
Differentially Private Interval Observer Design
with Bounded Input Perturbation

Kwassi H. Degue and Jerome Le Ny

Abstract— Real-time data processing for emerging systems
such as intelligent transportation systems requires estimating
variables based on privacy-sensitive data gathered from indi-
viduals, e.g., their location traces. In this paper, we present a
privacy-preserving interval observer architecture for a multi-
agent system, where a bounded privacy-preserving noise is
added to each participant’s data and is subsequently taken
into account by the observer. The estimates published by
the observer guarantee differential privacy for the agents’
data, which means that their statistical distribution is not too
sensitive to certain variations in any single agent’s signal. A
numerical simulation illustrates the behavior of the proposed
architecture.

I. INTRODUCTION

The deployment of large scale monitoring and control
systems around us has significantly increased over the
last decade, as illustrated by intelligent transportation sys-
tems, electronic biosurveillance systems and the “Internet
of Things”. These complex systems require participants
to continuously share data, which can compromise the
individuals’ privacy. For example, one can increase the
accuracy of crowd-sourced congestion-aware mapping and
routing applications such as Waze and Google Maps by
using data provided by smartphones and connected vehicles
[1]. However, it is possible to deduce individual users’
positions by using Waze [2], and one can deanonymize
Google Maps’s location data [3]. Therefore, it becomes
essential to design rigorous privacy-preserving mechanisms
when information must be shared with these systems.

To quantify the notion of privacy, several information
theoretic definitions have been suggested, which can be
applied to the processing of real-time data streams [4].
This paper uses the notion of differential privacy, which has
been proposed in the cryptography and database literature
[5]. When publishing information about a data set, a
differentially private mechanism aims to avoid producing
outputs that are too sensitive to a single individual’s data.
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Accordingly, differential privacy guarantees to an individual
that whether or not she provides her data does not signifi-
cantly change a third party’s ability to infer new knowledge
about her.

Over the last decade, the notion of differential privacy has
been extended to dynamical systems and has been applied
to filtering [6], [7]. However, these papers assume that
the statistical properties of the disturbances in the signal
models are available. Furthermore, a differentially private
mechanism has been proposed by using output perturbation
for positive linear systems without disturbance in [8], and
for nonlinear systems in [9], both assuming that point-
wise estimation (via a Luenberger-type observer design) is
possible. Nevertheless, for economical or physical reasons,
state disturbances for certain systems are often modeled as
bounded uncertain signals. The use of interval estimators
[10], [11] instead of point-wise observers can address state
estimation problems for such systems. This motivates the
design of differentially private observers that handle the
presence of disturbances or uncertain parameters whose
values are only known to belong to given intervals or
polytopes.

The main contribution of this article lies in design-
ing privacy-preserving interval estimators for multi-agents
systems in which the signals of individual participants
are modeled using uncertain linear time-invariant systems
with bounded disturbances. We consider uncertain initial
conditions as well as uncertain time-varying inputs and
outputs. Extending the differentially private mechanism
with bounded noise of [12] for the publication of a single
scalar value to the publication of vectors and signals, we
obtain an input perturbation mechanism where privacy-
preserving noise is added to each individual’s data before
sending it to an interval observer. Moreover, our estimator
handles multi-agent systems in which the dynamics of
the agents are coupled, in contrast to [6], [7] that have
considered only independent dynamics.

We present the problem statement, describe briefly the
concept of differential privacy as well as a privacy-
preserving mechanism with input perturbation in Section II.
Then, we design a differentially private interval estimator
in Section III by using the input perturbation mechanism

2020 American Control Conference
Denver, CO, USA, July 1-3, 2020

978-1-5386-8266-1/$31.00 ©2020 AACC 1465

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on June 17,2021 at 01:06:52 UTC from IEEE Xplore.  Restrictions apply. 



described in Section II. Section IV illustrates the perfor-
mance of the input perturbation mechanism by presenting
numerical simulations that involve dynamic data originating
from private firms in a market.

