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Abstract— Stealthy attacks on the sensors and actuators
embedded in cyber-physical systems could hinder the safe
operation of these systems if the state estimators monitoring
them cannot detect such attacks in time. In this paper, we
study stealthy attacks in the framework of interval observers.
We consider two classes of attacks: when a malicious agent
compromises the sensors and when it is able to alter the
system’s actuators. For each type of attack, we design a
dedicated interval observer for the system’s state and we
construct bounds for the attack signal. We investigate the
ability of such interval observer to provide accurate estimates
when the system is under the attack. Numerical simulations
for a lateral model of an aircraft illustrate the capabilities of
the synthesized observers.

I. INTRODUCTION

Security vulnerabilities in Cyber-Physical Systems
(CPS), i.e., systems that tightly integrate computing and
communication resources to control physical processes,
allow for new types of cyberattacks that can lead to
disastrous physical damage. Some recent examples include
the StuxNet malware [1] and the Maroochy Sewage Control
Incident [2]. Smaller systems such as commercial drones
[3] and military vehicles [4] were also targeted.

CPS security is a currently active research area, and
several attack strategies and defense mechanisms have
been studied. Standard fault detection algorithms, while
generally useful, may in some cases be unsuccessful against
the attacks of a smart adversary [5]. Classical bad data
detection strategies, such as the largest residue test [6], have
been applied extensively to static linear models with Gaus-
sian noise, e.g., in the context of state estimation for power

This work was supported in part by NSERC under Grant RGPIN
435905-13, the Fonds de Recherche du Québec - Nature et Technologies
(FRQNT) international internships fellowship (Energy/Digital/Aerospace),
the Government of Russian Federation (Grant 08-08) and the Ministry of
Education and Science of Russian Federation (Project 14.Z50.31.0031).

K. H. Degue and J. Le Ny are with the depart-
ment of Electrical Engineering, Polytechnique Mon-
treal and GERAD, QC H3T-1J4, Montreal, Canada
kwassi-holali.degue,jerome.le-ny@polymtl.ca

D. Efimov is with Inria, Univ. Lille, CNRS, UMR 9189 - CRIStAL, F-
59000 Lille, France. He is also with the Department of Control Systems
and Informatics, Saint-Petersburg State University of Information Tech-
nologies, Mechanics and Optics (ITMO), 49 Kronverkskiy av., 197101
Saint Petersburg, Russia Denis.Efimov@inria.fr

E. Feron is with School of Aerospace Engineering,
Georgia Institute of Technology, Atlanta, GA, USA
eric.feron@aerospace.gatech.edu

systems. Nevertheless, an adversary who is acquainted with
the configuration of a power grid for example might be
able to carry out a false-data injection attack [7], i.e.,
inject a stealthy input into the measurements to alter the
state estimator of the power grid while leaving the residue
unchanged [8].

To carry out false-data injection attacks on a dynamical
system, an attacker must select attack vectors that are
consistent not only with static observations but also with
the state dynamics at all times [7]. This type of attack is
discussed in [9] for noiseless models. The authors of [10]
considered dynamic false-data injection attacks, assuming
that the statistical properties of the disturbances are avail-
able, and [11] designed optimal stealthy attack strategies
against CPS by making the same assumption. However,
for physical and economical reasons, state disturbances of
industrial system models are often modeled as bounded
stochastic signals [12] for control design. Robust failure
detection algorithms are based on the ability to handle
disturbance and noise that are a priori bounded [13], [14].
This allows an intelligent adversary to hide an attack within
these bounds, remaining undetected while causing serious
harm. An analysis of stealthy attacks in a set-membership-
based framework is performed in [5]. For state estimation,
set-membership approaches take the measurements into
account by computing the set of states consistent with the
model and the measurements [15]. However, this technique
can be difficult to apply in practice to design Fault Detec-
tion and Isolation (FDI) systems, where simpler observers
with tunable gains are more common. On the other hand,
interval observers [16]–[18], which are a subclass of set-
membership estimators, take into account the measurements
by using observer gains explicitly, and have become one of
the most common approach for FDI during the last decade
[15]. In this paper, we focus on secure estimation under
stealthy attacks with interval observers.

The first contribution of this paper lies in designing
interval observers resilient to stealthy sensor attacks. State
estimation has been developed for dynamical systems under
attacks with bounded noise in [19]. However, stealthy
attacks have not been discussed in [19], where it is assumed
that there is no uncertainty on the initial value of the
state, which is a drawback in applications where only
bounds on x(0) are known. In contrast, we assume un-
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certain initial conditions as well as uncertain time-varying
inputs in the continuous-time dynamics. Furthermore [19]
computes the state estimate by solving a combinatorial
l0-norm minimization problem at each iteration, which
requires sufficient computing resources. Here we solve the
problem by designing interval estimators, whose gains can
be computed efficiently by using linear programming. The
second contribution of this paper lies in designing, for the
first time, interval observers resilient to actuator attacks.

