
On Differentially Private Gaussian Hypothesis Testing

Kwassi H. Degue and Jerome Le Ny

Abstract— Data analysis for emerging systems such as
syndromic surveillance or intelligent transportation systems
requires testing statistical models based on privacy-sensitive
data collected from individuals, e.g., medical records or
location traces. In this paper, we design a differentially private
hypothesis test based on the generalized likelihood ratio
method to decide if data modeled as a sequence of independent
and identically distributed Gaussian random variables has a
given mean value. Analytic formulas for decision thresholds
and for the test’s receiver operating characteristic curve show
explicitly the performance impact of the privacy constraint.
We then apply the algorithm to the design of a differentially
private anomaly (or fault) detector and study its performance
for the analysis of a syndromic surveillance dataset from the
Centers for Disease Control and Prevention in the United
States.

I. INTRODUCTION

Hypothesis testing provides a structured approach to
compare and select models with reasonable confidence
based on observed data. This data increasingly contains
highly privacy-sensitive information collected from individ-
uals, such as medical records, wages and location traces.
Data analysis methods must take this fact into account and
provide guarantees to survey participants that a published
result does not significantly increase the likelihood of
privacy breaches [1], [2].

Many recent approaches to privacy-preserving data anal-
ysis are based on the notion of differential privacy [3], [4].
When the result of a data mining computation based on
private information from individuals is released, differential
privacy promises to these individuals that whether or not
they choose to provide their data will not significantly
change an adversary’s ability to deduct new knowledge
about them, and in exchange they might obtain important
benefits from the system [5], [6].

For categorical data following a multinomial distribution,
differentially private mechanisms have been studied for
various classical hypothesis tests in [7]–[13] for example.
In particular, [9] and [13] compute detection thresholds
providing target levels of significance by using Monte
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Carlo (MC) approaches. However, many applications rely
on numerical data such as sensor measurements instead of
categorical ones. Ghassemi et al. [14] describe a differ-
entially private mechanism to train an anomaly detector.
To the best of our knowledge only [15] considers the
design of a statistical test (a binary classifier) for normally
distributed data. A differentially private sequential anomaly
detector based on the cumulative sums (CUSUM) algorithm
is proposed in [16]. CUSUM algorithms, however, can
respond slowly when it comes to detecting large shifts
in the mean of a stochastic process [17]. Moreover, [16]
considers only scalar processes with a trivial state-space
representation.

The first contribution of this paper lies in designing a
differentially private statistical test to decide if the mean
of a sequence of independent and identically distributed
(iid) Gaussian random variables has a given value. We
use the generalized likelihood ratio method [18], where
the value of the a priori unknown mean is replaced by
its maximum likelihood estimate, here the empirical mean.
Instead of adding directly the privacy-preserving noise to
the data, we perturb the empirical mean used at decision
times, which reduces the impact of the privacy-preserving
noise. In addition, in the Gaussian model analytical for-
mulas can be used to determine detection thresholds and
performance, instead of MC approaches as in [9], [13], The
second contribution lies in designing an anomaly detection
algorithm that preserves differential privacy for individuals’
measurements data, which are assumed to originate from a
general linear time-invariant Gaussian dynamic model.

In Section II, we present the problem statement and
we provide some background on differential privacy and
hypothesis testing. We apply these results in Section III
to design the differentially private hypothesis test, whose
performance is analyzed in Section IV. We provide ana-
lytic formulas to set appropriate detection thresholds and
determine the detector’s receiver operating characteristic
(ROC) curves. In Section V, we extend the discussion to
sequential detection and Section VI presents an application
of the results to an epidemic outbreak detection scenario.

Notation: We fix a generic probability triple (Ω,F ,P),
where F stands for a σ-algebra on the sample space Ω and
P is a probability measure defined on F . The `p-norm of
a vector x ∈ Rk is denoted by |x|p := (

∑k
i=1 |xi|p)1/p,
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for p ∈ [1,∞]. To indicate that a random vector X is
distributed according to a normal (or Gaussian) distribution
with mean µ and covariance matrix Σ, we use the notation
X ∼ N (µ,Σ).