Notation. Throughout this paper, we denote the real
numbers by R, the integers by Z, R+ = {τ ∈ R : τ ≥ 0}
and Z+ = Z ∩ R+. We denote the 1-norm of a vector
x ∈ Rn by |x|1 :=

∑n
i=1 |xi|, and the sup-norm by

|x|∞ := maxi∈{1,...,n} |xi|. For a vector-valued signal u :
Z+ → Rn, we denote its `1-norm by ‖u‖1 :=

∑∞
t=0 |ut|1

(note the usage of the 1-norm here) and its `∞-norm by
‖u‖∞ := supt≥0 |u(t)|∞. We denote by Ln∞ the set of
signals u with the property ||u||∞ <∞. The n×n identity
matrix is denoted by In. For two vectors x1, x2 ∈ Rn or
matrices A1, A2 ∈ Rn×n, the relations x1 ≤ x2 and A1 ≤
A2 are understood element-wise. A matrix A ∈ Rn×n
is called Schur stable if all its eigenvalues have absolute
value strictly less than one. We call it nonnegative if all its
elements are nonnegative, i.e., if A ≥ 0. Given a matrix
A ∈ Rm×n, define A+ = max{0, A}, A− = A+ − A.
We fix a generic probability triple (Ω,F ,P), with F a σ-
algebra on Ω and P a probability measure defined on F .

II. BACKGROUND

A. System Model

Let
{
y
(i)
t , 0 ≤ t ≤ T

}
, 1 ≤ i ≤ n be a set of n

measured and privacy-sensitive scalar signals, i.e., y(i)t ∈ R,
originating from n distinct agents. The case T = ∞ is
also of interest. A mathematical model for this data is
publicly known and consists of a set of linear systems
with n individual (vector-valued) states that are coupled
and correspond to the n measured signals

x
(i)
t+1 = A(i)x

(i)
t +

∑
j 6=i

A(i,j)x
(j)
t + w

(i)
t , 0 ≤ t ≤ T − 1,

y
(i)
t = C(i)x

(i)
t + v

(i)
t , 0 ≤ t ≤ T, (1)

for i = 1, ..., n, where x(i)t ∈ Rpi represents the state vector
of the agent i, w(i) : Z+ → Rpi stands for an unknown
input in Lpi∞, v(i) : Z+ → R is an unknown measurement
noise in L∞, and A(i), A(i,j) ∈ Rpi×pj , C(i) ∈ R1×pi

are known constant matrices. The matrices A(i,j) represent
coupling matrices that capture the influence of the other
agents on the agent i. One can express the dynamics of the
global system formed by the n agents as follows

xt+1 = Axt + wt, t = 0, 1, ..., T − 1,

yt = Cxt + vt, t = 0, 1, ..., T,
(2)

with

xt =
[
x
(1)
t

T . . . x
(n)
t

T
]T
, yt =

[
y
(1)
t . . . y

(n)
t

]
T,

wt =
[
w

(1)
t

T . . . w
(n)
t

T
]T
, vt =

[
v
(1)
t . . . v

(n)
t

]T
,

C =diag(C(1), . . . , C(n)),

A =


A(1) A(1,2) . . . A(1,n)

A(2,1) A(2) . . . A(2,n)

...
...

. . .
...

A(n,1) A(n,2) . . . A(n)

 ,
where diag() denotes a block-diagonal matrix. Denote p =∑n
i=1 pi. Throughout this paper, we assume that the initial

condition x0 is unknown but satisfy the bounds x0 ≤ x0 ≤
x0, where x0, x0 ∈ Rp are given. A data aggregator aims at
releasing an estimate ẑt of a linear combination zt = Φxt =∑n
i=1 Φixi,t of the individual states, where the matrices

Φi ≥ 0 are given, by using the data y. To reach this goal,
we make the following assumption, stating that the noise
signals are bounded.

