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ABSTRACT
Road traffic estimation systems can rely nowadays on an in-
creasing number and variety of sensors and data sources to
provide better coverage and accuracy, from standard static
detectors to, more recently, location traces obtained possi-
bly from individual drivers’ smartphones. Motivated by pri-
vacy concerns raised by such systems, this paper discusses
a methodology for estimating the macroscopic traffic state
(density, velocity) along a road segment in real-time, while
providing formal differential privacy guarantees to the indi-
vidual drivers, a state-of-the-art notion of privacy that pro-
tects against adversaries with arbitrary side-information. The
impact of the privacy constraint on estimation performance is
mitigated by the use of a nonlinear model of the traffic dy-
namics, fused with the sensor measurements via an Ensemble
Kalman Filter, a classical method for data assimilation.

Index Terms— Differential privacy, ensemble Kalman
filter, traffic estimation

1. INTRODUCTION

Real-time road traffic estimation has benefited from important
advances in sensing technology in the past decade. Traffic
cameras together with computer vision algorithms can play
a role similar to the traditional induction loops embedded in
roadways, counting cars passing at a given location and esti-
mating their velocity. It is now also easy to obtain floating car
data, i.e., location traces sent by devices inside traveling cars,
as measured for example from the cellular network location
services, by on-board GPS devices [1] or RFID tags [2].

Integrating an ever-larger number and variety of monitor-
ing sensors improves the coverage of traffic estimates, beyond
the major highways where the only sensors used to be located,
due to cost considerations. However, an undesirable side ef-
fect is the collection of sensitive location information about
private individuals, who can be easily tracked by anyone hav-
ing access to the raw data, even when obvious means of iden-
tification such as names are removed from the datasets [3].
In fact, even publishing aggregate estimates of traffic density
and velocity on a road network leaks some of the information
contained in the measured driver trajectories, which could be
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used for sophisticated privacy attacks [4], and papers such
as [5, 6] illustrate the risks of ruling out such attacks based
purely on intuitive reasoning.

The purpose of this paper is to develop a methodology
for the design of real-time traffic state estimators providing
formal differential privacy guarantees [7], as defined in Sec-
tion 2. Whereas other notions of privacy can be considered
for our application, such as k-anonymity [1, 8] and its vari-
ous extensions [9], differential privacy has been increasingly
often adopted in the past decade as a state-of-the-art tool for
privacy preserving data analysis [10]. Differentially private
mechanisms publish outputs (here, traffic state time-series)
that are randomized in such as way that their distribution is
not very sensitive to the data of any single individual. As
a result, whether an individual provides his data or not does
not change significantly the risk that any adversary, no matter
how powerful, can make new inferences about him.

The difficulty however is in producing differentially pri-
vate outputs that are only moderately perturbed, e.g., traffic
estimates of sufficiently high accuracy. There has been some
previous work on protecting location data via differentially
private mechanisms [11, 12], but none of these focuses on
model-based estimation, except our previous work [13], on
which we improve in Section 3 with an alternate way of san-
itizing static sensor data and by considering floating car data
as well. The traffic sensor measurements are integrated with
a hydrodynamic model of traffic [14] through an Ensemble
Kalman Filter (EnKF) producing differentially private out-
puts, as described in Section 4, and a spatially adaptive sam-
pling scheme helps make more efficient use of the sensitive
floating car data. The EnKF [15] builds on ideas from Kalman
filtering and Monte-Carlo methods, is quite popular for traffic
estimation [16] and leads to a simpler implementation than
with the Extended Kalman Filter presented in [13].

2. PROBLEM STATEMENT

2.1. Traffic Dynamics

For simplicity of exposition, we consider the estimation of the
traffic state on a single road without intersection. In general,
the traffic state at time t and position x is characterized by a
density ρ(x, t) (in vehicles per mile say) and a traffic velocity



v(x, t) or traffic flow q(x, t) := ρ(x, t)v(x, t). In first-order
models [14], we postulate a static relationship between den-
sity and traffic flow, called the fundamental diagram, which
is often assumed to be triangular

q(ρ) =

{
v0ρ, for ρ ≤ ρC := w

v0+w
ρM

−w(ρ− ρM ), for ρC ≤ ρ ≤ ρM .
(1)

