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Abstract: This paper describes a differentially private event-triggered sampling mechanism
to select measurement samples from a data sequence whose dynamics can be modelled by a
stochastic linear system. The mechanism produces subsequences that can be used to reestimate
the original sequence relatively accurately and the differential privacy constraint guarantees
that these subsequences are insensitive to certain variations in the input sequence. The
subsampling process can be motivated by the presence of communication bandwidth constraints,
but also provides an additional tool to explore achievable privacy-utility tradeoffs in privacy-
preserving signal processing and control. Event-triggered sampling can offer benefits over
periodic subsampling by attempting to select the most useful samples, but the fact that it
leaks information when no sampling occurs must be carefully taken into account to meet the
differential privacy requirement. We propose a design using a stochastic sampling threshold,
leveraging the “sparse vector technique” from differential privacy to incur a privacy loss only
when samples are actually released. This design includes a suboptimal but tractable recursive
finite-dimensional estimator that can also be used to re-estimate the original sequence from the
differentially private noisy subsequence.

Keywords: Data privacy, Event-triggered sampling, Sampling systems, State estimation,
Recursive estimation.

1. INTRODUCTION

Because many initiatives to build a more intelligent in-
frastructure rely on the collection and processing of a large
amount of personal information, often continuously and in
real time, there is a growing interest in being able to better
measure and control the impact of large-scale automated
systems such as intelligent transportation systems or smart
grids on the privacy of individuals (President’s Council of
Advisors on Science and Technology, 2014). Among vari-
ous definitions of privacy that have been proposed in the
past two decades for privacy-preserving data release and
analysis, differential privacy (Dwork et al., 2006; Dwork
and Roth, 2014) is one of the most successful notions and
has been applied to the analysis of datasets ranging from
data collected via web browsers (Erlingsson et al., 2014) to
the U.S. Census Data (Abowd, 2018). Differentially private
algorithms publish statistics about a protected dataset
that are insensitive to specific variations in the dataset
(e.g., adding or removing a single person’s data), to ensure
that certain inferences about this dataset become provably
difficult (e.g., detecting if someone’s data is present in the
dataset). These inferences could be based on the published
statistics and any source of side information.

� This work was performed while the first author was on sabbatical
leave at the Technical University of Munich, and supported by
NSERC under Grants RGPAS-522686-2018 and RGPIN-5287-2018,
and by a fellowship from the Alexander von Humboldt Foundation.

For the differentially private real-time processing of sig-
nals, previous work has focused on signal perturbation
schemes using additive noise, see, e.g., Le Ny and Pappas
(2014). The potential benefits of first selecting a subset of a
sensitive signal’s samples, especially when a model is avail-
able to estimate and predict this signal, are comparatively
unexplored except in Fan and Xiong (2014), although
(random) subsampling is known to enhance differential
privacy guarantees for the analysis of static datasets (Li
et al., 2012). This motivates the problem considered in this
paper, which is to select in real-time which samples of a
sensitive data stream to release to simultaneously meet a
differential privacy requirement and maintain the ability to
reestimate the initial data stream relatively accurately. In
addition to offering an additional tool to explore privacy-
accuracy tradeoffs, subsampling might also be necessary in
the context of networked monitoring and control systems
to meet certain communication bandwidth constraints for
example.

We focus here on an event-triggered sampling approach
(Heemels et al., 2012), where a data sample is only
released when it deviates sufficiently from a value that
can be predicted based on previously released samples
together with a dynamic model assumed to be publicly
available. Our work is motivated by the following idea: in
situations where publishing more samples of a signal in a
differentially private way requires more noise, the overall
impact on accuracy of having one more sample might
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that these subsequences are insensitive to certain variations in the input sequence. The
subsampling process can be motivated by the presence of communication bandwidth constraints,
but also provides an additional tool to explore achievable privacy-utility tradeoffs in privacy-
preserving signal processing and control. Event-triggered sampling can offer benefits over
periodic subsampling by attempting to select the most useful samples, but the fact that it
leaks information when no sampling occurs must be carefully taken into account to meet the
differential privacy requirement. We propose a design using a stochastic sampling threshold,
leveraging the “sparse vector technique” from differential privacy to incur a privacy loss only
when samples are actually released. This design includes a suboptimal but tractable recursive
finite-dimensional estimator that can also be used to re-estimate the original sequence from the
differentially private noisy subsequence.
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1. INTRODUCTION

Because many initiatives to build a more intelligent in-
frastructure rely on the collection and processing of a large
amount of personal information, often continuously and in
real time, there is a growing interest in being able to better
measure and control the impact of large-scale automated
systems such as intelligent transportation systems or smart
grids on the privacy of individuals (President’s Council of
Advisors on Science and Technology, 2014). Among vari-
ous definitions of privacy that have been proposed in the
past two decades for privacy-preserving data release and
analysis, differential privacy (Dwork et al., 2006; Dwork
and Roth, 2014) is one of the most successful notions and
has been applied to the analysis of datasets ranging from
data collected via web browsers (Erlingsson et al., 2014) to
the U.S. Census Data (Abowd, 2018). Differentially private
algorithms publish statistics about a protected dataset
that are insensitive to specific variations in the dataset
(e.g., adding or removing a single person’s data), to ensure
that certain inferences about this dataset become provably
difficult (e.g., detecting if someone’s data is present in the
dataset). These inferences could be based on the published
statistics and any source of side information.

� This work was performed while the first author was on sabbatical
leave at the Technical University of Munich, and supported by
NSERC under Grants RGPAS-522686-2018 and RGPIN-5287-2018,
and by a fellowship from the Alexander von Humboldt Foundation.