II. PROBLEM STATEMENT

A. Gaussian Hypothesis Testing Problem

Consider a sequence r := {ri}i=ni=1 of n iid scalar
Gaussian random variables with unknown mean value θ and
known standard deviation σ. In other words, the probability
density of each sample ri can be written as follows

pθ(ri) =
1

σ
√

2π
e−

(ri−θ)
2

2σ2 .

We aim at designing a statistical test to determine if the
mean value θ is equal to zero or not, in other words, a rule
mapping the values in the sequence r to a decision between
the following two hypotheses{

H0 : θ = θ0 = 0

H1 : θ = θ1 6= 0,
(1)

with θ1 unknown. The discussion generalizes to any known
value of θ0 by redefining θ̃ := θ − θ0. For a given test,
denote by PI the probability of incorrectly rejecting H0

(type I error), and by PII the probability of incorrectly
accepting H0 (type II error).

Define the log-likelihood ratio l(r) for the data from r1
to rn as follows

l(r) =

n∑
i=1

si(ri), with si(ri) = ln
pθ1(ri)

pθ0(ri)
. (2)

Here, in the Gaussian case with θ0 = 0, we have

l(r) =
1

2σ2

n∑
i=1

[
r2i − (ri − θ1)

2
]
,

l(r) =
θ1
σ2

n∑
i=1

(
ri −

θ1
2

)
. (3)

If θ1 were known, l could be computed explicitly from
the data and the Neyman-Pearson lemma [18] shows that
optimal decision rules d (i.e., most powerful tests) to
minimize the probability of type II error given an acceptable
probability of type I error are of the form

d(r) =

{
0 if l(r) < h : H0 is chosen
1 if l(r) > h : H1 is chosen,

(4)

where the threshold h is adequately chosen to satisfy a
given bound on the probability of type I error. In the case
where l = h, one might have to randomize in (4), but
this case occurs with probability 0 for Gaussian random
variables.

Since in our case the value of θ1 is unknown but
enters the expression (3), the decision rule (4) cannot be
directly used. In this case, a potentially suboptimal but
very common test is the Generalized Likelihood Ratio
(GLR) test [19], which consists here in replacing θ1 in the
numerator of (2) by the maximum likelihood (ML) estimate
of θ1 computed from r, assuming that ri ∼ N (θ1, σ

2). In
the Gaussian case the ML estimate of θ1 is just the sample
mean θ̂1 = 1

n

∑n
i=1 ri. Replacing θ1 by θ̂1 gives

l̂(r) =
1

2σ2n

(
n∑
i=1

ri

)2

(5)

and the GLR test reads

d(r) =

{
0 if l̂(r) < h : H0 is chosen
1 if l̂(r) > h : H1 is chosen.

(6)

The decision rule (6) depends on the data r, which in this
paper is assumed to be privacy-sensitive. As explained in
the next subsection, we aim to publish the result of statisti-
cal tests for H0 under a differential privacy constraint. This
requires modifying the decision rule (6), which is done in
Section III.

B. Differentially Privacy

Given a space H of datasets, we define a mechanism M
as a random map from H to some measurable output space
O. The output of a differentially private mechanism [5]
should have similar distributions for inputs that we want to
make hard to distinguish. Formally, this requires defining a
symmetric binary relation Adj on H, called adjacency, to
specify which inputs are in some sense considered close.
Typically, two adjacent inputs differ by the data of a single
individual. In this paper, H is the space Rn of sequences
r and we consider the following adjacency relation

Adj(r, r′) iff |r − r′|1 ≤ ρ, (7)

with ρ ∈ R+ a given positive number. Therefore, with the
interpretation of adjacent sequences above, we assume that
a single participant contributes additively to possibly each
ri but in such a way that its overall influence on the whole
sequence is bounded in 1-norm by ρ. We now provide the
formal definition of differential privacy [3], [4].

Definition 1. ConsiderH, a space equipped with a symmet-
ric binary relation denoted Adj, and (O,M) a measurable
space, where M stands for a given σ-algebra over O. Let
ε, δ ≥ 0. A randomized mechanism M from H to O is
(ε, δ)-differentially private (for Adj) if for all r, r′ ∈ H
such that Adj(r, r′), for all sets S in M,

P(M(r) ∈ S) ≤ eε P(M(r′) ∈ S) + δ. (8)
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If δ = 0, the mechanism is said to be ε-differentially private.