Here v0 is the free traffic speed, ρC is the critical density be-
tween free traffic (speed v = v0) and congested traffic (speed
v < v0), ρM is the maximal or “jam” density, associated with
a zero speed traffic, and w is the speed at which congestion
waves propagate (backwards). We describe the evolution of
traffic in discrete time, with time periods of length τ . The
road is discretized into N cells of length ∆xj , 1 ≤ j ≤ N ,
with the density ρj,t in cell j at period t ≥ 0 assumed approx-
imately constant. Let λj denote the number of lanes and fj,t
the numerical flux during period t (see the definition below)
at the interface between cells j − 1 and j. The dynamics of
the density follows a perturbed continuity equation [14]

ρj,t+1 = ρj,t +

(
λj
λj+1

fj,t − fj+1,t

)
τ

∆xj
+ νj,t, (2)

where νj is white Gaussian noise whose variance captures for
example errors due to the fundamental diagram hypothesis.
In the Cell Transmission Model (CTM) [17], the numerical
flux compatible with the fundamental diagram (1) is

fj,t := min{v0ρj−1,t, v0ρC , w(ρM − ρj,t)},

and (2) is then a stochastic, piecewise linear state-space de-
scription of the traffic dynamics, see [14] for more details.

2.2. Sensor Measurements

Standard static sensors are induction loops [14] placed at
some fixed locations along the road, assumed to be on some
boundary between two cells. A sensor on the boundary be-
tween cells p − 1 and p reports with a certain frequency the
counts clp,t of vehicles in lane l that crossed the boundary dur-
ing the last sampling period, and the occupancy olp,t ∈ [0, 1],
which is the percentage of time during which a car was on
top of the sensor in lane l during the last sampling period.
In addition, some vehicles are equipped with devices able
to transmit their velocity and position when requested. For
privacy reasons, we use a location-based sampling scheme
introduced in [18] and called Virtual Trip Lines (VTL), where
vehicles report their speed only when they cross specific lo-
cations along the road, again assumed to be at the interface
between two cells. In [13], an estimation scheme was in-
troduced that relied mostly on the count measurements for
density estimation, and did not consider the speed measure-
ments. Instead, in this paper we only use the occupancy and
speed measurements.

We consider the following measurement models at an in-
terface (p− 1)→ p with static detectors and/or a VTL

1

gpλp

λp∑
l=1

olp,t = ρp,t + µop,t, (3)

lnVp,t = ln

(
ρM
ρ
− 1

)
+ lnw + µvp,t if Vp,t < v0, (4)

where gp is the so-called g-factor [19] (average effective ve-
hicle length at the sensor location), µop, µvp are white Gaus-
sian noises and in (4) the model was obtained from invert-
ing the second relation in (1). The traffic speed measure-
ments Vp,t are defined as geometric means over the last n
cars reporting speed that crossed the VTL before time t, i.e.,

Vp,t =
(∏n

i=1 v
(i)
p,t

) 1
n

. The choice of a logarithmic model in
(4) and of a geometric mean in for Vp,t turns out to be conve-
nient for our privacy preserving scheme.

We would like to produce an estimate of the density ρ in
each cell in real-time, from the dynamics model (2) and the
measurements (3), (4). However, these measurements capture
privacy sensitive information about the drivers’ trajectories,
and so an additional goal here is to enforce formal privacy
guarantees for the drivers in the published estimate.

2.3. Differentially Private Estimation

Our goal is to produce a differentially private (DP) traffic esti-
mate in real-time. We start with a symmetric binary relation,
defined in Section 3, on our space of measurement sequences
{yt}t≥0, with yt = {olp,t, v

(i)
p,t}p,l,i, called adjacency rela-

tion, and which intuitively relates sequences that differ by the
data of a single individual. Sanitization through a differen-
tially private mechanism should make it difficult for an adver-
sary to decide which of any two adjacent sequences {yt}t≥0
or {ỹt}t≥0 was used in producing a given output.

Definition 1 ((ε, δ)-differential privacy [7]) Let Y be a
space equipped with a symmetric binary relation denoted
Adj, and let (R,M) be a measureable space. Let ε, δ > 0. A
randomized mapM from Y to R is (ε, δ)-differentially private
for Adj if for all y, ỹ ∈ Y such that Adj(y, ỹ), we have

P (M(y) ∈ S) ≤ eεP (M(ỹ) ∈ S) + δ, ∀S ∈M.

To put Definition 1 in the context of our application, M is
our privacy-preserving estimator, which must necessarily ran-
domize its output to satisfy the differential privacy definition
(in practice, by adding a privacy preserving noise signal), in
such a way that the distribution over output signals is not very
sensitive to differences between adjacent input signals. In ad-
dition, a crucial property of differential privacy says that it is
resilient to post-processing, i.e., manipulating a differentially
private output cannot weaken the privacy guarantee, as long
as the input signal is not re-accessed, see [20, Theorem 1].