For the differentially private real-time processing of sig-
nals, previous work has focused on signal perturbation
schemes using additive noise, see, e.g., Le Ny and Pappas
(2014). The potential benefits of first selecting a subset of a
sensitive signal’s samples, especially when a model is avail-
able to estimate and predict this signal, are comparatively
unexplored except in Fan and Xiong (2014), although
(random) subsampling is known to enhance differential
privacy guarantees for the analysis of static datasets (Li
et al., 2012). This motivates the problem considered in this
paper, which is to select in real-time which samples of a
sensitive data stream to release to simultaneously meet a
differential privacy requirement and maintain the ability to
reestimate the initial data stream relatively accurately. In
addition to offering an additional tool to explore privacy-
accuracy tradeoffs, subsampling might also be necessary in
the context of networked monitoring and control systems
to meet certain communication bandwidth constraints for
example.

We focus here on an event-triggered sampling approach
(Heemels et al., 2012), where a data sample is only
released when it deviates sufficiently from a value that
can be predicted based on previously released samples
together with a dynamic model assumed to be publicly
available. Our work is motivated by the following idea: in
situations where publishing more samples of a signal in a
differentially private way requires more noise, the overall
impact on accuracy of having one more sample might
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become negative due to the additional noise, especially if
the sample can be predicted accurately by the model.

The paper is organized as follows. Section 2 states
the problem of designing a differentially private event-
triggered sampling mechanism and recalls some basic facts
about differential privacy. The proposed mechanism is
described in Section 3, together with a proof of the dif-
ferential privacy guarantees it provides. Finally, Section
4 focuses on the design of an estimator embedded in the
sampling mechanism to compute the triggering condition
at each period.

Notation. The Laplace distribution with mean zero and
variance 2/λ2 is denoted Lap(λ) and has probability
density function (pdf) λ

2 exp(−λ|x|) for x ∈ R. The

exponential distribution with mean 1/λ and variance 1/λ2

is denoted exp(λ) and has pdf λ exp(−λx) for x ≥ 0. We
use the notation ‖M‖1 for the induced 1-norm of an m×n
matrix M = [mij ]i,j , i.e., ‖M‖1 = max1≤j≤n

∑m
i=1 |mij |.

For M symmetric positive definite, M−1/2 denotes the
inverse of the principal square root of M . A finite sequence
{xk}s≤k≤t is denoted xs:t.

2. PROBLEM STATEMENT

Consider a private signal x := {xk}k≥0, with xk ∈ Rn,
captured over time by a data aggregator. A mathematical
model taking the form of a stochastic linear time-invariant
system is publicly known for this observed signal

xk+1 = Axk + wk, k ≥ 0, (1)

where the initial state x0 ∈ Rn is assumed to have mean
x̄0 and covariance matrix Σ̄0, the matrix A ∈ Rn×n is
known, and wk is a zero-mean white noise signal with
known covariance matrix W . The data aggregator would
like to release publicly a (perturbed) subsequence of the
whole sequence {xk}k≥0. More precisely, it needs to decide
at each period k if the sample xk should be released or
not. This could be due for example to the necessity of
transmitting the samples over a communication network
subject to a bandwidth constraint. In addition, it is
required that the released subsequence be differentially
private, as defined in the next subsection. In that regard,
subsampling might also be beneficial to meet the privacy
constraint, independently of any other communication
bandwidth constraint.

2.1 Differential Privacy

In this section we define formally the differential privacy
requirement for the published subsequence. A mechanism
publishing the result of a computation performed on a
protected dataset is differentially private (Dwork et al.,
2006) if: i) it randomizes its answer and ii) its answer’s
probability distribution does not depend too strongly on
certain specified variations in the dataset. These variations
can be interpreted as the impact that a single individual’s
data has on the dataset. More precisely, given a space D of
datasets, we start by defining a binary symmetric relation
on D, called adjacency and denoted Adj, which captures
which varations we allow. A typical example would be to
define adjacent datasets as those for which the data of
exactly one individual has been added or removed. For

an algorithm (also called mechanism) to be differential
private, it should be hard for a third party to decide,
based on observing only the output of the mechanism, if
the dataset used was d or d′, for any two adjacent d and
d′. For this purpose, denoting M the mechanism, M(d)
is a random variable and differential privacy asks that
the distributions M(d) and M(d′) for any two adjacent
datasets d and d′ be close, as expressed in (2) below.

Definition 1. Let D be a space equipped with a given sym-
metric binary relation Adj, and (R,M) be a measurable
space, where M is a given σ-algebra over R. Let ε ≥ 0. A
randomized mechanism M from D to R is ε-differentially
private (for Adj) if for all d, d′ ∈ D such that (d, d′) ∈ Adj,
for all sets S in M,

P(M(d) ∈ S) ≤ eε P(M(d′) ∈ S). (2)

In this paper, we take D = (Rn)N and we consider that
two data sequences x, x′ in D are adjacent if an only if

‖xk − x′
k‖1 ≤ ρ, ∀k ≥ 0. (3)

In other words, we allow at each period a variation of
at most ρ in 1-norm for the sample xk. For example, x
might represents counts reported by by n motion detection
sensors and a single individual is assumed to activate at
most ρ of these sensors at each period to satisfy (3). See
Dwork et al. (2010) or Le Ny and Mohammady (2018) for
a discussion of some application examples.