Assumption 1. Two functions w, w : Z+ → Lp∞ and two
functions v, v : Z+ → Ln∞ are given such that

wt ≤ wt ≤ wt and vt ≤ vt ≤ vt, ∀t ≥ 0.

B. Interval Observer Design and Problem Statement

The following assumption, which is common in the
interval observer literature, is needed. It can be relaxed by
performing a coordinate transformation [10].

Assumption 2. There exists a matrix L ∈ Rm×n such that
the matrix A− LC is Schur stable and nonnegative.

The equations of an interval observer take the form

xt+1 =(A− LC)xt + Lyt + wt − L+vt + L−vt,

xt+1 =(A− LC)xt + Lyt + wt − L+vt + L−vt, (3)

where xt ∈ Rm and xt ∈ Rm stand for the lower and the
upper interval estimates of the system state xt.

Theorem 1. [10] Let Assumptions 1 and 2 be satisfied.
Then, we get for (2)

xt ≤ xt ≤ xt,∀t ≥ 0. (4)

The data x0, x0, w, w, v, v, A,C,Φi is assumed to be
public information. By using the publicly released esti-
mates Φxt and Φxt, it might be possible to deduce new
information about the data {yt}t≥0 for example by using
linkage attacks, where someone can combine the newly
published information with other available data to make
new inferences about specific individuals [13]. Hence, we
aim to ensure that the publicly released estimates zt and
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zt, which are lower and upper bounds on zt, also guarantee
differential privacy for each agent’s data, as defined next.

C. Differential Privacy

A differentially private version of the interval observer
(3) must provide estimates that are not too sensitive to
some variations in the participating agents’ signals y. Let
D denote the space of measured signals t 7→ yt. Let us
define a symmetric binary relation on D, denoted Adj,
which identifies the type of variations in y that we aim
to make hard to detect. We consider here the following
adjacency relation

Adj(y, ỹ) iff ‖y − ỹ‖1 ≤ ρ, (5)

with ρ ∈ R+ given. Such an interpretation of adjacent
datasets implies that a single participant contributes addi-
tively to possibly each y(i)t in a way that its overall impact
on the dataset y is bounded in `1-norm by ρ. In the special
case T = 0, we have a single vector y0 ∈ Rn, in which
case D = Rn and the norm in the adjacency relation (5)
reduces to the 1-norm | · |1.

Differentially private mechanisms generate randomized
outputs that have close distributions for adjacent inputs [5].

Definition 1. Consider D a space equipped with a symmet-
ric binary relation denoted Adj, and (T ,M) a measurable
space. Let ε, δ ≥ 0. A randomized mechanism with inputs
in D and outputs in T is (ε, δ)-differentially private for Adj
if for all d, d′ ∈ D such that Adj(d, d′), we have

P(M(d) ∈ S) ≤ eεP(M(d′) ∈ S) + δ, ∀S ∈M. (6)

If δ = 0, the mechanism is called ε-differentially private.

Here we aim to publish estimates z and z of z = Φx
that are accurate and respect Definition 1 for given values
of ε and δ. Smaller values of ε and δ give stronger privacy
guarantees. We consider an input perturbation architecture
[6], where each individual participant perturbs their signal
y(i) by adding privacy-preserving white noise in order to
render these signals differentially private, before sending
them to the data aggregator implementing an observer. In
this case, because the signals received by the aggregator are
already differentially private, so are the results of the ob-
server’s computations, since differential privacy guarantees
are preserved by post-processing [6, Theorem 1].

III. DESIGN OF THE DIFFERENTIALLY PRIVATE
INTERVAL OBSERVER

Normally, to produce a differentially private vector or
signal by using additive white noise, the distribution of
each noise sample is taken to be Laplace or Gaussian
[5], hence has unbounded support. However, to design an

interval observer we need to know lower and upper bounds
for the noise signals. Therefore, a scheme adding bounded
noise is required here. A bounded Laplace mechanism is
proposed in [14] but requires to know a priori lower and
upper bounds on the signals y(i). Here we do not assume
knowledge of such bounds. Instead we build on a noise
distribution considered in [12] for the scalar case in which
one publishes a single real number in a differentially private
way. Here we consider the vector- and signal-valued cases.