Section II presents the problem statement and some
results from interval estimation theory. These results are
applied to design interval state observers and to construct
bounds for stealthy attacks in the case of sensor attacks in
Section III and actuator attacks in Section IV. Finally, Sec-
tion V presents numerical simulations for a lateral aircraft
model to illustrate the performance of our algorithms.

Notation: We denote the real and integer numbers
by R and Z respectively, R+ = {τ ∈ R : τ ≥ 0} and
Z+ = Z ∩ R+. The Euclidean norm for a vector x ∈ Rn
is written |x|. The symbol In denotes the n × n identity
matrix. For a bounded vector-valued signal u : R+ → Rn
the symbol ||u||[t0,t1] denotes its L∞ norm ||u||[t0,t1] =
supt∈[t0,t1] |u(t)|, and if t1 = +∞ then we simply write
||u||. We denote by Ln∞ the set of all vector-valued signals
u with the property ||u|| <∞. The symbols u and u denote
lower and upper bounds of the signal u component-wise.
A matrix A ∈ Rn×n is called Metzler if all its elements
outside the main diagonal are nonnegative, i.e., Ai,j ≥ 0 for
1 ≤ i 6= j ≤ n. For two vectors x1, x2 ∈ Rn or matrices
A1, A2 ∈ Rn×n, the relations x1 ≤ x2 and A1 ≤ A2 are
understood element-wise.

II. BACKGROUND

A. System Model

Consider the following system for t ≥ 0

ẋ(t) = Ax(t) + w(t),

y(t) = Cx(t),
(1)

where x(t) ∈ Rn is the state vector, w : R+ → Rn is
an unknown input in Ln∞, y(t) ∈ Rp is the output signal
available for measurements, and A ∈ Rn×n, C ∈ Rp×n are
known constant matrices. Denote by x(t, x0, w) the solution
of the system (1) corresponding to an initial condition
x0 ∈ Rn and the input w ∈ Ln∞ at the time instant t ≥ 0,
and y(t, x0, w) = Cx(t, x0, w). A monitoring system is
estimating the state using the measurements y from the
sensors, under the following assumptions.

Assumption 1. The state x ∈ Ln∞ and the initial conditions
satisfy x0 ≤ x0 ≤ x0, where x0, x0 ∈ Rn are given
constant vectors.

Assumption 2. Two functions w, w : R+ → Rn in Ln∞
are given such that

w(t) ≤ w(t) ≤ w(t), ∀t ≥ 0.

Assumption 1 implies that the state x(t, x0, w) is
bounded and that the initial conditions are constrained
to belong to some known interval [x0, x0]. Assumption 2
states that the input of the system (1) is known up to some
interval error w(t)− w(t).

B. Problem Statement

In the sequel, we assume that an adversary is capable
of adding an attack signal to the sensor measurements or
the dynamics of (1). The attack signal, denoted as a(t), is
assumed to belong to a (possibly unknown) interval [a, a],
corresponding to the desire of the adversary to remain
undetected. The subscript a is used to denote signals of
the system under attack. Thus, the output of the system
under attack is denoted as ya(t, x0, w, a).

In the first part of this paper, we assume that the
adversary compromises the sensor by adding a malicious
signal a ∈ Lp∞ to the measured signal:

ẋa(t) = Axa(t) + w(t),

ya(t) = Cxa(t) + a(t).
(2)

The aim of the attacker is to degrade the state estimate
while remaining undetected. Following [20], we define
stealthy sensor attacks as those that produce a plausible
output signal, as follows:

Definition 1. A sensor attack a ∈ Lp∞ is called stealthy
if there exist some initial conditions ξ1, ξ2 ∈ [x0, x0] and
inputs w1, w2 ∈ [w,w] for (2) and (1) respectively, such
that

ya(t, ξ1, w1, a) = y(t, ξ2, w2) ∀t ≥ 0, (3)

where ya is an output of (2) and y of (1).

The second part of this work is devoted to the study
of attacks where the adversary is able to compromise the
actuator signals with a malicious signal a ∈ Ln∞:

ẋa(t) = Axa(t) + w(t) + a(t),

ya(t) = Cxa(t).
(4)

For the system (4), denote the solution corresponding to
initial condition x0 ∈ Rn, the input w ∈ Ln∞ and attack
signal a ∈ Ln∞ by xa(t, x0, w, a).