We now informally state a few required results. First, an
important property of differential privacy is its “resilience
to post-processing”, which says that further transforming
the output M(d) of a differentially private mechanism,
without re-accessing the dataset d, cannot weaken the
differential privacy guarantee provided by M (Dwork and
Roth, 2014), (Le Ny and Pappas, 2014, Theorem 1). Hence,
post-processing a released subsequence of samples by an
estimator does not change the privacy guarantee. Second,
we can compose differentially private mechanisms, with
the following degradation of the privacy parameter. If we
have N mechanisms M1 : D → R1, Mk : D × R1 × . . . ×
Rk−1 → Rk, 2 ≤ k ≤ N , and each Mi is εi-diffentially
privacy with respect to its first argument for each fixed
value of its subsequent arguments, then the composed
mechanism releasing (d1, . . . , dN ) with each output defined
recursively as d1 = M1(d) and dk = Mk(d, d1, . . . , dk−1)
for k ≥ 2, is (ε1 + . . . + εN )-differentially private (Dwork
and Roth, 2014, Corollary B.2). Finally, the sensitivity
(also called 1-sensitivity) of a function q : D → Rn is
defined as ∆q := supd,d′:Adj(d,d′) ‖q(d)− q(d′)‖1. Then, the
Laplace mechanism (Dwork et al., 2006) M : D → Rn

defined as M(d) = q(d) + ξ, with ξ ∈ Rn a random vector
with iid components ξi ∼ Lap(ε/∆q), is ε-differentially
private. Note that this noise has variance 2∆q2/ε2 on each
component.

2.2 Event-Triggered Sampling Approach

We are concerned in this paper with the problem of se-
lecting which samples of the sequence x to release, while
guaranteeing that the released subsequence be differen-
tially private for the adjacency relation (3). Consider the
following three possible mechanisms.

(i) Subsample the signal x periodically and perturb the
selected samples using to the Laplace mechanism.
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(ii) Perturb the whole sequence x using the Laplace
mechanism, then subsample that perturbed sequence
using an event-triggered mechanism.

(iii) Subsample x using an event-triggered mechanism,
and perturb the selected samples using to the Laplace
mechanism.

Scheme (i) is the most straightfoward to implement, but
as with any periodic sampling scheme, not considering the
value of the samples in their selection process might result
in suboptimal performance for networked monitoring and
control systems (Heemels et al., 2012). Scheme (ii) has
the important drawback that the privacy-preserving noise
is introduced before sampling, hence the Laplace mecha-
nism will result in a degradation of the privacy parameter
proportional to the length of the whole sequence, not the
number of ultimately selected samples. An alternative is
explored by Fan and Xiong (2014), where a self-triggering
scheme is proposed to adapt the sampling rate to the size
of the innovations at the sampling times only. Scheme (iii)
is the focus of this paper. The difficulty is to be able to
subsample based on considering the values of the samples,
yet avoid the same worst-case privacy degradation as with
scheme (ii). A direct application of the composition mecha-
nism recalled above would give a degradation proportional
to the length of the whole sequence. Our goal instead is to
obtain an event-triggered mechanism with privacy degra-
dation proportional to the number of selected samples.

3. DIFFERENTIALLY PRIVATE
EVENT-TRIGGERED SAMPLER

The architecture of the proposed event-triggered sampler
is shown on Fig. 1. A sample xt is first selected or rejected
by the event detector based on a condition involving
the size of the difference xk − x̂k between the value of
the sample and a value predicted based on past selected
samples, after a sanitization process involving additive
noise ξ to enforce differential privacy. Let γk ∈ {�,⊥} be
a variable representing the output of the event detector,
with γk = � if a sample xk is selected at period k, and
γk = ⊥ otherwise. The subsampled sequence x̃s

k on the
figure is defined as

x̃s
k =

{
xk + ξk, if γk = �
⊥, if γk = ⊥.

In particular, if no sampling occurs at period k, then
this information is passed to the subsequent estimator.
If sampling occurs at period k, then a random variable
ξk is added to the sample. The estimator produces an
estimate x̂ based on the sequence x̃s, which therefore
includes the past selected and perturbed samples, as well
as the information about the periods at which no sampling
occurred. The signals x̃s, x̂, γ (or a subset of these)
can be published by the mechanism, as these signals are
differentially private. In particular, since our estimator is
suboptimal, it can be useful to output the noisy samples
x̃s
k, if another estimator with possibly better performance

is to be implemented outside of the proposed sampling
scheme. In a remote estimation scenario with bandwidth
constraints, as in Wu et al. (2016) for example, one
can also transmit just the noisy samples and reproduce
the estimator at the remote location. Note that by the
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Fig. 1. Structure of the differentially private event-based
sampler. The signals γ, x̃s, x̂ represented by thick
lines are differentially private and therefore can be
published.

resilience to post-processing property, any such subsequent
estimator still produces differentially private outputs.

The rest of this section is dedicated to describing more
precisely the sample selection method (event detector)
and to proving the differential privacy property of the
sequences γ, x̃s, x̂. Section 4 describes in more details our
estimator design.

