic
definition of privacy rather than random perturbation, or
more recently in [38], where the problem considered can
be interpreted as publishing a signal under an information
theoretic definition of privacy, although one that does not
taken auxiliary information into account.

One can interpret Figure 1 in the context of communica-
tion systems. The “signal preparation block” is a transmitter
(or sensor) design problem, shaping the input signal before it
is sent into a sanitization mechanism, which can be viewed
as a transmission channel. In the context of differential
privacy, this channel typically just adds additive (Laplace
or Gaussian) noise to its input signal. Finally, the “Output
signal reconstruction block” is a receiver design problem,
attempting to remove the effect of the sanitization block to
estimate the desired output signal. This architecture enforces
differential privacy as long as the sanitization block does, by
the resilience to post-processing, cf. Theorem 2.6. Generally,
the sanitization block is fixed initially, as in the following
result, and we are faced with a joint transmitter-receiver
design problem, an analogy that is further discussed in [26].

Theorem 3.1: (Gaussian mechanism for signals [25]): Let
G be a dynamic system with n inputs and p outputs. For
Adj an adjacency relation on the space of input signals for
G, define its `p-sensitivity as

∆pG = sup
Adj(u,u’)

‖Gu−Gu′‖p

Then the mechanism M(u) = Gu+ w, where w is a white
Gaussian noise with covariance matrix κ2δ,ε(∆2G)2Ip, with
κδ,ε defined in Theorem 2.16, is (ε, δ)-differentially private.

Although the architecture of Figure 1 achieves the optimal
trade-off between utility and obfuscation (or communication
rate) under certain information-theoretic formulations [38],
to the best of our knowledge no such result is available for
differentially private signal analysis. Nonetheless, optimizing
this architecture generally leads to interesting computational
problems, and typically provides a significant improvement
over more basic schemes such as input perturbation (where
only the output signal reconstruction block is considered) and
output perturbation (where only the signal preparation block
is considered). A general approach to attempt to optimize
this architecture can proceed with the following steps:

(i) Fix the adjacency relation on the space of measured
signals and the sanitization mechanism to provide
differential privacy. For example, it could be the Gaus-
sian mechanism of Theorem 3.1, with Gaussian noise
proportional to the sensitivity of the signal preparation
block. The computation of the sensitivity itself depends
on the choice of adjacency relation.

(ii) Fix the family of output signal reconstruction blocks,
and express the “best” such block as a function of the
signal preparation block. In general, this step depends
on the performance measure considered, on the prop-
erties of the signal preparation blocks considered (ex:
linear or nonlinear), and on any public information one
might have about the input signals, which could help
in the estimation of the desired output signal from the
output of the sanitization mechanism.

(iii) Express the performance measured now solely as a
function of the signal preparation block, and optimize
over the latter.

In the rest of this section, we illustrate the application of
this procedure to a few different scenarios. In some cases,
it can lead to apparently intractable optimization problems.
However, even suboptimal designs can be worth considering
under this point of view.

B. Zero-Forcing Equalization Mechanism

Consider a scenario where n sensors each report at regular
intervals a scalar ui,t ∈ R, for t ≥ 0, i ∈ {1, . . . , n}.
Let ut = [u1,t, . . . , un,t]

T ∈ Rn. In traffic or building
monitoring systems for example, ui,t could be the number of
cars or people detected in front of sensor i during period t,
a measurement that could then be integrated by a density
estimation algorithm. In a smart metering scenario for a
household, ui,t could be the average power consumption
level of appliance i during period t. We would like to publish
in real-time a signal y = Fu computed from the detected
events, with yt ∈ Rp, where F in this section is assumed
to be a causal, linear time-invariant (LTI) system. However,
the signals u are assumed to be privacy sensitive, which
prevents from releasing exactly y, since F could be partially
or completely invertible for example. Instead, we release a
sanitized, differentially private approximation ŷ and measure
the utility of this approximation by the average mean square
error for example, i.e., we wish to minimize the quantity
limT→∞

1
T

∑T−1
t=0 E[|yt − ŷt|22].

1) Adjacency Relation and Sanitization Mechanism: To
instantiate the differential privacy definition, consider the
following adjacency relation on the input signals u

Adj(u, u′) iff ∀i ∈ {1, . . . , n}, (7)
∃ti ∈ N, αi ∈ R, s.t. u′i − ui = αiδti , |αi| ≤ ki,

parametrized by a vector k ∈ Rn with components ki > 0.
Here δti denotes the discrete impulse signal with impulse
at ti. This adjacency relation, called event-level adjacency,
generalizes to vector-valued signals the adjacency relation
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Fig. 1. Architecture for privacy preserving filtering. The signals exiting the sanitization block are differentially private.

considered in [39]–[41]. In words, differential privacy with
respect to (7) aims to make it hard to detect deviations
on each input signal component at any single time period,
and by at most ki. In terms of applications, consider a
location based service, a traffic monitoring sensor network or
a system recording hospital visits. Differential privacy with
respect to (7) makes it hard to answer questions of the type:
“Did person X visit location i?”, at least for people who
visited location i only once. It does not protect a person
visiting the same location twice however, although this
situation could be mitigated to some extent by duplicating
sensor i for different time windows, and putting a lower
bound on the frequency at which the person visits a given
location. Naturally, from a privacy point of view, it would
be preferable to remove this bound on the visit frequency at
the n locations. However, this would allow a person to have
potentially a very strong influence on any sensed signal, and
would likely require adding an amount of perturbation that
would render interesting output signals useless or require
very large values for the privacy parameters ε and δ.

For simplicity, we discuss in the following only the case
where u is a scalar signal, i.e., n = 1, although we might
want to produce several output signals, so p > 1 is allowed.
In other words, F is a single-input multiple-output (SIMO)
LTI system. In this case, the following simple observation is
key for sensitivity computations.

Theorem 3.2: (Event-Level Sensitivity for SIMO Systems):
Let G be an LTI system with one input, p outputs and such
that ‖G‖2 < ∞. For the adjacency relation (7), we have
∆2G = k1‖G‖2.

Proof: For u and u′ adjacent

‖G(u− u′)‖22 = |α1|2‖Gδt1‖22 ≤ k21‖G‖22,

and the bound is attained if |α1| = k1.

As a result of Theorem 3.2, we obtain the following input
perturbation and output perturbation differentially private
mechanisms. Either add white Gaussian noise w1 to u with
standard deviation k1κδ,ε (since the identity system has
sensitivity 1) and output F (u + w1) (which is private by
resilience to post-processing, cf. Theorem 2.6), or add white

Gaussian noise w2 to y = Fu with standard deviation
k1κδ,ε‖F‖2. In this case, both schemes achieve the same
performance as measured by the Mean Squared Error (MSE),
namely an MSE of k21κ

2
δ,ε‖F‖22.