Definition 2. An actuator attack a ∈ Ln∞ is called stealthy
if there exist some initial conditions ξ1, ξ2 ∈ [x0, x0] and
inputs w1, w2 ∈ [w,w] for (4) and (1) respectively, such
that the output derivatives coincide. That is, the relation

ẏa(t, ξ1, w1, a) = ẏ(t, ξ2, w2) (5)
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holds for almost all t ≥ 0, where ya is an output of (4)
and y of (1).

Note that relation (5) is a consequence of (3), but the
converse is not true. As a result, Definition 2 imposes fewer
restrictions than Definition 1 on the output signals that the
attacker is allowed to produce while remaining “stealthy”.

Problem: For a given system assumed under attack,
we aim at: (i) designing an interval observer when the
monitoring system knows a priori the bounds a and a on
the attack signal; (ii) providing a method to estimate a and
a as well.

In the rest of this section, we review some basic facts
from the theory of interval estimation.

C. Interval Relations

For a matrix A ∈ Rm×n, define A+ = max{0, A}
applied element-wise, A− = A+ − A (we use the same
definition for vectors) and denote the matrix of all elements’
absolute values by A? = A+ +A−.

Lemma 1. [21] Let x ∈ Rn be a vector with x ≤ x ≤ x
for some x, x ∈ Rn. If A ∈ Rm×n is a matrix, then

A+x−A−x ≤ Ax ≤ A+x−A−x. (6)

D. Nonnegative Linear Systems

Consider the linear time-invariant system

ẋ(t) = Ax(t) + ω(t), ω : R+ → Rn+, ω ∈ Ln∞, (7)

where the matrix A ∈ Rn×n is Metzler. Its solution x(t) ∈
Rn+ (is element-wise nonnegative), ∀t ≥ t0, for every initial
condition x(t0) ∈ Rn+ [22], [23]. In this case, the dynamical
system (7) is called cooperative or monotone.

E. Standard Interval Observer Design

We need the following assumption.

Assumption 3. For A, C defined in (1), there exists a
matrix L ∈ Rn×p such that the matrix (A−LC) is Hurwitz
and Metzler.

Assumption 3 is essential for the interval estimation
approach, but it is rather restrictive. It can be relaxed using
a coordinate transformation [16], [18], which is omitted
here for brevity and simplicity of notation.

If the monitoring system does not take into account the
presence of an attack, it believes the system model to be
(1), whereas it measures in fact ya from (2) or (4). It can
then design an interval observer of the form

ẋ(t) =(A− LC)x(t) + Lya(t) + w(t), x(0) = x0

ẋ(t) =(A− LC)x(t) + Lya(t) + w(t), x(0) = x0,
(8)

where x(t) ∈ Rn and x(t) ∈ Rn are the lower and the
upper interval estimates of the system for the state x(t).
When the bounds x and x do not satisfy any stability
property, they are called framers [24]. Define the errors
e(t) = x(t)− x(t) and e(t) = x(t)− x(t).

Theorem 1. [25], [26] Let Assumptions 1–3 be satisfied,
and suppose a ≡ 0. Then we have for (1)

x(t) ≤ x(t) ≤ x(t), ∀t ≥ 0, (9)

provided that x0 ≤ x(0) ≤ x0, and moreover e, e ∈ Ln∞.

Unfortunately, in the presence of an attack signal, the
guarantees of Theorem 1 become generally invalid, i.e., we
do not necessarily have x ≤ xa ≤ x for the observer (8).
The next sections discuss how to take the attack signal into
account.

III. STEALTHY SENSOR ATTACKS

A. Interval Estimation of xa with Knowledge of a and a

Consider the case in which the monitoring system knows
a and a while estimating xa. The equations of an interval
observer for (2) can take the form

ẋa(t) = (A− LC)xa(t) + Lya(t) + w(t)

− L+a(t) + L−a(t), xa(0) = x0,

ẋa(t) = (A− LC)xa(t) + Lya(t) + w(t)

− L+a(t) + L−a(t), xa(0) = x0,

(10)

where xa(t) ∈ Rn and xa(t) ∈ Rn are respectively the
lower and the upper interval estimates for the state xa(t).
Define ea(t) = xa(t)− xa(t) and ea(t) = xa(t)− xa(t).