3.1 Detecting the First Event

The event detector relies on a stochastic thresholding
policy. This is reminiscent of recent work discussing how
stochastic thresholding simplifies the design of subsequent
Bayesian state estimators for certain linear systems driven
by Gaussian noise (Han et al., 2015; Wu et al., 2016).
However, the main motivation in this work for using a
stochastic thresholding policy is for the purpose of guaran-
teeing differential privacy with a privacy degradation that
depends only on the number of ultimately selected sam-
ples, following the “sparse vector technique” idea from the
differential privacy literature (Dwork et al., 2009; Dwork
and Roth, 2014; Lyu et al., 2017),

In order to present the formal privacy results, we first
describe how the event detector operates from period k = 0
until the first time a sample is selected, assuming for now
that the detector stops releasing outputs at that time. Let
λτ , λν be two positive parameters, with λτ �= λν . Initially,
we set z0 = x0 − x̄0 and we generate a random variable
τ ∼ exp(λτ ), whose value is not published. Note that the
covariance matrix of z0 is provided by the model, equal to
Σ̄0. Then, at each subsequent period k ≥ 0, given some
values for zk, Σ̄k, we generate a fresh random variable
νk ∼ Lap(λν) and output the following decision{

γk = ⊥ (idle), if νk ≥ fk(zk)− τ,

γk = � (event detected, stop), otherwise,
(4)

where

fk(zk) =
1

‖Σ̄−1/2
k ‖1

‖Σ̄−1/2
k zk‖1.

If γk = ⊥, we update the parameters for the next period,
as follows

x̄k+1 = Ax̄k (= Akx̄0) (5)

zk+1 = xk+1 − x̄k+1 (6)

Σ̄k+1 = ηk(λτ , λν)AΣ̄kA
T +W, (7)

where x̄k is a state estimate and ηk(λτ , λν) ∈ R+ is a
positive scalar coefficient, strictly smaller than 1, which is
computed in Section 4. Note that the iterations (5) and
(7) do not depend on the values xk of the data sequence.
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(ii) Perturb the whole sequence x using the Laplace
mechanism, then subsample that perturbed sequence
using an event-triggered mechanism.

(iii) Subsample x using an event-triggered mechanism,
and perturb the selected samples using to the Laplace
mechanism.

Scheme (i) is the most straightfoward to implement, but
as with any periodic sampling scheme, not considering the
value of the samples in their selection process might result
in suboptimal performance for networked monitoring and
control systems (Heemels et al., 2012). Scheme (ii) has
the important drawback that the privacy-preserving noise
is introduced before sampling, hence the Laplace mecha-
nism will result in a degradation of the privacy parameter
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number of ultimately selected samples. An alternative is
explored by Fan and Xiong (2014), where a self-triggering
scheme is proposed to adapt the sampling rate to the size
of the innovations at the sampling times only. Scheme (iii)
is the focus of this paper. The difficulty is to be able to
subsample based on considering the values of the samples,
yet avoid the same worst-case privacy degradation as with
scheme (ii). A direct application of the composition mecha-
nism recalled above would give a degradation proportional
to the length of the whole sequence. Our goal instead is to
obtain an event-triggered mechanism with privacy degra-
dation proportional to the number of selected samples.

3. DIFFERENTIALLY PRIVATE
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The architecture of the proposed event-triggered sampler
is shown on Fig. 1. A sample xt is first selected or rejected
by the event detector based on a condition involving
the size of the difference xk − x̂k between the value of
the sample and a value predicted based on past selected
samples, after a sanitization process involving additive
noise ξ to enforce differential privacy. Let γk ∈ {�,⊥} be
a variable representing the output of the event detector,
with γk = � if a sample xk is selected at period k, and
γk = ⊥ otherwise. The subsampled sequence x̃s

k on the
figure is defined as
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k =
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⊥, if γk = ⊥.

In particular, if no sampling occurs at period k, then
this information is passed to the subsequent estimator.
If sampling occurs at period k, then a random variable
ξk is added to the sample. The estimator produces an
estimate x̂ based on the sequence x̃s, which therefore
includes the past selected and perturbed samples, as well
as the information about the periods at which no sampling
occurred. The signals x̃s, x̂, γ (or a subset of these)
can be published by the mechanism, as these signals are
differentially private. In particular, since our estimator is
suboptimal, it can be useful to output the noisy samples
x̃s
k, if another estimator with possibly better performance

is to be implemented outside of the proposed sampling
scheme. In a remote estimation scenario with bandwidth
constraints, as in Wu et al. (2016) for example, one
can also transmit just the noisy samples and reproduce
the estimator at the remote location. Note that by the
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sampler. The signals γ, x̃s, x̂ represented by thick
lines are differentially private and therefore can be
published.

resilience to post-processing property, any such subsequent
estimator still produces differentially private outputs.

The rest of this section is dedicated to describing more
precisely the sample selection method (event detector)
and to proving the differential privacy property of the
sequences γ, x̃s, x̂. Section 4 describes in more details our
estimator design.

3.1 Detecting the First Event

The event detector relies on a stochastic thresholding
policy. This is reminiscent of recent work discussing how
stochastic thresholding simplifies the design of subsequent
Bayesian state estimators for certain linear systems driven
by Gaussian noise (Han et al., 2015; Wu et al., 2016).
However, the main motivation in this work for using a
stochastic thresholding policy is for the purpose of guaran-
teeing differential privacy with a privacy degradation that
depends only on the number of ultimately selected sam-
ples, following the “sparse vector technique” idea from the
differential privacy literature (Dwork et al., 2009; Dwork
and Roth, 2014; Lyu et al., 2017),

In order to present the formal privacy results, we first
describe how the event detector operates from period k = 0
until the first time a sample is selected, assuming for now
that the detector stops releasing outputs at that time. Let
λτ , λν be two positive parameters, with λτ �= λν . Initially,
we set z0 = x0 − x̄0 and we generate a random variable
τ ∼ exp(λτ ), whose value is not published. Note that the
covariance matrix of z0 is provided by the model, equal to
Σ̄0. Then, at each subsequent period k ≥ 0, given some
values for zk, Σ̄k, we generate a fresh random variable
νk ∼ Lap(λν) and output the following decision{

γk = ⊥ (idle), if νk ≥ fk(zk)− τ,

γk = � (event detected, stop), otherwise,
(4)

where

fk(zk) =
1

‖Σ̄−1/2
k ‖1

‖Σ̄−1/2
k zk‖1.