2) Signal Reconstruction and Optimization over Linear
Signal Shaping Blocks: To improve over the performance
of the input or output perturbation mechanisms, we can
consider the more general mechanism of Figure 2, called
the Zero-Forcing Equalization (ZFE) mechanism [25]. This

F

G H=FG-1

w

u

y

z  ŷ

e-

+

+

+

Fig. 2. Zero-Forcing Mechanism.

mechanism follows the architecture of Figure 1, with the
Gaussian mechanism as sanitization mechanism. Indeed, the
signal w is a white Gaussian noise with standard deviation
k1κδ,ε‖G‖2, so that the signal z is differentially private. The
output reconstruction filter H simply inverts the filter G and
then passes the result through the desired filter F . The goal
is then to choose the signal shaping block G to optimize the
MSE

eZFEmse (G) =

lim
T→∞

1

T

T−1∑
t=0

E
[
|(Fu)t − (HGu)t − (Hw)t|22

]
= lim
T→∞

1

T

T−1∑
t=0

E
[
|(Hw)t|22

]
= k21κ

2
δ,ε‖FG−1‖22‖G‖22. (8)

From the expression (8), a straightforward application of the
Cauchy-Schwarz inequality gives the following lower bound
together with the filter G achieving this lower bound.
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Theorem 3.3 (SIMO ZFE mechanism [26]): Let F be a
SIMO LTI system with ‖F‖2 < ∞. For any LTI system
G such that ‖G‖2 <∞, we have

eZFEmse (G) ≥ k21κ2δ,ε
(

1

2π

∫ π

−π
|F (ejω)|2 dω

)2

. (9)

If moreover F satisfies the Paley-Wiener condition
1
2π

∫ π
−π ln |F (ejω)|2 dω > −∞, this lower bound on the

mean square error of the ZFE mechanism is attained by some
SISO system G with causal inverse L, such that

|G(ejω)|2 = ‖F (ejω)‖2 (10)

for almost every ω ∈ [−π, π).

Finding G with causal inverse satisfying (10) is a spectral
factorization problem [42]. Note also from Jensen’s inequal-
ity that the achievable MSE (9) is always lower or equal to
k21κ

2
δ,ε‖F‖22, the MSE of the input or output mechanism.

In practice the ZFE mechanism can lead to substantial
performance improvements [25], [26].

3) Extension to MIMO systems: For MIMO systems, the
sensitivity with respect to the adjacency relation (7) has a
much more complicated expression than in Theorem 3.2,
because of the superposition at the output of the effect
of one individual on the different input channels [26]. A
consequence is that at this time, an optimal MIMO ZFE
mechanism is not known, but one can derive lower bounds
on its steady-state estimation error, together with sub-optimal
mechanism using diagonal signal shaping blocks, in effect
reducing the problem to a set of SIMO problems, see [26].

C. Model-Based Signal Reconstruction

Leveraging a priori known models of datasets, e.g., sta-
tistical models, is a relatively unexplored topic in the differ-
ential privacy literature, in contrast to standard approaches
in control and signal processing. A few papers related
to differentially private analysis of time series do make
assumptions about the coefficients of the discrete Fourier
transform of the input [43], or about the existence of a sparse
representation in some basis [44]. However, in contrast to
our focus, the resulting mechanisms are not causal, i.e., the
output signal can only be published when the input signal is
entirely known. In many cases, we have a significant amount
a knowledge about the input data even before receiving
it, which we would like to use to provide either better
accuracy in our estimates, or better privacy, e.g., by sampling
less frequently. We explore two topics illustrating this idea:
leveraging statistical models of stationary input signals, and
differentially private Kalman filtering for input signals that
are produced by a state-space model, such as location traces
that are constrained by kinematic equations.

1) Leveraging Statistical Models of Stationary Signals:
With zero-forcing equalization, one tries to cancel the effect
of a channel G simply by inverting this channel at the re-
ceiver. One issue with this approach is the noise amplification

at frequencies where |G(ejω)| is small [45], although this is
not as problematic for us because |F (ejω)| and |G(ejω)| in
Theorem 3.3 are both small at the same frequencies, see (10).
The main advantage of the ZFE mechanism is that it can be
implemented in absence of any model of the input signal.
However, one can improve on it by using more advanced
equalization schemes in the design of the post-filter H of
Figure 2, if some additional information about the input
signal is known.

Suppose for example that the input signal u on Figure 2
is known to be wide-sense stationary (WSS) with know
mean vector µ and matrix-valued autocorrelation sequence
Ru[k] = E[utu

T
t−k] = Ru[−k]T ,∀k. The z-spectrum matrix

of u is denoted Pu(z) =
∑∞
k=−∞R[k]z−k. We can assume

µ to be zero, since the output y is also WSS with known
mean equal to F (1)µ. Note that for privacy reasons we
assume here that the parameters Ru and µ have not been esti-
mated directly from the signal u, but instead they correspond
to general knowledge one might have about an application,
and perhaps could have been estimated from an additional
dataset that is not privacy-sensitive. Since w a white Gaussian
noise (with variance proportional to ‖G‖22), the task of the
filter H is to reconstruct the WSS signal y from the WSS
signal z = Gu + w. In this case, the linear reconstruction
filter H that is optimal with respect to the minimization of
the MSE is the Wiener filter [42]. Ignoring for now any
requirement that H be causal, the optimal smoother H for
a given signal shaping filter G is then

H(z) =F (z)Pu(z)G(z−1)T

×
(
G(z)Pu(z)G(z−1)T + κ2δ,ε‖G‖22 In

)−1
.

(11)

At this point, we have followed steps (i) and (ii) in
the procedure outline in Section III-A. For step (iii), we
express the MSE between y at the output of F and ŷ
at the output of H , as a function of G, which can be
written here 1

2π

∫ π
−π Tr(Py(ejω) − Pŷ(ejω))dω. From (11),

as detailed in [26, Section VI], we can obtain an explicit
expression for Pŷ(ejω), which depends on G(ejω). Then, it
turns out that optimizing the MSE over G can be done in
certain cases by solving a certain “waterfilling” type optimal
allocation problem of the same nature as those encountered
in the communications literature on joint transmitter-receiver
design [46], [47], or via semidefinite programming [26].

One important remaining issue however is that the proce-
dure outlined above relies on the expression (11), which is
that of the Wiener smoother, i.e., the filter H is in general non
causal. In certain cases, we can still implement the resulting
mechanism, at least approximately, by adding a small delay.
Otherwise, we need to constrain H explicitly to be a causal
Wiener filter. How to compute H for a given G in this case
is well known [42], but the expression of the performance
measure as a function of G becomes more complicated and
not as explicit as in the case where H is unconstrained. As a
result, it is not currently known how to optimize over causal
mechanisms for the problem of this section.
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So in general, the optimization procedure based on (11)
only provides a bound on achievable performance for the
design of causal mechanisms. One can then resort to subop-
timal heuristics. For example, a scheme that seems to work
well in practice is to use the square root signal shaping block
of Theorem 3.3, which was optimal for the ZFE mechanism,
followed by a causal Wiener filter H replacing the zero-
forcing equalizer. The performance obtained can then be
compared to the performance bound to provide an indication
of how far from optimal the scheme is.

2) Privacy Preserving Kalman Filtering: Suppose now
that instead of having the type of statistical model for sta-
tionary signals of the previous subsection, we know that the
input signals provided by individuals are generated according
to a known linear state space model. For example, consider n
individuals periodically reporting their positions x(1)i := pi,
and velocities x

(2)
i := vi, i ∈ {1, . . . , n}, obtained for

example via GPS devices that they carry. From this data
we would like to publish a differentially private estimate
of the average velocity of the group, i.e., v = 1

n

∑n
i=1 vi.

For xi,t = [pTi,t, v
T
i,t]

T ∈ R2d, we can consider the noisy
kinematic model

xi,t+1 =

[
Id TsId
0 Id

]
xi,t +

[
T 2
s

2 Id
TsId

]
wi,t (12)

=: Axi,t +Bwi,t,

where Ts is the sampling period, and wi, i ∈ {1, . . . , n}, is
a white Gaussian noise with covariance matrix W ∈ Rd×d,
assumed known. The dynamics (12) model the velocity as a
Gaussian random walk, and take into account the physical
relationship between speed and velocity. The measurement
model is then

yi,t = xi,t + ξi,t, (13)

where ξi, i ∈ {1, . . . , n}, is a white Gaussian noise with
known covariance matrix V .