Note that (8) expresses the fact that the distributions
of the random variables M(r) and M(r′) are close for
r and r′ adjacent. Next, we describe a basic mechanism,
the Gaussian mechanism [20], which can be used to publish
differentially private numerical outputs by adding an appro-
priate amount of Gaussian noise to a non-private output.

Definition 2. Consider H equipped with an adjacency
relation Adj and let O be a vector space with norm ‖ · ‖O.
The sensitivity of a query q : H 7→ O is defined as
4Oq := sup{r,r′:Adj(r,r′)} ‖q(r)−q(r′)‖O. In particular, for
O = Rk (where k = +∞ is a possibility) equipped with
the p-norm for p ∈ [1,∞], this defines the `p-sensitivity,
denoted 4pq.

In the following Theorem, we consider the Q-function
defined by Q(x) := 1√

2π

∫∞
x

exp(−u
2

2 )du and we let
κδ,ε = 1

2ε (µ+
√
µ2 + 2ε), with µ = Q−1(δ).

Theorem 1. [20], [21] Let q : H → Rk be a query. The
Gaussian mechanism Mq defined by Mq(r) = q(r)+ζ, with
ζ ∼ N (0, σ2

ζIk) and σζ ≥ κδ,ε(∆2q), is (ε, δ)-differentially
private.

When q(r) = r, this leads to the so-called input
perturbation mechanism, where the raw participants’ data
is perturbed directly. An additional crucial property of
differential privacy is its “resilience to post-processing”,
i.e., transforming a result that is differentially private does
not weaken the guarantee, as long as the transformation
does not involve the sensitive data [5], [21, Theorem 1].

Our goal is to design a statistical test for H0 publishing
a decision that is differentially private with respect to the
adjacency relation (7) on the sequences r = {ri}ni=1 ∈ Rn.

III. DIFFERENTIALLY PRIVATE GAUSSIAN HYPOTHESIS
TESTING

Given the form of the GLR test, by the resilience to
post-processing property, basing the decision rule (6) on a
differentially private version of l̂(r) provides a differentially
private test.

Proposition 1. A mechanism that publishes M̃(r) =
1
n

∑n
i=1 ri+ζ with ζ ∼ N (0, σ2

ζ ) and σζ ≥ κδ,ε ρn is (ε, δ)-
differentially private for the adjacency relation (7).

Proof. We have immediately, for two adjacent sequences r
and r′ ∣∣∣∣∣ 1n

n∑
i=1

ri −
1

n

n∑
i=1

r′i

∣∣∣∣∣ ≤ 1

n

n∑
i=1

|ri − r′i| ≤
ρ

n
.

The averaging query being scalar in this case, its `p
sensitivity with respect to (7) is the same for any p and
bounded by ρ/n. The result follows from Theorem 1.

Consider now the following statistical test for H0. First,
compute

l̃(r) =
n

2σ2

[(
1

n

n∑
i=1

ri

)
+ ζn

]2
, (9)

with ζn ∼ N (0, σ2
ζn

) and σζn = κδ,ερ/n. Then publish

d̃(r) =

{
0 if l̃(r) < h̃ : H0 is chosen
1 if l̃(r) > h̃ : H1 is chosen,

(10)

where h̃ is an appropriately chosen threshold, set indepen-
dently of the input data r.

The following Corollary is then a consequence of Propo-
sition 1 and resilience to post-processing.

Corollary 1. The test (10) is (ε, δ)-differentially private.

We skip the proofs of our results in next sections due to
space limitations.

IV. PERFORMANCE ANALYSIS

We are now interested in characterizing the privacy-
utility trade-off of the privacy-preserving GLR test (10).
This relies on the following calculation.

Proposition 2. For the random variable l̃(r) defined in (9),
we have

l̃(r) =

(
1

2
+
κ2δ,ερ

2

2σ2n

)
Ξ, (11)

with Ξ ∼ χ2
1

(
θ2

σ2

n +
κ2
δ,ε
ρ2

n2

)
, where χ2

1(λ) represents a non-

central chi-squared distribution with one degree of freedom
and noncentrality parameter λ.

From Proposition 2, we see in particular that the impact
of the privacy-preserving noise decreases with the number
n of samples in the sequence r as O(1/n2), i.e., whereas
the impact of the intrinsic noise scales as σ2/n. Hence, the
effect of the privacy-preserving noise becomes negligible
asymptotically as n increases.