If γk = ⊥, we update the parameters for the next period,
as follows

x̄k+1 = Ax̄k (= Akx̄0) (5)

zk+1 = xk+1 − x̄k+1 (6)

Σ̄k+1 = ηk(λτ , λν)AΣ̄kA
T +W, (7)

where x̄k is a state estimate and ηk(λτ , λν) ∈ R+ is a
positive scalar coefficient, strictly smaller than 1, which is
computed in Section 4. Note that the iterations (5) and
(7) do not depend on the values xk of the data sequence.
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Denote by ks ≥ 0 the time period at which the event
detector stops, i.e., γks = �. The following proposition is
an immediate consequence of the triangle inequality.

Proposition 2. The sensitivity of fk is bounded above by
ρ, for all 0 ≤ k ≤ ks.

Proof. Define zk = xk − x̄k and z′k = x′
k − x̄k, for x, x′

adjacent sequences according to (3) and x̄k defined from
x̄0 and the iterations (5). Then

‖zk − z′k‖1 = ‖xk − x′
k‖1 ≤ ρ.

Hence, by the triangle inequality,

|fk(zk)− fk(z
′
k)| ≤

1

‖Σ−1/2
k ‖1

‖Σ−1/2
k (zk − z′k)‖1

≤
‖Σ−1/2

k ‖1
‖Σ−1/2

k ‖1
‖zk − z′k‖1 ≤ ρ.

Theorem 3. If the first event time ks is finite, the event
detector described above, publishing the sequence γ0:ks , is
ε-differentially private, with ε = ρ(λτ + 2λν).

Remark 4. Compared to other event-triggered sampling
schemes described in the networked control literature (see,
e.g., Wu et al. (2016)), the introduction of the random
variable τ (which is not updated with k), as well as the
choice of the Laplace distribution for νk, are crucial here to
obtain a differential privacy guarantee. The sparse vector
technique normally uses also the Laplace distribution for
τ (Lyu et al., 2017), but the exponential distribution we
use here is also appropriate and leads to a slightly simpler
estimator design in Section 4.

Proof. The proof is based on a variation of the sparse
vector technique from the differential privacy literature.
Consider a sequence z = {zk}k≥0. For this sequence let
γ̄ = {γ̄0, . . . , γ̄ks

} be a sequence of decisions (4) produced
by the stochastic threshold detector, which is necessarily
of the form γ̄0 = ⊥, . . . γ̄k−1 = ⊥, γ̄ks

= �. Now, for
0 ≤ k ≤ ks, let Ak(z) denote the event

Ak(zk) = {νk ≥ fk(zk)− τ} ,
and define, for any α ≥ 0, the conditional probabilities

gk(α, z) = P(νk ≥ fk(z)− τ |τ = α)

gck(α, z) = P(νk < fk(z)− τ |τ = α).

Then, we have

P(γ(z) = γ̄) = P
(
∩ks−1
k=0 Ak(zk) ∩Ac

ks
(zks

)
)

=

∫ ∞

α=0

[
ks−1∏
k=0

gk(α, zk)

]
gcks

(α, zks) pτ (α)dα,

where pτ (α) = λτe
−λτα is the probability density of τ .

Now, for z′ adjacent to z, we have for all k

fk(z
′
k)−∆ ≤ fk(zk) ≤ fk(z

′
k) + ∆.

with ∆ = ρ by Proposition 2. Hence,

P(νk ≥ fk(zk)− α) ≤ P(νk ≥ fk(z
′
k)− α−∆)

i.e., gk(α, zk) ≤ gk(α+∆, z′k).

Similarly,

P(νk < fk(zk)− α) ≤ P(νk < fk(z
′
k)− α+∆)

i.e., gck(α, zk) ≤ gck(α−∆, z′k).

We then have

P(γ(z) = γ̄)

≤
∫ ∞

α=0

[
ks−1∏
k=0

gk(α+∆, z′k)

]
gcks

(α−∆, z′k) pτ (α)dα,

≤
∫ ∞

β=∆

[
ks−1∏
k=0

gk(β, z
′
k)

]
gcks

(β − 2∆, z′ks
) pτ (β −∆)dβ,

≤
∫ ∞

β=0

[
ks−1∏
k=0

gk(β, z
′
k)

]
gcks

(β − 2∆, z′ks
) pτ (β −∆)dβ,

where we have used the change of variable β = α+∆ and
the fact that the integrand is nonnegative. Now, we have

pτ (β −∆) = λτe
−λτ (β−∆) ≤ eλτ∆pτ (β).

In addition,

gcks
(β − 2∆, z′ks

) = P(νks < fks(z
′
ks
)− β + 2∆)

=
λν

2

∫ fks (z
′
ks

)−β+2∆

−∞
e−λν |v|dv

=
λν

2

∫ fks (z
′
ks

)−β

−∞
e−λν |u+2∆|du

≤ e2λν∆gcks
(β, z′ks

),

using the change of variable u = v − 2∆ and the fact that
|u+2∆| ≥ |u|−2∆ by the triangle inequality. In conclusion,
we finally get

P(γ(z) = γ̄) ≤ e∆(λτ+2λν) P(γ(z′) = γ̄). �

3.2 Releasing Samples and Iterating

Suppose now that at the first period ks where the event
detector of the previous section produces γks

= �, we
publish the corresponding signal sample perturbed by
Laplace noise

x̃s
ks

= xks
+ ξks

, ξks
∼ Lap(λx).