Theorem 2. Let Assumptions 1–3 be satisfied. Then we
have, for (2) and (10),

xa(t) ≤ xa(t) ≤ xa(t), ∀t ≥ 0, (11)

provided that x0 ≤ xa(0) ≤ x0, and moreover the errors
ea, ea ∈ Ln∞.

We skip the proofs of our results due to space limitations.
The interval observer (10) answers Problem (i) for sensor
attacks.

B. Estimation of a and a for Stealthy Sensor Attacks

Consider now the case in which the monitoring system
does not know a and a a priori, while estimating xa. After
for estimating a and a. The results of this section are
useful for both the attacker and the monitoring system (the
defender). These results represent a way for the adversary
to make sure its attack is stealthy and at the same time a
way for the monitoring system to obtain a priori bounds on
a, in order to design a proper interval estimator.
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Using Definition 1, for the model (2), a stealthy sensor
attack means that y(t, ξ1, w1)+a(t) = y(t, ξ2, w2),∀t ≥ 0,
which implies

a(t) = Ce(t) with e(t) = x(t, ξ2, w2)− x(t, ξ1, w1),

where ξ1, ξ2 are valid initial conditions for the dynamics
of (1) or (2) in the interval [x0, x0], and w1, w2 are valid
input signals with values at any time t in [w(t), w(t)]. The
difference e(t) satisfies

ė(t) = Ae(t) + w2(t)− w1(t).

We need the following assumptions to construct a framer
for a.

Assumption 4. There exists a nonsingular matrix S ∈
Rn×n such that D = SAS−1 is Hurwitz and Metzler.

Note that Assumption 4 is true when A is Hurwitz and
diagonalizable. Introduce a transformed state difference for
(1) with ε = Se, then

ε̇(t) = Dε(t) + S(w2(t)− w1(t)),

a(t) = CS−1ε(t),
(12)

and Assumption 2 implies, for all t ≥ 0,

w(t)− w(t) ≤ w2(t)− w1(t) ≤ w(t)− w(t),

while

−S?(x0 − x0) = ε0 ≤ ε(0) ≤ ε0 = S?(x0 − x0)

under Assumption 1.

Theorem 3. Let Assumptions 1, 2 and 4 be satisfied. Then
a stealthy sensor attack in the sense of Definition 1 must
satisfy a(t) ≤ a(t) ≤ a(t),∀t ≥ 0, where

a(t) = (CS−1)+ε(t)− (CS−1)−ε(t),

a(t) = (CS−1)+ε(t)− (CS−1)−ε(t),

ε̇(t) = Dε(t)− S?(w(t)− w(t)), ε(0) = ε0

ε̇(t) = Dε(t) + S?(w(t)− w(t)), ε(0) = ε0.

(13)

Moreover, ε(t), the attack signal a(t) and the error signals
δ(t) = ε(t) − ε(t), δ(t) = ε(t) − ε(t), a(t) − a(t) and
a(t)− a(t) all belong to Lp∞.

Theorem 3 answers Problem (ii) for sensor attacks, under
the additional Assumption 4.

IV. STEALTHY ACTUATOR ATTACKS

A. Interval Estimation of xa with Knowledge of a and a
First, we address the case in which the monitoring system

knows a and a while estimating xa. Under Assumptions 1-
3, an interval observer for (4) takes the form

ẋa(t) = (A− LC)xa(t) + Lya(t) + w(t) + a(t),

ẋa(t) = (A− LC)xa(t) + Lya(t) + w(t) + a(t),
(14)

where xa(t) ∈ Rn and xa(t) ∈ Rn are respectively the
lower and the upper interval estimates for the state xa(t).
Define once again the error signals ea(t) = x̄a(t) − xa(t)
and ea(t) = xa(t)− xa(t).

Theorem 4. Let Assumptions 1-3 be satisfied. Then we
have, for (4) and (14),

xa(t) ≤ xa(t) ≤ xa(t), ∀t ≥ 0, (15)

provided that x0 ≤ xa(0) ≤ x0, and moreover the errors
ea, ea ∈ Ln∞.

The interval observer (14) answers Problem (i) for actu-
ator attacks. Next, we consider the situation where a, a are
not initially known.

B. Estimation of a and a

In this subsection, we denote by xa(t) = xa(t, ξ1, w1, a)
the solution of (4) and by x2(t) = x(t, ξ2, w2) any
plausible state trajectory of the nominal model (1) such that
Definition 2 holds. They satisfy the differential equations

ẋa(t) = Axa(t) + w1(t) + a(t),

ẋ2(t) = Ax2(t) + w2(t),
(16)

for corresponding initial conditions ξ1, ξ2 ∈ [x0, x0], inputs
w1, w2 ∈ Ln∞, w1(t), w2(t) ∈ [w,w] and outputs respec-
tively ya(t, ξ1, a, w1) and y(t, ξ2, w2). In addition, we make
the following assumption to construct a framer for a.