In the absence of privacy constraint, the estimate v̂ of v
minimizing the mean squared error is obtained by Kalman
filtering [42]. In this example, where all individual dynamics
are independent, we can run n independent Kalman filters
to produce estimates x̂i, and then let v̂t = 1

n

∑n
i=1 x̂

(2)
i,t , as

follows

x̂−i,t+1 = Ax̂+i,t, Σ−i,t+1 = AΣ+
i,tA

T +BWBT ,

Ki,t+1 = Σ−i,t+1(Σ−i,t+1 + V )−1, (14)

x̂+i,t+1 = x̂−i,t+1 +K(yi,t+1 − x̂−i,t+1).

We write v̂i = Kyi for the estimate of the velocity obtained
through this filter.

To produce a differentially private estimate, once again
we start by defining an adjacency relation of interest on the
datasets, which are the measured signals yT = [yT1 , . . . , y

T
n ].

Consider for example the following relation, for S =
diag(s1Id, s2Id) a diagonal matrix

Adj(y, ỹ) iff for some i, ‖S(yi − ỹi)‖2 ≤ ρ, (15)

and yj = ỹj for all j 6= i.

Differential privacy with respect to (15) aims at hiding
weighted `2-variations of size ρ in the signal yi of a single
individual. Higher values of s1 (resp. s2) provide less protec-
tion to component pi (resp. vi). Then, a simple differentially
private mechanism is the input perturbation scheme, where
each individual directly perturbs its data. Since we have

max
Adj(y,ỹ)

‖y − ỹ‖2 = max
‖z−z̃‖2≤ρ

‖S−1(z − z̃)‖2 ≤ ρ‖S−1‖2,

we see from Theorem 3.1 that y̌i,t = yi,t + ζi,t is differ-
entially private if ζi a white Gaussian noise with covari-
ance matrix Ξ = κδ,ε ρ‖S−1‖2I2d. The advantage of this
scheme is that individuals can directly release signals that
are differentially private, i.e., there is no need to trust the
dataset manager. Once these signals are received, they can
be integrated through the same previous Kalman filter, with
only a modification in the computation (14) of the Kalman
gain, where the matrix V should be replaced by V + Ξ,
since the privacy preserving noise can simply be viewed as
an additional observation noise. We note this filter Ǩ and the
estimate v̌i, so that v̌i = Ǩy̌i.

In general however, this input perturbation scheme for an
adjacency relation such as (15) does not achieve the optimal
scaling for the MSE as a function of n. Indeed, we have that

Var(v̌ − v) =
1

n2

n∑
i=1

Var(Ǩiy̌i − vi),

i.e., the estimator error variance scales as 1/n. In contrast,
consider an output perturbation scheme where v̂ is first
computed using a steady-state version Kss of the Kalman
filter

v̂ =
1

n

n∑
i=1

Kssyi, (16)

and then white Gaussian noise is added to v̂ with covariance
proportional to the squared sensitivity, producing a final
differentially private estimate. The `2-sensitivity of (16) with
respect to (15) is 1

n‖KssS
−1‖∞ [25] (an `2-gain compu-

tation), so that this output perturbation scheme will have
an MSE scaling as 1/n2. For a sufficiently small number
of individuals, the input perturbation scheme might still be
advantageous, although other considerations also have to be
taken into account, such as the fact that the matrix Ξ in
Ǩ can slow down the filter’s convergence significantly, i.e.,
the MSE and especially long-term MSE is not necessarily
the only performance measure of interest, see Figure 3.
Moreover, instead of simply using a Kalman filter in the
output perturbation mechanism, Kss can be redesigned to
balance estimation error with H∞ norm, i.e., sensitivity, in
order to minimize the overall MSE in the final differentially
private estimate, see [25, Section IV].

The output perturbation scheme does not change the speed
of the transient response of the filter, however, it produces
a final estimate still containing raw, white noise in it, which
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Fig. 3. Examples of differentially private velocity estimates obtained by
Kalman filtering with input (top) and output (bottom) perturbation (see [25]
for details). The input perturbation scheme gives a better steady-state MSE
here, but its convergence is much slower.

intuitively should be furthered filtered. Hence, one should
consider once again a more general architecture following
Figure 2, containing a signal shaping block G and where
now H is a Kalman filter, a choice that is optimal as long
as G is taken to be linear. This Kalman filter H will depend
on G, and one can then optimize the overall performance
with respect to G, following again the procedure outlined in
Section III-A.

3) Further Extensions: Nonlinear Systems: The previous
paragraphs have only been concerned with linear systems,
e.g., in the choice of filters G and H in the ZFE mechanism
or its extension using Wiener filtering, or in the use of
linear state space systems to model the measured signals
in differentially private Kalman filtering. There are however
many ways in which nonlinearities should be considered as
well. For example, if the input signals u in (7) describe
a number of events captured by detectors during a certain
period, then they will take discrete values, and intuitively
we should take advantage of this information to improve the
performance of our mechanism. In this case, a suboptimal
but computationally tractable scheme consists in replacing
the Wiener filter by a decision-feedback equalizer, which
includes a quantization block in the reconstruction filter,
see [48].

When we wish to publish a differentially private estimate
of an aggregate quantity such as an estimate of the proportion
of sick people in a population, or of the proportion of
connections between two categories of people in a social
network, the underlying dynamics of these quantities are
often strongly nonlinear. As an example, consider the fol-
lowing so-called SIR model [49], [50], which models the

evolution of an epidemic in a population. Individuals are
divided into 3 categories: susceptible (S) individuals who
might become infected if exposed, infectious (I) individuals
who can transmit the infection and recovered (R) individuals,
who are then immune to the infection. The continuous-time
version of this model is bilinear

ds

dt
= −µRois

di

dt
= µRois− µi.

(17)

Here i and s represent the proportion of the total population
in the classes I and S. The parameter Ro is called the “basic
reproduction number” and represents the average number
of individuals infected by a sick person. The epidemic can
propagate when Ro > 1. The parameter µ represents the rate
at which infectious people recover.

Syndromic surveillance systems monitor health related
data in real-time in a population to facilitate early detection
of epidemic outbreaks [51]. One can view the data they
collect as noisy measurements yk = ik + νk of the pro-
portion i(t) of infected individuals at times {tk}k≥0, which
should be fused with the model (17) to produce a refined
estimate {̂ik}k≥0. However, the signal yk is an aggregation
of typically privacy-sensitive data, e.g., records of visits to
emergency rooms. To ensure that îk is differentially private,
the distribution of this estimate should not be too sensitive to
variations in yk that can be attributed to a single individual.
This leads us to consider in [52] to consider the following
adjacency relation

Adj(y, ỹ) iff (18)

∃k0 ≥ 0 s.t.

{
yk = ỹk, k < k0

|yk − ỹk| ≤ Kαk−k0 , k ≥ k0,

where K > 0, 0 ≤ α < 1 are given constants. Differential
privacy with respect to (18) aims at hiding transient devi-
ations starting at any time k0 that subsequently decrease
geometrically, and which could be due to a single individual’s
data influencing the syndromic surveillance dataset for some
time as he becomes infected. With a larger population
sampled, we can choose K smaller as the effect of one
individual becomes smaller, which then allows us to decrease
the level of noise in our estimate î.

Let us denote F our estimator of î, i.e., î = Fy. A model
based estimator should generally rely on (17) and capture
the nonlinear dynamics of this model internally, making
the operator F nonlinear. Designing a simple differentially
private output perturbation mechanism ǐ = Fy + w1, with
w1 Gaussian, requires computing the sensitivity of F with
respect to (18), a problem that can be much more difficult
than in the linear case, but for which tools from nonlinear
system analysis can help [52]. Output perturbation might
be preferable to an even simpler input perturbation scheme
ǐ = F(y+w2), since the latter can produce a systematic bias
at the output when w2 passes through the nonlinear system
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F . Naturally, optimizing the more general architecture of
Figure 1 is desirable in this context as well.