Then, by Theorem 3 and the basic composition theorem
for differential privacy, the mechanism releasing this first
sample is ε-differentially private, with ε = ρ(λτ+2λν+λx).

We can now complete the description of the event-
triggered sampling mechanism of Fig. 1, by describing the
recursive algorithm for the estimator block. We initialize
x̄0 and Σ̄0 at the values provided by the model. Then, at
each period k ≥ 0, the algorithm reads x̃s

k. If x̃
s
k = ⊥, it

outputs x̂k = x̄k,Σk = ηk(λτ , λν)Σ̄k, with ηk computed
in Section 4. If instead x̃s

k is a true noisy sample, then it
outputs the result of a measurement update step

x̂k = x̄k + Σ̄k(λxI + Σ̄k)
−1(x̃s

k − x̄k) (8)

Σk = Σ̄k − Σ̄k(λxI + Σ̄k)
−1Σ̄k, (9)

following the Kalman filter equations. Then, it computes in
preparation of the next step the predictions x̄k+1 = Ax̂k

and Σ̄k+1 = AΣkA
T + W . Note in particular that the

estimator implements the equations (5) and (7) between
selected samples, which therefore do not need in fact to be
reimplemented at the event detector. Another application
of the composition theorem leads to the following result.

Theorem 5. At any time k ≥ 0, the output γ0:k, x̃s
0:k,

x̂0:k, Σ0:k of the event-triggered sampler is ε-differentially
private for ε = ρns(λτ +2λν+λx), where ns is the number
of released samples up to time k (number of times where
γt = � for 0 ≤ t ≤ k).
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4. COMPLETING THE ESTIMATOR DESIGN

The task of the estimator is to generate a sequence of
state estimates x̂k given x̃s

0:k. The indication that no
sampling was triggered provides some useful information
about the state distribution (sometimes called “negative
information” in the event-triggered sampling literature),
and we describe in this section how we leverage this
information in our estimation procedure.

Before the first detected event, given x̄0, Σ̄0, and a se-
quence of observed decisions of no event detected γ0 =
⊥, . . . , γk = ⊥, for some k ≥ 0, the goal of the estimator
is to construct at period k a current state estimate x̂k. In
fact, we already described with (5) and (7) the equations
for our recursive estimation procedure. We complete this
description in this section, providing the expression of the
parameter ηk, as well as the assumptions and approxima-
tions underlying our design.

We start with k = 0, and compute first the probability of
not sampling, given a value of z0,

P(γ0(z0) = ⊥) = P(ν0 ≥ f0(z0)− τ)

=

∫ ∞

α=0

g0(α, z)pτ (α)dα.

Since ν0 follows a centered Laplace distribution, we have

P(ν0 ≥ x) =




1

2
exp(−λνx), x ≥ 0,

1− 1

2
exp(λνx), x < 0.

Hence

P(γ0(z0) = ⊥) =

∫ f0(z0)

α=0

1

2
e−λν(f0(z0)−α)λτe

−λταdα

+

∫ ∞

α=f0(z0)

(
1− 1

2
eλν(f0(z0)−α)

)
λτe

−λταdα.

After some calculations, focusing here on the case λν �= λτ ,
we get the likelihood function (a function of z0)

P(γ0(z0) = ⊥)

= Kν(λτ , λν)e
−λνf0(z0) +Kτ (λτ , λν)e

−λτf0(z0), (10)

where

Kν(λτ , λν) =
λτ

2(λτ − λν)
, Kτ (λτ , λν) =

λ2
ν

λ2
ν − λ2

τ

.

To design our estimator, we now adopt a Bayesian perspec-
tive, with (10) providing the expression for P(γ0 = ⊥|z0).
Given a prior distribution p0(z) for z0, we can then com-
pute the no-sampling probability

P(γ0 = ⊥) =

∫

z∈Rn

P(γ0 = ⊥|z0 = z)p0(z)dz.

From the given model, the distribution p0 should have zero
mean and covariance Σ̄0. For computational reasons, it is
also convenient to assume that it takes a form similar to
the likelihood function. This leads us to assume here that
z0 = Σ̄

1/2
0 y0, with Σ̄

1/2
0 the principal square root of Σ̄0,

and y0 a vector having independent identically distributed
components, with centered Laplace distribution with vari-
ance 1. In this case, the vector y0 has identity covariance
matrix and density py0(y) = 1

2n/2 exp(−
√
2‖y‖1), and z0

is indeed a zero-mean random vector with covariance Σ0.

By the standard change of variable formula, with Σ0 in-
vertible, the vector z0 admits a distribution with density

pz0(z) =
1

2n/2
∣∣∣det

(
Σ̄

1/2
0

)∣∣∣
exp

(
−
√
2‖Σ̄−1/2

0 z‖1
)

=
1√∣∣det (2Σ̄0

)∣∣ exp
(
−
√
2‖Σ̄−1/2

0 z‖1
)
. (11)

Note that this prior is of the form

pz0(z) =
1√∣∣det (2Σ̄0

)∣∣e
−
√
2‖Σ̄−1/2

0 ‖1f0(z).

Introducing the notation λ0 :=
√
2‖Σ̄−1/2

0 ‖1, the idle
probability for this prior is then

P(γ0 = ⊥) =
1√∣∣det (2Σ̄0

)∣∣
∫

z∈Rn

Kνe
−(λν/λ0+1)

√
2‖Σ̄−1/2

0 z‖1

+Kνe
−(λτ/λ0+1)

√
2‖Σ̄−1/2

0 z‖1dz.