Assumption 5. In (4), the matrix C = In.

Let e(t) = x2(t)− xa(t). For C = In, the constraint of
Definition 2 imposes

ė(t) = 0. (17)

Therefore, we have e(t) = ξ2 − ξ1, ∀t ≥ 0. As a result, e
satisfies

e ≤ e(t) ≤ e,

with e := x0 − x0, e := x0 − x0. On the other hand, (16)
implies

ė(t) = Ae(t) + w2(t)− w1(t)− a(t).

Since ė = 0, we obtain

a(t) = Ae(t) + w2(t)− w1(t). (18)

Theorem 5. Let Assumptions 1, 2 and 5 be satisfied. Then,
a stealthy actuator attack in the sense of Definition 2 must
satisfy a ≤ a(t) ≤ a, ∀t ≥ 0, where

a = A+e−A−e+ w − w,
a = A+e−A−e+ w − w.

(19)
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In addition, the attack signal a(t) and the errors signals
ζ(t) = a(t)− a and ζ(t) = a− a(t) belong to Ln∞.

The bounds a, a of Theorem 5 answer Problem (ii) for
actuator attacks, under the additional Assumption 5.

V. SIMULATIONS

This section presents some simulation results illustrating
the results of this paper. Consider a simplified version of
a lateral model of the Boeing-767 aircraft [27], where the
dynamics of the roll angle and the yaw rate are neglected.
The matrices A and C are defined as follows

A =

[
−0.1245 0.035
−15.2138 −2.0587

]
, C =

[
1 0

]
,

and x(t) =
[
β(t) p(t)

]T ∈ R2 where β(t) represents
the angle of sideslip (in degrees) and p(t) the roll rate
(in degrees per second), respectively. The unknown in-
put signal is w(t) =

[
δ1 sin(2t+ π

3 ) δ2 cos(3t)
]T

with
δ1 = 3 and δ2 = 10 two given bounds. Thus, we have
w(t) =

[
δ1 δ2

]T
and w(t) = −w(t). Assumption 3

is verified for L =
[
5 −16

]T
, i.e., the matrix A −

LC =

[
−5.1245 0.035
0.7862 −2.0587

]
is Hurwitz and Metzler. The

(imperfectly known) initial condition is xa(0) =
[
30 30

]T

and x0 =
[
30 30

]T
, x0 =

[
0 0

]T
.

Let us apply the stealthy sensor attack of Section III
to the system. Since A is diagonalizable, Assumption 4 is
satisfied with

S =

[
12.0519 0.2633
11.9886 1.2622

]
, D =

[
−0.4569 0

0 −1.7263

]
.

Fig. 1 illustrates the effects of a stealthy sensor attack. The
solid blue line represents the true system state, and the
dashed blue lines the state bounds provided by the interval
observer (10) with the bounds a, a provided by Theorem
3. For this simulation, we select a(t) = y(t, x(0), w) −
y(t, xa(0), w). Note that another choice could be a(t) =
a(t)+a(t)

2 . The dashed red line are the bounds provided by
the interval observer (8), which assumes that no attack is
present. These bounds are clearly violated during the tran-
sient regime. On the other hand, the bounds assuming the
presence of an attack signal are much more conservative,
even in steady-state.

Let us consider now the actuator attack of Subsection
IV-B. Note that C = I2 for this case. Assumption 3 is

verified for L =

[
5 0
−16 0

]
, i.e., the matrix A − LC =[

−5.1245 0.035
0.7862 −2.0587

]
is Hurwitz and Metzler. In Fig. 2,

the effects of such an actuator attack on the system are
demonstrated, where the solid blue line represents the true
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Fig. 1. Trajectory estimates without and under the stealthy sensor attack.

system state, and the dashed blue lines the state bounds
provided by the interval observer (14) with the bounds a,
a provided by Theorem 5. For this simulation, we select
a(t) = a(t)+a(t)

2 . The dashed red line are the bounds
provided by the interval observer (8), which assumes that
no attack is present. These bounds are clearly violated again
in this case.

VI. CONCLUSION

In this paper, we consider the problem of state estimation
under stealthy attacks in the interval observer framework.
We construct framers for stealthy attack signals and we
design interval observers for the state of the system under
sensor and actuator attacks respectively. As a direction of
future research, the problem of designing interval observers
resilient to actuator attacks for the case where C 6= In can
be posed.
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