There are many other variations and types of problems
worth considering in privacy preserving signal processing.
For a recent survey of other problems currently under active
study, we refer the reader to [53].

IV. DIFFERENTIAL PRIVACY, ENTROPY, AND CONSENSUS

In distributed control systems with shared resources, par-
ticipating agents can improve the overall performance of
the system by sharing data about their personal preferences.
Examples include crowd-sourced traffic estimation and nav-
igation applications such as those provided by Google Maps
and Waze and also smart meter-based “peak-shaving” in
power generation based on user demands.

In this section, we formulate and study a natural trade-
off arising in these problems between the privacy of the
agent’s data and the performance of the control system. Each
agent seeks to preserve the privacy of its preference vector,
for example, the sequence of way points in a navigation
system. The overall control system consists of a group
of agents with linear discrete-time coupled dynamics, each
controlled to track its preference vector. Performance of the
system is measured by the mean squared tracking error.
Here, following [20], we discuss a mechanism that achieves
differential privacy by adding Laplace noise to the shared
information in a way that depends on the sensitivity of
the control system to the private data. A special case of
this problem is studied in [22], where the agents need
to achieve average consensus through iterative interactions
while preserving the privacy of their initial states. We also
investigate the best estimates that can be derived from a
sequence of the noisy shared data from an adversary’s point
of view. We show that there exists a lower-bound for the
entropy of any unbiased estimator of the private data from
any noise-adding mechanism that gives ε-differential privacy,
and that the mechanism achieving this lower-bound is a
randomized mechanism that also uses Laplace noise.

A. System Formulation

Consider a linear distributed control system with n agents,
cf. Figure 4, whose dynamics are coupled

xi(t+ 1) = Axi(t) + vi(t) +
c

n

n∑
j=1

xj(t),

where (a) xi(t) ∈ Rd is the state of agent i at time t < T ;
(b) vi(t) ∈ Rd is the local control input; (c) c ∈ R is a
coupling coefficient capturing the aggregate influence of the
other agents. This model of coupling via average states is
adopted for the sake of simplicity. The techniques described
here can be extended to general linear couplings between the
agents with moderate revisions.

Fig. 4. Diagram of a distributed control system.

To achieve better performance, the agents need to ex-
change information about their states. Since the communi-
cation between the agents may be compromised, the agents
choose to share only noisy versions of their states via a ran-
domized mechanism M for the sake of privacy. Specifically,
at each time t ≥ 0, the ith agent adds mean-zero noise ni(t)
to its state and reports this noisy state x̃i(t) to the other
agents

x̃i(t) = xi(t) + ni(t). (19)

The aggregation and dissemination of the noisy states can be
performed either via a central server, as shown in Figure 4,
or in a fully distributed or peer-to-peer fashion.

In addition, each agent i is also associated with a sequence
pi(t) of (possibly constant) preferences or waypoints that it
aims to track. To achieve this, the agent uses a feedback
control vi(t) based on the information of average state
u′(t) = − c

n

∑n
j=1 x̃j received from the server and adopts

the linear feedback control law

vi(t) = K ′(xi(t)− pi(t+ 1)) + (I −A)pi(t+ 1)− u′(t),

where the K ′(xi(t)− pi(t+ 1)) is a linear feedback term of
the tracking error, (I − A)pi(t + 1) is an additive term to
move the equilibrium of xi(t) to pi(t+ 1), and −u′(t) tries
to cancel the effect of the aggregate state. Thus, we have

x̃i(t) = xi(t) + ni(t),

u′(t) =
c

n

n∑
j=1

x̃j ,

xi(t+ 1) = Kxi(t) + (I −K)pi(t+ 1)

− u′(t) +
c

n

n∑
j=1

xj(t),

where K = K ′ + A ∈ Rd×d is the closed loop dynamics
matrix. If a different linear feedback control scheme is used,
then the system equations can be modified accordingly.
Combining these equations, the closed-loop dynamics of
agent i ∈ {1, . . . , n} is

xi(t+ 1) = Kxi(t) + (I−K)pi(t+ 1)− c

n

n∑
j=1

nj(t). (20)

The state of the ith agent at time t + 1 can be written as
a function of its preference sequence {pi(s)}s≤t and the
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sequence {ni(s)|i ∈ {1, . . . , n}, s ≤ t} of noise vectors
added in all previous rounds.

Let x(t), x̃(t), n(t) and p(t) be the aggregated state, noisy
reported state, noise and preference respectively. From (20),
the aggregated closed loop dynamics can be written as

x(t+ 1) = Kx(t) + (I −K)p(t+ 1)−Cn(t),

or equivalently

x(t+ 1) = (K + C)x(t)−Cx̃(t) + (I −K)p(t+ 1),

where K = In⊗K, C = 1n⊗ cId
d , In is the n× n identity

matrix, 1n is the n × n matrix with all elements being 1,
and ⊗ denotes the Kronecker product.

Solving the above two equations gives

x(t) = (K + C)tx(0)−
t−1∑
s=0

(K + C)t−su(t)

+

t∑
s=1

(K + C)t−s(I −K)p(s), (21)

where u(t) = (u′(t), . . . , u′(t))T is the aggregated average
state, and

x(t) =(K + C)tx(0) (22)

+

t−1∑
s=0

(K + C)t−s−1((I −K)p(s+ 1)−Cx̃(t)).

1) Differential Privacy and Bayesian Inference: For a
time horizon T , the agents need to keep the private data D =
{di}i∈{1,...,n} = {(xi(0), pi(1), . . . , pi(T − 1))}i∈{1,...,n},
namely their initial states and preferences ε-differentially
private, under the observation OD = {x̃(t)}t<T ∈ RdnT of
the randomized aggregated reported states, parametrized by
D. This leads us to the following definition of ε-differential
privacy for the private data.

Definition 4.1: (Differential privacy over time horizon):
Given a time horizon T > 0 and a parameter ε > 0, a
randomized mechanism M : D → OD is ε-differentially
private up to time T − 1, if for any subset O ⊆ RdnT and
any two data sets D,D′, the inequality

P [OD ∈ O] ≤ eε‖D−D
′‖1P [OD′ ∈ O] (23)

holds, where the random variables OD and OD′ are the
observations generated by the two data sets D and D′.

Note that, if the system is ε-differentially private up to
time T − 1, then it is ε-differentially private up to any time
S < T . Consider the unbiased estimator

D̂ = {(x̂i(0), p̂i(1), . . . , p̂i(T − 1)) | i ∈ {1, . . . , n}}

of the private data set from a sequence of reported states
OD. We will show in Section IV-C that if the private data
D is ε-differentially private, then there is a lower bound
on the entropy of H(D̂) and the minimum is achieved by
mechanisms that add Laplace noise.

2) Measuring the Tracking Performance: We use the
second moment of the tracking error to define a cost function
for agent i up to time T − 1

C(ε,D, i) = E

[
T−1∑
t=1

‖xi(t)− pi(t)‖22

]
.

It increases with time T . This cost is non-zero even when
there is no noise in the communication, namely ni(t) = 0
for all t. In this case, ε→∞, and we denote the zero-noise
cost by

C0(D, i) = lim
ε→∞

C(ε,D, i).

The cost of privacy is defined as the supremum in the
change of single agent’s cost over all data sets relative to the
non-private mechanism

∆(ε, T ) = sup
i∈{1,...,n},D∈D

(C(ε,D, i)− C0(D, i)) .