To carry out this computation explicitly, note that, for any
λ > 0 and matrix Σ

1√
| det (2Σ) |

∫

z∈Rn

e−λ
√
2‖Σ−1/2z‖1dz

=
1

λn
√
| det (2Σ/λ2) |

∫

z∈Rn

e−
√
2‖(Σ/λ2)−1/2z‖1dz =

1

λn
,

since the integral of the density (11) is equal to 1. As a
result, we get, under the assumed prior for z0, that

P(γ0 = ⊥) =
Kν(λτ , λν)(

λν

λ0
+ 1

)n +
Kτ (λτ , λν)(

λτ

λ0
+ 1

)n . (12)

The posterior density of z0 given γ0 = ⊥ is

P(z0 = z|γ0 = ⊥) =
P(γ0 = ⊥|z0 = z)P(z0 = z)

P(γ0 = ⊥)

=
1

P(γ0 = ⊥)
√
| det

(
2Σ̄0

)
|

(
Kνe

−(λν/λ0+1)
√
2‖Σ̄−1/2

0 z‖1

+Kνe
−(λτ/λ0+1)

√
2‖Σ̄−1/2

0 z‖1

)
. (13)

Unfortunately, this posterior density is not of the same
form as the prior, as it now involves two terms. We thus
follow a suboptimal estimation approach based on certain
approximations. First we compute the posterior mean and
variance, which can be used in a Kalman filter update
providing a linear minimum mean-square error (LMMSE)
estimate. It is immediate from (13) and the fact that a
density of the form (11) has zero mean that

E[z0|γ0 = ⊥] = 0, i.e., E[x0|γ0 = ⊥] = x̄0.

Hence, the MMSE estimate of x0 after observing γ0 = 0
remains x̄0. Let us now compute the posterior covariance
E[z0zT0 |γ0 = ⊥]. Again, we use the fact that the density of
the form p0 in (11) has variance Σ̄0 to compute, for any
λ > 0 and matrix Σ

1√
| det (2Σ) |

∫

z∈Rn

zzT e−λ
√
2‖Σ−1/2z‖1dz

=
1

λn
√
| det (2(Σ/λ2)) |

∫

z∈Rn

zzT e−
√
2‖(Σ/λ2)−1/2z‖1dz

=
1

λn+2
Σ.
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4. COMPLETING THE ESTIMATOR DESIGN

The task of the estimator is to generate a sequence of
state estimates x̂k given x̃s

0:k. The indication that no
sampling was triggered provides some useful information
about the state distribution (sometimes called “negative
information” in the event-triggered sampling literature),
and we describe in this section how we leverage this
information in our estimation procedure.

Before the first detected event, given x̄0, Σ̄0, and a se-
quence of observed decisions of no event detected γ0 =
⊥, . . . , γk = ⊥, for some k ≥ 0, the goal of the estimator
is to construct at period k a current state estimate x̂k. In
fact, we already described with (5) and (7) the equations
for our recursive estimation procedure. We complete this
description in this section, providing the expression of the
parameter ηk, as well as the assumptions and approxima-
tions underlying our design.

We start with k = 0, and compute first the probability of
not sampling, given a value of z0,

P(γ0(z0) = ⊥) = P(ν0 ≥ f0(z0)− τ)

=

∫ ∞

α=0

g0(α, z)pτ (α)dα.

Since ν0 follows a centered Laplace distribution, we have

P(ν0 ≥ x) =




1

2
exp(−λνx), x ≥ 0,

1− 1

2
exp(λνx), x < 0.

Hence

P(γ0(z0) = ⊥) =

∫ f0(z0)

α=0

1

2
e−λν(f0(z0)−α)λτe

−λταdα

+

∫ ∞

α=f0(z0)

(
1− 1

2
eλν(f0(z0)−α)

)
λτe

−λταdα.

After some calculations, focusing here on the case λν �= λτ ,
we get the likelihood function (a function of z0)

P(γ0(z0) = ⊥)

= Kν(λτ , λν)e
−λνf0(z0) +Kτ (λτ , λν)e

−λτf0(z0), (10)

where

Kν(λτ , λν) =
λτ

2(λτ − λν)
, Kτ (λτ , λν) =

λ2
ν

λ2
ν − λ2

τ

.

To design our estimator, we now adopt a Bayesian perspec-
tive, with (10) providing the expression for P(γ0 = ⊥|z0).
Given a prior distribution p0(z) for z0, we can then com-
pute the no-sampling probability

P(γ0 = ⊥) =

∫

z∈Rn

P(γ0 = ⊥|z0 = z)p0(z)dz.

From the given model, the distribution p0 should have zero
mean and covariance Σ̄0. For computational reasons, it is
also convenient to assume that it takes a form similar to
the likelihood function. This leads us to assume here that
z0 = Σ̄

1/2
0 y0, with Σ̄

1/2
0 the principal square root of Σ̄0,

and y0 a vector having independent identically distributed
components, with centered Laplace distribution with vari-
ance 1. In this case, the vector y0 has identity covariance
matrix and density py0(y) = 1

2n/2 exp(−
√
2‖y‖1), and z0

is indeed a zero-mean random vector with covariance Σ0.