3. TRAFFIC DATA SANITIZATION

Two datasets y and ỹ are adjacent if they have been generated
by the same traffic except for the trajectory of a single car.
Note that a car only moves forward on the road and travels in a
specific lane at each cell boundary, hence it can influence olp,t
for a given location p at only a single value of t and l, and it
can cross a VTL only once. The occupancy olp,t measured by
a static sensor is the sum of the individual occupancies for the
cars passing on top of this sensor during period t. We protect
only cars that have a bounded influence on occupancy mea-
surements, which we capture through the adjacency relation.
Between adjacent datasets, all occupancy measurements must
be identical, except for the fact that by changing one trajec-
tory the corresponding car can cross a sensor line at a differ-
ent time and in a different lane. When there is a difference be-
tween some olp,t and õlp,t due to the influence one such car, we
assume this difference to be bounded, i.e., |olt,p − õlp,t| ≤ α,
for some α set as discussed below. Considering now the se-
quence with components Op,t := 1

λp

∑λp

l=1 o
l
p,t appearing in

(3), a straightforward analysis shows that

‖O − Õ‖22 ≤ 2α2
Ps∑
p=1

1

λ2p
=: ∆o,

for adjacent sequences, where Ps is the number of interfaces
at which we have static detectors.

Similarly, we only protect against bounded relative vari-
ations for cars reporting their speed data when they cross
VTLs. Specifically, when a car trajectory changes, it could
remain in the same batch of size n used to compute Vp,t in
(4) or it could be exchanged with another car, but in any case
we assume that the single modified value v(i)p,t in some Vp,t

satisfies
|v(i)p,t−ṽ

(i)
p,t|

min{v(i)p,t,ṽ
(ĩ)
p,t}
≤ γ, for some γ. We then have for the

vector L with components Lp,t := lnVp,t that

‖L− L̃‖22 =

Pv∑
p=1

∞∑
t=1

∣∣∣∣∣ 1n
n∑
i=1

(
ln v

(i)
p,t − ln ṽ

(i)
p,t

)∣∣∣∣∣
2

‖L− L̃‖22 ≤
Pv∑
p=1

1

n2
| ln v(ip)p,tp − ln ṽ

(̃ip)
p,tp |

2

‖L− L̃‖22 ≤
γ2

n2
Pv =: ∆v,

where Pv is the number of VTLs.
The following theorem is then an immediate consequence

of standard results for the design of differentially privacy
mechanisms [10, 20]. Define K = Q−1(δ) for Q(x) =
1√
2π

∫∞
x
e−

u2

2 du and let κδ,ε =
(
K +

√
K2 + 2ε

)
/(2ε).

Theorem 1 A mechanism publishing the sequence Ōp,t =
Op,t + wop,t, where wop,t are iid Gaussian random variables

with variance κ2δ,ε∆o, is (ε, δ)-differentially private. A mech-
anism publishing the sequence L̄p,t = Lp,t+w

v
p,t, wherewvp,t

are iid Gaussian random variables with variance κ2δ,ε∆v , is
(ε, δ)-differentially private.

The values for the constants α and γ should be set based
on the acceptable trade-off between privacy and estimation
performance. Higher values of α and γ provide better privacy
but require more noise to sanitize the data. In order to set α
in particular, we reason on a theoretical microscopic traffic
model of evenly spaced identical cars, and look at the impact
of one car on occupancies, see Fig. 1. A change of trajec-
tory for one car leads to an increasingly large variation of olp,t
as olp,t/g (a measure of density) increases. For example, the
model tells us that by setting α = 0.015, cars are protected
as long as they appear only in density measurements olp,t/g
that are below 0.081. In the Mobile Century dataset used in
Section 5, this represents 98% of occupancy measurements.
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Fig. 1. Determination of the boundα. Left axis: Proportion of
values of o/g below a given threshold in the Mobile Century
dataset [21].

4. ENSEMBLE KALMAN FILTER

Sanitizing the measurements as described in the previous sec-
tion leads to new values Ōp,t, L̄p,t. These follow the same
measurement model as in (3), (4), except for the additional
Gaussian noises wop,t, w

v
p,t which are simply added to the

Gaussian noises µop,t and µvp,t, in effect increasing their vari-
ance by the terms of Theorem 1. These perturbed measure-
ments are then combined with the dynamic model (2) via an
EnKF [15] to provide the final traffic estimate. This amounts
to a post-processing step, so the differential privacy guarantee
obtained after sanitizing the measurements is maintained.