We will show in Section IV-B that if the private data D
is ε-differentially private, then there is a lower bound on
the entropy of H(D̂) and the minimum is achieved by
mechanisms that add Laplace noise.

B. Differentially Private Linear Distributed Control

The feedback nature of the system leads to the following
observation: given the private data set D, the system tra-
jectory {x(t)}t<T is uniquely determined by the value of
the sequence of reported states OD = {x̃(t)}t<T , which
we denote by ρ(D,OD). The influence on ρ(D,OD) of
changing D is captured by the notion of sensitivity.

Definition 4.2 (Sensitivity): The sensitivity of a random-
ized mechanism M at time t ≥ 0 is

S(t) = sup
D,D′∈D, O∈RdnT

‖ρ(D,OD)(t)− ρ(D′, OD′)(t)‖1
‖D −D′‖1

.

A randomized mechanism M that keeps the data D ε-
differentially private can be designed by using Laplace noise
to cover the change in private data [20].

Theorem 4.3: (Differential privacy over time horizon via
Laplace noise): For ε > 0 and a time horizon T > 0, let
Mt = TS(t)/ε. A randomized mechanism defined by

n(t) ∼ Lap(Mt, dn)

for t < T in (19) is ε-differentially private.

The following result gives a bound on the sensitivity for
the system. To prove it, we fix two private data sets D and
D′, and calculate the bound on the distance between the
two corresponding trajectories under the same observation
by decomposing it into (1) the change in agent i’s state, and
(2) the sum of changes in other agents’ state.

Theorem 4.4: (Upper bound on sensitivity): For the linear
distributed control system, for all t ∈ N the sensitivity
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S(t) ≤ κ(t), where κ is defined as

κ(t) :=‖Gt−Kt‖1+‖Kt‖1+‖H‖1
t−1∑
s=0

(‖Gs−Ks‖1+‖Ks‖1)

with G := cI +K and H := I −K.

The upper bound κ(t) on the sensitivity at time t is
independent of the number of agents. It only depends on
the matrix K (specified by the individual’s control function)
and the coupling coefficient c and time t. The upper bound
κ has two components:

(i) ‖Kt‖1 + ‖H‖1
∑t
s=1 ‖Ks‖1 over-approximates the

change in the ith agent’s state xi if its own preference
changes at each time up to t, and

(ii) ‖Gt − Kt‖1 + ‖H‖1
∑t−1
s=0 ‖Gs − Ks‖1 over-

approximates the sum of the changes in other agents’
state given agent i’s preference changes up to t.

When K is stable, ‖Kt‖1 decays to 0. The coupling
coefficient c quantifies the influence of the aggregate on
each individual agent. The matrix G = cI +K captures the
combined dynamics under the influence of the environment
and the dynamics of the individual agents. The weaker the
physical coupling, the smaller ‖Gt‖1. As the individual agent
dynamics becomes more stable or the physical coupling
between agents becomes weaker, the sensitivity of the system
decreases. This gives the following estimation on the growth
rate of the cost of privacy with time.

Theorem 4.5 (Cost of privacy): The cost of privacy of the
ε-differentially private mechanism M of Theorem 4.3 is of
the order of O( T

3

nε2 ) if the matrix K is Hurwitz. Otherwise
it grows exponentially with T .

C. Estimation of Differentially Private Linear Distributed
Systems

Here, we study the problem of estimating the private data
using privacy preserving mechanisms like the ones discussed
above from the point of view of Bayesian inference. Let D̂
be an unbiased estimator of the private data set D given
observation OD up to time T − 1. We show here that there
is a lower bound on the entropy of such estimators for any
ε-differentially private mechanism M.

For a single timestep T = 1, we prove that Laplace-noise-
adding mechanism minimizes that entropy of the unbiased
estimator.

Theorem 4.6: (Lower bound on entropy of estimator: sin-
gle timestep): Given a invertible M ∈ Rd×d and a random-
ized mechanism x̃ = Mx+w that protects the ε-differential
privacy of the private data set x ∈ Rd by adding mean-zero
noise w ∈ Rd from one-shot observation x̃, the entropy of
any unbiased estimator x̂ from observation x̃ satisfies

H (x̂) ≥ H(Mλ),

and the minimum is achieved by using x̂ = M−1x̃ and
adding noise n = Mλ where λ ∼ Lap(1/ε, n). In particular,
when M = I , we have

H (x̂) ≥ d(1− ln(ε/2)).

The iterative application of Theorem 4.6 extends the result
to an arbitrary time horizon T ∈ N.

Theorem 4.7: (Lower bound on entropy of estimator: ar-
bitrary horizon): If the private data set D is ε-differentially
private up to time T − 1 and I − K is invertible, then the
entropy of any unbiased estimator D̂ of the private data set
is at least

nd(1− ln(ε/2)) + n(T − 1)H((I −K)w),

where w ∼ Lap(1/ε, d). The minimum is achieved by

n(0) = λ(0),

n(t) = (K + C)tλ(0) +

t∑
s=1

(K + C)t−s(I −K)λ(s),

for t ≥ 1, where λ(t) ∼ Lap(1/ε, dn) are independent dn-
dimensional Laplace noise for t ∈ {0, . . . , T − 1}.

As shown in Theorem 4.7, the minimal entropy of the
estimator depends linearly on the number of agents n, the
dimension n of the state of each agent and the time horizon
T . In addition, the minimal entropy increases as the privacy
level increases, namely ε decreases. Finally, it only depends
on the dynamics of each agent and independent of the
coupling coefficient c. This is because by communicating
with others, the coupling in the dynamic of the agents has
been canceled (with some noise left), thus the initial state
and the preferences of each agent propagate only by the local
dynamics K.

V. DIFFERENTIAL PRIVACY AND DISTRIBUTED
OPTIMIZATION

In this section we consider convex optimization problems
over networks, where the objective function can be written
as the aggregate of local objective functions, each one known
to one individual agent. In such scenarios, agents must
cooperate with each other to determine the global optimizer
given that their information about the optimization problem
is incomplete. However, when doing so, they want to avoid
revealing sensitive information about themselves such as, for
instance, their private objective functions. This is where the
concept of differential privacy comes in. The outline of the
section is as follows: we start by formalizing the problem
mathematically, then describe potential approaches to solve
it in a distributed and differentially private way, and finally
examine the pros and cons of each approach.

A. The Problem

Consider a group of n agents whose communication
topology is described by an undirected graph G. Each agent
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corresponds to a vertex in the graph, whereas communication
links are represented by the edges. Each agent i ∈ {1, . . . , n}
has a local objective function fi : D → R, where D ⊂ Rd is
convex and compact and has nonempty interior. We assume
that each fi, i ∈ {1, . . . , n} is convex and twice continuously
differentiable, and use the shorthand notation F = {fi}ni=1.
Consider the following convex optimization problem

minimize
x∈X

f(x) :=

n∑
i=1

fi(x). (24)

Here, X ⊆ D is the feasibility set, which we assume is a
global piece of information known to all agents.

The group objective is to solve the convex optimization
problem (24) in a distributed and private way. By distributed,
we mean that each agent can only interact with its neighbors
in the graph G. Regarding privacy, we consider the case
where the function fi (or some of its attributes) constitute
the local and sensitive information known to agent i ∈
{1, . . . , n} that has to be kept confidential. Other scenarios
are also possible, such as preserving the privacy of the
agent state or its local constraints. Each agent assumes that
the adversary has access to all the “external” information
(including all the network communications and all other
objective functions). This setting is sometimes called local
(differential) privacy in the literature, see e.g., [54].