We need the following definitions for the next propo-
sition. Let F(·; k, λ2) be tail distribution (complement of
the cumulative distribution function) of the noncentral chi-
squared distribution with k degrees of freedom and non-
centrality parameter λ2 [18, Chapter 2]. Let F−1(·; k, λ2)
denote the inverse of F(·; k, λ2), defined on [0, 1).
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Proposition 3. The decision rule (10) achieves a probability
PI of type I error when the threshold is chosen as

h̃ =

(
1

2
+
κ2δ,ερ

2

2σ2n

)
F−1(PI ; 1, 0). (12)

The corresponding probability of correct detection is

PD = 1− PII

= F

F−1(PI ; 1, 0); 1,
θ21

σ2

n +
κ2
δ,ερ

2

n2

 . (13)

Note again the vanishing impact of the privacy-
preserving noise as n increases in (13), the term κ2δ,ερ

2/n2

becoming negligible with respect to σ2/n.
We can compare the probability of detection as a function

of the sequence length n when using the differentially
private test (10) and when using input perturbation. Recall
that the latter consists in directly perturbing each element
ri of the input sequence to r̃i = ri + ζi, with {ζi}1≤i≤n
a sequence of iid Gaussian random variables with standard
deviation κδ,ερ, so that r̃ becomes a differentially private
sequence for which we can now use the standard GLR
decision rule by resilience to post-processing. For input
perturbation, the probability of correct detection for a given
value of PI reads

PD = F

(
F−1(PI ; 1, 0); 1,

nθ21
σ2 + κ2δ,ερ

2

)
instead of (13). Clearly, with input perturbation, the
privacy-preserving noise plays the same role as the intrinsic
noise from the point of view of the detector’s performance,
and so in this case the impact of the privacy requirement
does not vanish as n increases.

A. Receiver Operating Characteristic Curves

A common performance metric for detection algorithms
is the receiver operating characteristic (ROC) curve, which
characterizes the trade-off between false alarms and true
detections [18]. Consider a scenario when the scalar n =
1000, the parameter ρ = 500 and the standard deviation
σ = 0.5. We obtain the ROC curves of Fig.1 by plotting
the probability of detection PD against the probability of
false-alarm PI using (13), for different values of the privacy
parameter ε when we fix δ = 0.05. The overall accuracy
of the algorithm is higher when the curve is closer to the
upper left corner. Hence, we notice the worst accuracy
performance of the test (10) in the high-privacy regime, i.e.,
as ε becomes small, which shows the trade-off between the
detector’s accuracy and the privacy requirements.
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Fig. 1. ROC curve for different values of ε when δ = 0.05.

V. APPLICATION TO SEQUENTIAL DETECTION

Consider the following linear time-invariant system

xi+1 = Axi +Bui + Efi + wi,

yi = Cxi +Dui + Ffi + vi, (14)

where xi ∈ Rn is the state vector, ui ∈ Rm stands
for a known input signal, yi ∈ R represents the output
signal available for measurement, and the process noise
wi ∼ N (0,W ) and measurement noise vi ∼ N (0, V ) are
independent sequences of iid zero-mean Gaussian random
variables with covariances W � 0, V > 0. The initial
condition x0 is a Gaussian random vector independent of
the noise processes wi and vi. A monitoring system aims
at detecting the vector of unknown input signals fi ∈ Rnf ,
which represents additive faults or anomalies. A steady-
state Kalman filter to estimate the state can be written

K = ΣCT(CΣCT + V )−1,

Σ = AΣAT +W −AΣCT(CΣCT + V )−1CΣAT,

x̂i = x̂i|i−1 +K(yi − Cx̂i|i−1 −Dui),
x̂i+1|i = Ax̂i +Bui.

The innovation process is defined as follows

ri = yi − Cx̂i −Dui. (15)

In the absence of fault (fi = 0) and in steady state, the
innovation sequence is a white Gaussian process with ri ∼
N (0, σ2), σ2 = CΣCT +V > 0 [22]. When a fault occurs,
i.e. fi 6= 0, the mean of ri is no longer equal to zero.