The EnKF is similar to the Kalman filter, but uses a set
of particles, i.e., sampled state values, to compute the error
covariance used to form the Kalman gain. The EnKF algo-
rithm is described in Algorithm 1 for a generic state space
system with dynamics xt+1 = f(xt, ωt) (with ωt some noise)



and linear measurements yt = Hxt + vt, where vt has a
known covariance Rt. In our case, the velocity measurement
model (4) is nonlinear, i.e., yt = h(xt) + vt, hence we use
an extension of the EnKF discussed in more details in [15]
for example, which works with augmented state vector x̂ =[
xT h(x)T

]T
and the linear measurements Ĥ

[
x
y

]
= y.

Algorithm 1 EnKF algorithm
1: for k = 1 · · ·n do
2: xk0 ∼ π0 . Draw n samples from Gaussian prior π0
3: end for
4: for t ≥ 0 do
5: for k = 1 · · ·n do
6: xkt ← f(xkt−1, ω

k
t−1). Prediction from the model

7: end for
8: x̄t ← 1

n

∑n
k=1 x

k
t . Ensemble mean

9: E =
[
x1t − x̄t, · · · , xnt − x̄t

]
. Deviation from mean

10: P ← 1
K−1E(E)T . Covariance matrix

11: Kt ← P (Ht)
T
[
HPt(H)T +Rt

]−1
. Kalman gain

12: for k = 1 · · ·n do
13: ξk ∼ N(0, Rt)
14: xkt ← xkt +Kt

[
yt −Hxkt + ξk

]
. Update

15: end for
16: Publish x̄t . Estimate
17: end for

Adjustment of the VTL locations. As shown in Section
3, sanitizing speed data requires adding a noise with variance
proportional to the number of VTLs. It is therefore important
to work with a limited number of VTLs and set their loca-
tions to optimize the usefulness of the measurements. We use
a scheme where the location of the VTLs is changed online
based on the size of the innovations ‖yt −Hx̄t‖ in the mea-
surement update step of the EnKF, while making sure that a
car does not report twice its speed for the same VTL. We ad-
just r1, . . . , rPv , the positions of the VTL, using an approach
based on the minimization of a potential function at each step.
Given the current positions r̂1, . . . , r̂Pv

, we obtain the new
positions by minimizing (locally) a function of the type

Pv∑
s=1

( Pv∑
q=1

fA(r̂q, rs;hq)

)
+

∑
σ 6=s

fR(rs, rσ)

+ fB(rs)

 .
Here fA(r̂q, rs;hq) is a field attracting rs towards r̂q with a
strength that is increasing with hq , the norm of the innova-
tion for the measurement at location r̂q . The second term is
a repulsive term maintaining sufficient spacing between the
sensors, and fB is a term that prevents the sensor locations to
escape outside of the road segment of interest.

Fig. 2. Synthetic data (top): simulated traffic density map
ρ(x, t) (left) vs. (ε, δ)-DP estimate. Data from the Mobile
Century experiment (bottom): Non-private (left) vs. (ε, δ)-
DP (right) density map. The density is in vehicles/m.

5. SIMULATION RESULTS

Our differentially private filter is first validated on synthetic
(simulated) data for a road with a single lane, which allows us
to compare the estimator performance to the simulated ground
truth, see Fig. 2. The simulation parameters are: Ps = 10
static sensors, τ = 0.5s, ∆xp = 25 m. We also use the values
v0 = 90 km/h, w = 30km/h, ρM = 1/7 vehicles/m, g = 6 m
for the fundamental diagram. Occupation measurements are
obtained periodically every 30 s. The differential privacy pa-
rameters are: ε = ln(2 + Ps), δ = 0.05, and α = 0.015,
γ = 0.4 for the adjacency relation. It is found that an ade-
quate number of particles is around 60, with more particles
leading to negligible performance improvements. Fig. 2 also
shows the results of applying the DP EnKF to the Mobile Cen-
tury dataset [21], with the same values as above for the var-
ious parameters. This dataset contains both static occupancy
measurements and GPS traces from floating cars for a day of
traffic on Interstate 880 in California, which has either 4 or 5
lanes depending on the location.

6. CONCLUSIONS

We presented a methodology for the publication of differen-
tially private traffic estimates relying on static detector mea-
surements and floating car data. Our scheme sanitizes the
measurements directly before integrating them in the estima-
tion scheme, and future work includes the development of
more advanced schemes where noise is added after a first pro-
cessing step for the measurements, as in [20].
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