Let the privacy parameters be ε > 0 and 0 < δ < 1
2 .

Define for any integer m the probability density function
of a truncated Laplace distribution as follows

p(x) =

{
φ e
−|x|
λ ifx ∈ [−am am],

0 otherwise,
(7)

with

λ =
ρ

ε
, am =

ρ

ε
ln

(
1 + eε

m
(
1− e−ε/m

)
2δ

)
, (8)

φm =
1

2λ
(
1− e− amλ

) .
For m = 1, we recover the distribution of [12]. Moreover,
since m

(
1− e−ε/m

)
≤ ε, and also

lim
m→∞

m
(

1− e−ε/m
)

= ε,

we define
a∞ =

ρ

ε
ln

(
1 +

ε eε

2δ

)
(9)

and the corresponding distribution with support [−a∞, a∞]
through (7).

Theorem 2. Let ε > 0, 1
2 > δ > 0. Publishing the sequence

of n-dimensional vectors ŷt = yt+ζt, 0 ≤ t ≤ T , where the
coordinates of the noise vectors ζt are iid with probability
distribution (7) for m = n(T + 1), and the successive
samples of ζ are also iid, is (ε, δ)-differentially private for
the adjacency relation (5). If T =∞, we take m =∞ and
the support for the distribution of each noise component is
defined by (9).

Proof. We prove the result for a single time period (T = 0),
i.e., for the problem of publishing an n-dimensional vector
ŷ = y + ζ so that ŷ ∈ Rn is differentially private. Hence,
we suppress the time index in the rest of the proof. The
extension to the publication of signals with T > 0 or even
T = ∞ (i.e., “infinitely long vectors”) follows from this
result and [6, Lemma 2].

For each measurable set S in Rn,

P(ζ ∈ S) =

∫
Rn

1S(x)

n∏
i=1

p(xi) dx1 . . . dxn,
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where p is the pdf of any component of ζ, of the form (7),
and 1{·} represents the indicator function. The differential
privacy property (6) is equivalent to

sup
S∈B(Rn)

{P(y + ζ ∈ S)− eεP(ỹ + ζ ∈ S)} ≤ δ, (10)

for any adjacent vectors y and ỹ, i.e., such that |y−ỹ|1 ≤ ρ,
where B(Rn) represents the Borel σ-algebra. Now, for any
set S and vector v, define the notation for the shifted set

S − v = {x|x+ v ∈ S}.

We can rewrite the left-hand side of (10) as P(ζ ∈ S −
y) − eεP(ζ ∈ S − ỹ), and then, renaming S1 := S − ỹ,
P(ζ ∈ S1 − d)− eεP(ζ ∈ S1), with d = y − ỹ. Since (10)
must hold for all Borel sets S, the sets S1 also consist of
all Borel sets, and (10) can be rewritten equivalently (we
renamed S1 to S to simplify the notation)

sup
S∈B(Rn)

{P(ζ ∈ S − d)− eεP(ζ ∈ S)} ≤ δ, (11)

for any vector d such that |d|1 ≤ ρ. This places a condition
on the distribution of ζ.

Let Ca be the hypercube [−a, a]n (here a denotes the
support of the distribution (7), which is determined below,
so we omit the subscript m from the notation for now).
Since the support of the distribution of ζ is contained in
Ca, the expression to be upper bounded by δ in (11) for
all S and admissible d can be written

P(ζ ∈ S − d)− eεP(ζ ∈ S)

= P(ζ ∈ (S − d) ∩ Ca)− eεP(ζ ∈ S ∩ Ca).