Given that the objects to preserve the privacy of are
functions, and therefore belong to an infinite-dimensional
space, the standard definition of differential privacy needs
some adjustments. Let us first introduce the notion of ad-
jacency. We denote by L2(D) the set of square-integrable
measurable functions defined on D. Given any normed vector
space (V, ‖ · ‖V) with V ⊆ L2(D), two sets of functions
F, F ′ ⊂ L2(D) are V-adjacent if there exists i0 ∈ {1, . . . , n}
such that

fi = f ′i , i 6= i0 and fi0 − f ′i0 ∈ V.

The set V is a design choice that we specify later. This defini-
tion can be readily extended to the case where V is any subset
of another normed vector space W ⊆ L2(D). With this
generalization, the conventional bounded-difference notion
of adjacency becomes a special case of the definition above,
where V is a closed ball around the origin. We provide next
a general definition of differential privacy for a map.

Definition 5.1: (Functional differential privacy): Let
(Ω,Σ,P) be a probability space and consider a random map

M : L2(D)n × Ω→ X

from the function space L2(D)n to an arbitrary set X . Given
ε ∈ Rn>0, the map M is ε-differentially private if, for any
two V-adjacent sets of functions F and F ′ that (at most)
differ in their i0’th element and any set O ⊆ X , one has

P
[
{ω ∈Ω | M(F ′, ω) ∈ O}

]
(25)

≤ eεi0‖fi0−f
′
i0
‖VP

[
{ω ∈ Ω | M(F, ω) ∈ O}

]
.

Note that, in Definition 5.1, the map M has sets of
n functions as argument, corresponding to the individual
objective functions available to the agents. The meaning of
this definition is the standard one in the context of differential
privacy: the statistics of the output ofM should change only
(relatively) slightly if the objective function of one agent
changes (and the change is in V), making it hard to an
“adversary” that observes the output ofM to determine this
change.

In the case of an iterative algorithm, where agents re-
peatedly interchange information with their neighbors and
perform computations combining it with their own local
private information, one should think of the map M as
representing the action of the entire algorithm on the set
of local functions F . The result of such action is observed
by the adversary. In other words,M is a map, parameterized
by the initial network state, that assigns to F the whole
sequence of messages transmitted over the network. The
underlying understanding is therefore that (25) has to hold
for all allowable values of the initial network states. Having
clarified this point, the objective of this section can be
formalized as follows.

Problem 1: (Differentially private distributed optimiza-
tion): Design a distributed and differentially private optimiza-
tion algorithm whose guarantee on accuracy improves as the
level of privacy decreases, leading to the exact optimizer of
the aggregate objective function in the absence of privacy.•

The requirement of recovering the exact optimizer in the
absence of privacy in our problem statement is motivated
by the privacy-accuracy trade-off in differential privacy. The
existence of this trade-off is well known, albeit its character-
ization for any specific task is in general challenging. This
trade-off essentially states that there is always a cost for
an algorithm to be differentially private, i.e., the algorithm
inevitably suffers a performance loss that increases as the
level of privacy increases. This phenomenon is a result of
the noise added in the map M, whose variance increases as
ε decreases. With the requirement on the noise-free behavior
of the algorithm made in our problem statement, we seek to
ensure that the cause of this performance loss is only due to
the noise added to guarantee privacy, and not to any other
additional factor. We come back to this point later in our
discussion.

B. Approaches to Algorithm Design

The two main requirements (distributed and differentially
private) on the coordination algorithm raise major challenges
to tackle its design. Various iterative algorithms have been
proposed in the literature, e.g.. [55]–[59] and references
therein, to solve optimization problems of the form (24) in
a distributed fashion. Although we do not aim to survey
these efforts here, it is instructive to consider a sample of
this literature to illustrate the potential routes to address
the algorithmic solution of Problem 1. To this effect, con-
sider the algorithm proposed in [56] which has each agent
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i ∈ {1, . . . , n} start with an initial estimate xi(0) of the
optimizer and, at each iteration k, update its estimate as

xi(k + 1) = projX(zi(k)− αk∇fi(zi(k))), (26a)

zi(k) =

n∑
j=1

aijxj(k), (26b)

where {aij}nj=1 are the edge weights of the communication
graph at node i and αk is the stepsize. From (26b), one
can see that agents only need to share their estimates
with their neighbors to run the algorithm. Under standard
assumptions on the connectivity of the communication graph,
one can show [56] that xi(k) converges to the optimizer
x∗ asymptotically if the sequence of stepsizes is square-
summable (

∑
k α

2
k <∞) but not summable (

∑
k αk =∞).

Algorithm (26) therefore solves Problem 1 in a distributed
way. How can we endow distributed coordination algorithms
such as this with privacy guarantees so that their execution
does not reveal information about the local objective func-
tions to the adversary? We consider two approaches to tackle
this.

1) Message-Perturbing Strategies: Inspired by the devel-
opments presented in the previous sections of this paper, we
could prescribe that the agents add noise to the messages that
they send (either to their neighbors or a central aggregator,
depending on the specific algorithm). Using some of the
typical families of noise in differential privacy, such as Gaus-
sian or Laplace noise, should render the resulting algorithm
differentially private. For algorithm (26), this approach would
result in each agent i ∈ {1, . . . , n} executing

xi(k + 1) = projX(zi(k)− αk∇fi(zi(k))), (27a)

zi(k) =

n∑
j=1

aijξj(k), (27b)

where ξj(k) = xj(k) + ηj(k) is the perturbed message
received from agent j at time k. In fact, this is the algorithm
considered in [28]. The challenge with this approach then
is to determine how the noise affects the stability and
convergence properties of the algorithm. As an example, if
the original algorithm is not robust to disturbances, then the
addition of noise might completely de-stabilize it, driving it
arbitrarily far from the optimizer.

2) Objective-Perturbing Strategies: An alternative design
approach consists of directly perturbing the agents’ objective
functions with noise in a differentially private way and then
have them participate in a distributed optimization algorithm,
but with the perturbed objective functions instead of their
original ones. The latter in turn automatically adds noise
to the estimates shared with neighbors (as in the message-
perturbing approach, but possessing an intrinsically different
structure). For algorithm (26), this approach would result in
each agent i ∈ {1, . . . , n} executing

xi(k + 1) = projX(zi(k)− αk∇f̃i(zi(k))), (28a)

zi(k) =

n∑
j=1

aijxj(k), (28b)

where f̃i is a perturbed version of the local objective func-
tion fi of agent i. In this design approach, the resilience
to post-processing of differential privacy, cf. Theorem 2.6,
ensures that the combination of objective perturbation with
the distributed optimization algorithm does not affect the
differential privacy at the functional level. There are of
course challenges associated with this approach too, starting
with the idea of properly formalizing a procedure to ensure
functional differential privacy, passing through ensuring that
the resulting perturbed functions enjoy the smoothness and
regularity properties required by distributed optimization al-
gorithms to converge, and finally characterizing the accuracy
of the resulting strategy.

C. Message-Perturbing Strategies

As outlined above, we use the term message-perturbing
strategy to refer to the result of modifying any of the
distributed optimization algorithms available in the literature
by adding (Gaussian or Laplace) noise to the messages agents
send to either neighbors or a central aggregator in order to
preserve privacy. A generic message-perturbing distributed
algorithm takes the form

x(k + 1) = aI(x(k), ξ(k)),

ξ(k) = x(k) + η(k),
(29)

where ξ, η : Z≥0 → Rn represent the sequences of messages
and perturbations, respectively, and aI : Rn × Rn → Rn
depends on the agents’ sensitive information set I with asso-
ciated optimizer x∗I . This formulation of message-perturbing
strategies is quite general and can also encode algorithmic
solutions for optimization problems other than Problem 1,
such as the ones studied in [27], [29]). In our setup here,
the sensitive information set I are the agents’ objective
functions, I = F = {fi}ni=1.