Consequently, given a privacy sensitive dataset consisting
of the sequence {yi}, we can apply the differentially private
algorithm of Section III to the innovation process to dis-
criminate between the hypotheses fi = 0 and fi 6= 0 in the
model (14). For sequential detection however, one typically
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wants to detect a change between these two regimes (the
occurrence of a fault) quickly, while still controlling the
rate of false alarms. One basic way of achieving this is to
execute the test over the last k samples only instead of the
whole sequence, for a fixed value of k. At the end of the
pth block of length k, one now sets

l̃p(r) =
k

2σ2

1

k

i=kp∑
i=k(p−1)+1

ri + ζk

2

, (16)

and n should be replaced by k in the results of Section
IV. An alarm is then raised at time ta, which defines the
following stopping rule

ta = k p∗ = k min{p : d̃p(r) = 1}. (17)

In words, an alarm is raised after the first sample of size k
for which the decision rule (10) chooses H1. Increasing
k improves the accuracy of the detection, but has the
negative impact of delaying the decision [19]. We describe
the final differentially private sequential detection algorithm
in Algorithm 1.

Algorithm 1: Differentially private sequential detection
Given:
1. A model (14) and a set of measurements data {yi}i=ni=1 .
2. A required target probability of type I error PI .
3. Required differential privacy parameters (ε, δ).
Initialization at the pth sample:
1. Select k.
2. Acquire k data samples.
At each pth sample:
S1. Compute the residual sequence {ri}i=kpi=k(p−1)+1 by
using (15).
S3. Compute the ML estimate of the mean value θ̂1 =
1
k

∑i=kp
i=k(p−1)+1 ri.

S4. Determine the amount of differential privacy noise ζk
by using Corollary 1.
S5. Compute the decision function by using (12) with n =
k.
S7. Take the decision by using (10).
Result: A sequence of decisions {d̃p(r)}p.

VI. NUMERIC EXPERIMENTS

Let us apply the results of Section V to an epidemic
outbreak detection scenario. Consider an abstract scenario
in which the sequence r consists of the data of the Centers
for Disease Control and Prevention1 (CDC) in the United
States from the 15th week (from April 7 to April 14) to

1https://www.cdc.gov/flu
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Fig. 2. Probability of detection of the test (10), as a function of the
privacy parameter ε when k = 7.

the 22th week (from June 3 to June 9) of 2018 [23]. In
fact, the CDC collects data from U.S. clinical laboratories
and hospital emergency departments, which consist of the
number of positive tests reported to them for Influenza
A(H1N1)pdm09, A(H3N2) and variant (H3N2v), and other
Influenza A virus infections. We assume that the standard
deviation σ = 1 and since the CDC’s data consists of
weekly reports, we set k = 7. Note that our settings may
not be optimal (Fig. 3). We set the of probability of false-
alarm PFA = 0.05 and ρ = 20. The differentially private
test (10) has better performance than the input perturbation
mechanism (Fig. 2), as explained in Section IV, and the
performance degrades as ε becomes smaller (high level of
privacy). The alarm is raised at the first test time, i.e., at
ta = 7 days.

Assume now that the CDC executes the differentially
private test (10) every 4 weeks instead of weekly, which
means k = 28 (Fig. 3). As in the previous case, the
differentially private test (10) shows better performance
than the standard input perturbation mechanism (Fig. 4),
but the probabilities of detection of these two mechanisms
are much better when k = 28 than when k = 7. Indeed,
the convergence of the probability of detection to 1 is
much quicker when k = 28 than when k = 7, due to
the increased sample size. However, the first opportunity to
raise the alarm only occurs at ta = 28 days. Accordingly,
the monitoring system needs to trade-off detection accuracy
and speed by appropriately selecting the sample size k.

VII. CONCLUSION

This paper addresses the problem of hypothesis testing
for the mean of a Gaussian sequence, under a differential
privacy constraint. We study the case in which the data con-
sist of iid Gaussian random variables and provide analytic
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Fig. 4. Probability of detection of the test (10), as a function of the
privacy parameter ε when k = 28.

formulas to set the detection threshold and for the error
probabilities. We apply the results to design a differentially
private fault detector for linear dynamic processes with
Gaussian noise, and propose a version of the algorithm
when decisions are taken sequentially. We test the efficiency
of the scheme on a dataset of the CDC for the problem of
detecting an epidemic outbreak.
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