By the standard change of variable formula, with Σ0 in-
vertible, the vector z0 admits a distribution with density

pz0(z) =
1

2n/2
∣∣∣det

(
Σ̄

1/2
0

)∣∣∣
exp

(
−
√
2‖Σ̄−1/2

0 z‖1
)

=
1√∣∣det (2Σ̄0

)∣∣ exp
(
−
√
2‖Σ̄−1/2

0 z‖1
)
. (11)

Note that this prior is of the form

pz0(z) =
1√∣∣det (2Σ̄0

)∣∣e
−
√
2‖Σ̄−1/2

0 ‖1f0(z).

Introducing the notation λ0 :=
√
2‖Σ̄−1/2

0 ‖1, the idle
probability for this prior is then

P(γ0 = ⊥) =
1√∣∣det (2Σ̄0

)∣∣
∫

z∈Rn

Kνe
−(λν/λ0+1)

√
2‖Σ̄−1/2

0 z‖1

+Kνe
−(λτ/λ0+1)

√
2‖Σ̄−1/2

0 z‖1dz.

To carry out this computation explicitly, note that, for any
λ > 0 and matrix Σ

1√
| det (2Σ) |

∫

z∈Rn

e−λ
√
2‖Σ−1/2z‖1dz

=
1

λn
√

| det (2Σ/λ2) |

∫

z∈Rn

e−
√
2‖(Σ/λ2)−1/2z‖1dz =

1

λn
,

since the integral of the density (11) is equal to 1. As a
result, we get, under the assumed prior for z0, that

P(γ0 = ⊥) =
Kν(λτ , λν)(

λν

λ0
+ 1

)n +
Kτ (λτ , λν)(

λτ

λ0
+ 1

)n . (12)

The posterior density of z0 given γ0 = ⊥ is

P(z0 = z|γ0 = ⊥) =
P(γ0 = ⊥|z0 = z)P(z0 = z)

P(γ0 = ⊥)

=
1

P(γ0 = ⊥)
√
| det

(
2Σ̄0

)
|

(
Kνe

−(λν/λ0+1)
√
2‖Σ̄−1/2

0 z‖1

+Kνe
−(λτ/λ0+1)

√
2‖Σ̄−1/2

0 z‖1

)
. (13)

Unfortunately, this posterior density is not of the same
form as the prior, as it now involves two terms. We thus
follow a suboptimal estimation approach based on certain
approximations. First we compute the posterior mean and
variance, which can be used in a Kalman filter update
providing a linear minimum mean-square error (LMMSE)
estimate. It is immediate from (13) and the fact that a
density of the form (11) has zero mean that

E[z0|γ0 = ⊥] = 0, i.e., E[x0|γ0 = ⊥] = x̄0.

Hence, the MMSE estimate of x0 after observing γ0 = 0
remains x̄0. Let us now compute the posterior covariance
E[z0zT0 |γ0 = ⊥]. Again, we use the fact that the density of
the form p0 in (11) has variance Σ̄0 to compute, for any
λ > 0 and matrix Σ

1√
| det (2Σ) |

∫

z∈Rn

zzT e−λ
√
2‖Σ−1/2z‖1dz

=
1

λn
√
| det (2(Σ/λ2)) |

∫

z∈Rn

zzT e−
√
2‖(Σ/λ2)−1/2z‖1dz

=
1

λn+2
Σ.
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This gives immediately

E[z0zT0 |γ0 = ⊥] = η0Σ̄0

with

η0 =
1

P(γ0 = 0)


 Kν(λτ , λν)(

λν

λ0
+ 1

)n+2 +
Kτ (λτ , λν)(
λτ

λ0
+ 1

)n+2


 . (14)

Note that in view of the expression (12) for P(γ = 0), we
have η0 < 1, as we would expect, i.e., the error covariance
decreases after observing γ0 = ⊥.

For the next period k = 1, we have the relation z1 = Az0+
w0, which implies, when no sampling occurs (γ0 = ⊥),

x̄1 := E[x1|γ0 = ⊥] = Ax̄0,

Σ̄1 := E[z1zT1 |γ0 = ⊥] = η0AΣ̄0A
T +W. (15)

At this point, we can repeat the calculations above for
period 1, if we make the following approximation for the
distribution of z1. The conditional idle probability P(γ1 =
⊥|z1 = z) is given by the expression (10) with f0 replaced
by f1. The unconditional idle probability is given by (12).
Then, to compute the unconditional idle probability and
posterior distribution of z1 given γ0:1, we approximate the
distribution of z1 given γ0 by one of the form as (11),
with Σ̄0 replaced by Σ̄1 computed from (15). Under this
approximation, the idle probability P(γ1 = ⊥|γ0 = ⊥) is

given by (12) with λ0 replaced by λ1 =
√
2‖Σ̄−1/2

1 ‖1. We
also get E[z1|γ0 = ⊥, γ1 = ⊥] = 0, and

E[z1zT1 |γ0 = ⊥, γ1 = ⊥] = η1Σ1,

with η1 computed via (14), but with P(γ1 = ⊥|γ0 = ⊥)
replacing P(γ0 = ⊥) and λ1 replacing λ0.

In summary, the approximation involved in the proposed
estimator consists in approximating the distribution of zk
given γ0:k−1 at each “propagation step” of the filter by
a distribution of the form (11), with the covariance Σ̄k

computed recursively. Note that all the covariance matrix
computations are independent of the values of the sensitive
data xk, hence no additional loss of privacy is involved.
Figure 2 briefly illustrates the behavior of the sampler

and estimator, for the model (1) with A =

[
1 0.1
0 1

]
, W =

[
0.05 0.02
0.02 0.1

]
(the first component of the state trajectories

is shown here). An full version of this paper will study the
performance of this sampling scheme in details.
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