For convenience, we employ the short-hand notation
ãI(x(k), η(k)) = aI(x(k), x(k) + η(k)) to refer to (29).
With this notation, the original distributed algorithm (without
any message perturbation) would simply correspond to the
dynamics

x(k + 1) = ãI(x(k), 0). (30)

We assume this dynamics is globally asymptotically stable
relative to the optimizer x∗ of (24) so that, no matter where
the network is initialized, the algorithm is guaranteed to solve
the optimization problem. Remarkably, such convergence
properties are inherently robust, meaning that the system
still retains stability after the injection of noise. Formally,
this can be expressed as follows [60]: the dynamics (30) is
locally asymptotically stable relative to x∗ if and only if is
locally input-to-state stable relative to x∗. The latter notion
means that there exist ρ > 0, a class KL function γ, and
a class K function κ such that, for every initial condition
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x(0) ∈ B(x∗, ρ) and every disturbance satisfying ‖η‖∞ ≤ ρ,
the trajectories of (29) satisfy

|x(k)− x∗| ≤ max{γ(|x(0)− x∗|, k), κ(|ηk−1|∞)},

for all k ∈ N. This equation precisely describes how the noise
injection in the original distributed coordination algorithm
disrupts exact convergence to the optimizer by an amount
proportional to the size of the noise.

The following result makes an important observation re-
garding the message-perturbation algorithm design approach.
Essentially, the result says that, if the underlying, noise-
free dynamics (e.g., system (30)) is asymptotically stable
(something which is reasonable to assume, since at least the
algorithm should solve the optimization problem when there
are no privacy concerns to take care of), then the algorithm
that results from injecting asymptotically vanishing noise in
the agents’ messages cannot be differentially private.

Theorem 5.2: (Limitations to message-perturbing algo-
rithms [30]): Consider the dynamics (29) with either ηi(k) ∼
Lap(bi(k)) or η(k) ∼ N (0, bi(k)). If ãI is locally input-to-
state stable relative to x∗I for two information sets I and I ′
with different optimizers x∗I 6= x∗I′ and associated radii ρ
and ρ′, respectively, bi(k) is O( 1

kp ) for all i ∈ {1, . . . , n}
and some p > 0, and at least one of the following holds,

(i) x∗I is not an equilibrium point of x(k + 1) =
ãI′(x(k), 0) and ãI′ is continuous,

(ii) x∗I belongs to the interior of B(x∗I′ , ρ
′),

then no algorithm of the form (29) can preserve the ε-
differentially privacy of the information set I for any ε > 0.

Note that the hypotheses of Theorem 5.2 are mild and
easily satisfied in most cases. In particular, the result holds
if the dynamics are continuous and globally asymptotically
stable relative to x∗I for two information sets. The proof of
the result essentially proceeds by establishing that, if the
initial state is close to the equilibrium of the system for
one information set, the state trajectory converges to that
equilibrium with positive probability but to the equilibrium
of the system with the other information set with probability
zero. Using this fact, one can rule out differential privacy for
the resulting coordination algorithm. The interested reader
may refer to [30] for a complete exposition of the proof
details.

As a consequence of Theorem 5.2, to make the message-
perturbing design approach work, one can either make the
algorithm terminate in a finite number of time steps (and
adjust accordingly the noise level to make the strategy
differentially private) or use stepsizes with finite sum to
make the zero-input dynamics not asymptotically stable.
The first route is pursued in [27], where the agents’ local
constraints are the sensitive information (instead of the ob-
jective function). This algorithmic solution uses a constant-
variance noise, which would make the dynamics unstable
if executed over an infinite time horizon. This problem is

circumvented by having the algorithm terminate after a finite
number of steps, and optimizing this number offline as a
function of the desired level of privacy ε. The second route
is pursued in [28], which proposes (27) and chooses a finite-
sum sequence of stepsizes {αk} (i.e.,

∑
k αk < ∞) in the

computation (26a), leading to a dynamical system which is
not locally asymptotically stable in the absence of noise.

D. Objective-Perturbing Strategies

As outlined above, we use the term objective-perturbing
strategy to refer to an algorithm where agents participate in
a distributed optimization algorithm with the functions ob-
tained by perturbing the original agents’ objective functions
with noise in a differentially private way. The first step in this
approach is to formalize a methodology to ensure functional
differential privacy, which we tackle next.

1) Functional Differential Privacy via Laplace Noise:
Consider a function f ∈ L2(D) whose differential privacy
has to be preserved. The basic procedure to achieve this is
still to introduce noise to masquerade the function itself. To
do this, we rely on the fact that L2(D) is a separable Hilbert
space, and hence admits a countable orthonormal basis. This
means that f can be written as an infinite sequence of
coefficients, corresponding to the elements of that basis,
which can be conveniently corrupted by noise. Formally,
let {ek}∞k=1 be an orthonormal basis for L2(D). For any
f ∈ L2(D), one has

f =

∞∑
k=1

〈f, ek〉ek.

We define the coefficient sequence θ ∈ RN by θk = 〈f, ek〉
for k ∈ N. Then, θ ∈ `2 (the space of square-summable
infinite sequences) and, by Parseval’s identity, ‖f‖ = ‖θ‖.
For ease of notation, we define Φ : `2 → L2(D) to be the
linear bijection that maps the coefficient sequence θ to f .
We are ready to formally describe the procedure to inject
noise.

Definition 5.3: (Functional perturbation): Let the noise
sequence η = {ηk}∞k=0 ∈ RN be defined according to

ηk ∼ Lap(bk), k ∈ N. (31a)

Then, for f ∈ L2(D), we define

M(f,η) = Φ
(
Φ−1(f) + η

)
= f + Φ(η). (31b)

In Definition 5.3, for η to belong to `2 and for the series
Φ(η) to converge, the sequence of scales {bk}∞k=1 cannot be
arbitrary. One can show, for instance, if for some K ∈ N,
p > 1

2 and s > 1,

bk ≤
1

kp log ks
, ∀k ≥ K,

holds, then η defined by (31a) belongs to `2 with probability
one, and hence the mapM in (31b) is well defined. In order
to show that this map is differentially private, according to
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Definition 5.1, we first specify our choice of adjacency space.
Given q > 1, consider the weight sequence {kq}∞k=1 and
define the adjacency vector space to be the image of the
resulting weighted `2 space under Φ, i.e.,

Vq = Φ
({

δ ∈ RN |
∞∑
k=1

(kqδk)2 <∞
})
.

It is not difficult to see that Vq is a vector space. Moreover,

‖f‖Vq :=
( ∞∑
k=1

(kqδk)2
) 1

2

, with δ = Φ−1(f),

is a norm on Vq . The next result establishes the differential
privacy of the map M.

Theorem 5.4: (Differential privacy of functional perturba-
tion [30]): Given q > 1, γ > 0 and p ∈

(
1
2 , q −

1
2

)
, let

bk =
γ

kp
, k ∈ N. (32a)

Then, the mapM in Definition 5.3 is ε-differentially private
with

ε =
1

γ

√
ζ(2(q − p)), (32b)

where ζ denotes the Riemann zeta function.

Note that the mapM is well defined because (32a) ensures
that η belongs to `2 almost surely. The proof of this result
proceeds by directly showing thatM satisfies Definition 5.1.

With this procedure available, our idea is then to have
each agent perturb their objective function in a differentially
private way, using the map M, and then participate in a
distributed optimization algorithm with this function. This
latter point raises some challenges: in general, the distributed
optimization algorithms available in the literature have some
basic requirements on the smoothness and convexity of the
objective functions to ensure convergence. However, even if
the original objective functions enjoy these properties, the
addition of Laplace noise performed by M will in general
completely destroy them in the perturbed ones. This is the
problem we tackle next.

2) Smoothness and Regularity of the Perturbed Functions:
To ensure that the perturbed functions have the smoothness
and regularity properties required by the distributed coor-
dination algorithm, we define here appropriate maps that,
when composed with M, yield functions with the desired
properties. The resilience to post-processing of differential
privacy, cf. Theorem 2.6, ensures that differential privacy is
retained throughout this procedure.

To ensure smoothness, we rely on the fact that C2(D),
the set of twice continuously differentiable functions over
D, is dense in L2(D) and, therefore, given any function g
in L2(D), there exists a smooth function arbitrarily close to
it, i.e.,

∀ε > 0, ∃ĝs ∈ C2(D) such that ‖g − ĝs‖ < ε.

Here, ε is a design parameter and can be chosen sufficiently
small (later, we show how to do this so that the accuracy
of the coordination algorithm is not affected). A natural
choice for the smoothening step, if the basis functions are
smooth (i.e., {ek}∞k=1 ⊂ C2(D)), is truncating the infinite
expansion of g. Such truncation is also necessary in practical
implementations due to the impossibility of handling infinite
series. The appropriate truncation order depends on the
specific function, the basis set, and the noise decay rate.

To ensure strong convexity and bounded Hessians, we
rely on the observation that the set of twice continuously
differentiable functions with bounded gradients and Hessians
is a closed subset of the space of twice continuously differen-
tiable functions, and hence the projection onto the subspace
is well defined. Formally, given u > 0, 0 < α < β, let

S = {h ∈ C2(D) | |∇h(x)| ≤ u, ∀x ∈ D
and αId ≤ ∇2h(x) ≤ βId, ∀x ∈ Do}.

This set is convex and closed as a subset of S0 under the
2-norm. Consequently, the best approximation in S of a
function h ∈ C2(D) is its unique orthogonal projection onto
S, i.e., h̃ = projS(h). By definition, the projected function
has bounded gradient and Hessian.

3) Combination with the Distributed Optimization Algo-
rithm: Putting the above pieces together, we can now have
agents locally perturb their objective functions and use them
in their computations for any desired distributed coordination
algorithm, without adding any additional noise to the inter-
agent messages. Specifically, each agent i ∈ {1, . . . , n} first
computes

f̂i =M(fi,ηi) = fi + Φ(ηi), (33a)

where ηi is a sequence of Laplace noise generated by i
according to (31a) with the choice (32a), then select f̂si ∈ S0
such that

‖f̂i − f̂si ‖ < εi, (33b)

and finally compute

f̃i = projS(f̂si ). (33c)

After this process, agents participate in any distributed op-
timization algorithm with the perturbed objective functions
{f̃i}ni=1. The following result establishes the differentially
private nature of the resulting coordination algorithm and
characterizes its accuracy.

Theorem 5.5: (Accuracy of a class of distributed, dif-
ferentially private coordination algorithms [30]): Consider
a group of n agents which perturb their local objective
functions f1, . . . , fn ∈ S according to (33) with Laplace
noise (31a) of variance (32a), where qi > 1, γi > 0, and
pi ∈

(
1
2 , qi −

1
2

)
for all i ∈ {1, . . . , n}. Let the agents

participate in any distributed coordination algorithm that
asymptotically converges to the optimizer x̃∗ of the perturbed
aggregate objective function. Then, εi-differential privacy of
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each agent i’s original objective function is preserved with
εi =

√
ζ(2(qi − pi))/γi and

|E[x̃∗]− x∗| ≤
n∑
i=1

κn

(
γi
√
ζ(2pi)

)
+ κn(εi),

where κn is class K∞ function.

Choosing pi = qi
2 in (32a) for all i ∈ {1, . . . , n}, one can

characterize the accuracy-privacy trade-off as

|E[x̃∗]− x∗| ≤
n∑
i=1

κn

(
ζ(qi)

εi

)
+ κn(εi).

From this expression, it is clear that in order for the accuracy
of the coordination algorithm not to be affected by the
smoothening step, each agent i ∈ {1, . . . , n} has to take the
value of εi sufficiently small so that it is negligible relative
to ζ(qi)/εi. In particular, this procedure can be executed for
any arbitrarily large value of εi, so that in case of no privacy
requirements at all, perfect accuracy is recovered, as specified
in Problem 1.

VI. CONCLUSIONS AND BEYOND

Privacy preservation is a critical issue playing an increas-
ingly key role in preventing catastrophic failures in physical
infrastructure as well as easing the social adoption of new
technology. Power networks, social networks, smartphones,
manufacturing systems, and smart transportation are just but
a few examples of cyberphysical applications in need of
privacy-aware control and coordination strategies. In these
scenarios, the ability of the networked system to optimize
its operation, fuse information and filter noise, compute
common estimates of unknown quantities, and agree on
a common view of the world while protecting relevant
sensitive information is critical. This paper has introduced
the reader to the concept of differential privacy, starting
from its definition in the context of preserving the privacy
of individuals in large databases, discussing basic properties
and mechanisms to ensure it, and illustrating its usefulness in
achieving various control and networked tasks with privacy
guarantees.

Many interesting questions and avenues for future research
remain open. As an example, the accurate characterization of
the optimal privacy-accuracy trade-off curve of differentially
private mechanisms remains a challenging question with a di-
rect impact on the design of optimized algorithms in a variety
of applications. Another important question is how to ensure
local privacy in the absence of a trusted central mediator. In
the traditional setting of differential privacy, the database is
centralized and can only be accessed by a trusted mediator.
For network systems, however, the centralized setting does
not apply in general, since the data may be kept by the users
themselves and the mediator may not be trustworthy. In these
situations, it is necessary to ensure privacy at the user level
(i.e., local privacy) so that the data provided by users are no
longer sensitive (but still useful) even before aggregation by

the mediator. Moreover, for certain systems, it may happen
that there is no central mediator at all, and computation on
user data are fully decentralized through communications
among neighbors in the network, as we illustrated in our
discussion. The properties of the network itself, e.g., its
structure and various parameters that define it such as edge
weights and vertex degrees, might be the private information
that agents seek to protect. Therefore, there is a need to
investigate further how differential privacy should be applied
in conjunction with decentralized computation in network
systems. Promising solutions include using a relaxed notion
privacy such as information-theoretic privacy, techniques
from secure multiparty computation, and cryptography.

Another interesting direction of research is applying dif-
ferential privacy to dynamic databases that are potentially
prevalent in dynamical systems. As we learned from the
sequential composition theorem, privacy guarantee weakens
as more queries are made to the same database. However,
if the database is not static and keeps changing over time,
the sequential composition theorem will not apply, and one
can expect a better privacy guarantee for dynamic databases.
In the extreme case, if the database completely refreshes
whenever a new query is made, the problem of deriving
the privacy guarantee reduces to quantifying the privacy
guarantee for a single query. One potential research topic
is to model dynamic databases and quantify the relation
between the privacy guarantee and the “rate of change” of
the database.

Finally, certain barriers need to be overcome for broader
adoption of these ideas in control systems. The formulations
we have discussed in this tutorial, for example, rely on
detailed knowledge of the objective functions and underlying
dynamical models of the system for estimating sensitivity,
which is essential for the privacy preservation, for example,
through mechanisms like the Laplace mechanism. In reality,
such models may not be available to the privacy architect and
developing model-free approaches would become necessary.
Also, quantifying privacy in terms of a single parameter has
led to an elegant framework and mathematical guarantees,
but translating these to applications where users may have
different privacy attitudes for different streams of data re-
mains a challenge. There is a need to further understand
the appropriate scale of the privacy parameters for specific
application domains.
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