We now exploit the form of the Laplace distribution to work
with a more convenient upper bound. We have

P(ζ ∈ (S − d) ∩ Ca)

= φn
∫
Rn
e−
|x|1
λ 1S−d(x)1Ca(x)dx

= φn
∫
Rn
e−
|x|1
λ 1S(x+ d)1Ca+d(x+ d)dx

= φn
∫
Rn
e−
|z−d|1
λ 1S(z)1Ca+d(z)dz,

using the fact that 1A(x) = 1A+d(x+d) and the change of
variable z = x+d. Since |z−d|1 ≥ |z|1−|d|1, if |d|1 ≤ ρ,
we get

P(ζ ∈ (S − d) ∩ Ca) ≤ e
ρ
λφn

∫
Rn
e−
|x|1
λ 1S∩(Ca+d)(x)dx.

If moreover we take ρ
λ ≤ ε, we get the upper bound

P(ζ ∈ S − d)− eεP(ζ ∈ S)

≤ eεφn
∫
Rn
e−
|x|1
λ

{
1S∩(Ca+d)(x)− 1S∩Ca(x)

}
dx.

Ca+d
d

x1

x2

Ca

d1

d2

(Ca+d) ∖ Ca

Fig. 1. Geometry for the (ε, δ)-differential privacy argument. The set
(Ca +d)\Ca has been subdivided into n (here n = 2) rectangles, which
intersect in the “top-right corner” of Ca + d.

From here on, we fix λ = ρ/ε. Since the only points x
that contribute something positive to the integral are those
that are simultaneously in S, in Ca + d and not in Ca, the
integral is maximized for S = (Ca + d) \ Ca, and we get

P(ζ ∈ S − d)− eεP(ζ ∈ S) ≤ eεF (d), (12)

with

F (d) := φn
∫
Rn
e−
|x|1
λ 1(Ca+d)\Ca(x) dx.

We now maximize the upper bound (12) over admissible
d (i.e., such that |d|1 ≤ ρ) and obtain a condition under
which this upper bound is less than δ.

By symmetry (see Figure 1), it is sufficient to consider
the case d = [d1, . . . , dn] with di ≥ 0 for all i and

∑
i di ≤

ρ. Next, note from Figure 1 that (Ca + d) \Ca ⊂ ∪ni=1Ri,
where Ri is the hyperrectangle

Ri = {x ∈ Rn | a ≤ xi ≤ a+ di, and
− a+ dj ≤ xj ≤ a+ dj ,∀j 6= i}.

Therefore, we get the bound

F (d) ≤
n∑
i=1

φn
∫
Ri

e−|x|1/λdx.

Now

φn
∫
Ri

e−|x|1/λdx = φ

∫ a+di

a

e−xi/λdxi
∏
j 6=i

Tj ,
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where

Tj = φ

∫ a+dj

−a+dj
e−|xj |/λdxj ≤ φ

∫ a

−a
e−|xj |/λdxj = 1,

because of the shape of the function e−|xj |/λ. Hence, we
have

F (d) ≤
n∑
i=1

φ

∫ a+di

a

e−xi/λdxi

= φλ e−a/λ
n∑
i=1

(
1− e−di/λ

)
.

Consider then the maximization problem

max
d∈Rn

n∑
i=1

(
1− e−di/λ

)
s.t. di ≥ 0, 1 ≤ i ≤ n, and

n∑
i=1

di ≤ ρ.

Since the objective is strictly concave in d and the con-
straints define a polytope, this problem has a unique
maximizer. A straightfoward analysis, e.g., using the KKT
conditions, shows that this maximizer is given by di = ρ/n
for all 1 ≤ i ≤ n. Hence, we finally get

F (d) ≤ φλ e−a/λ n
(

1− e−
ρ
nλ

)
.

We now choose a to ensure that the upper bound on eεF (d)
is always less than δ. We get the condition

eε
e−

a
λn
(
1− e−ρ/nλ

)
1− e− aλ

≤ 2δ

hence, ea/λ ≥ 1 + eε
n
(
1− e−ρ/nλ

)
2δ

a ≥ ρ

ε
ln

(
1 + eε

n
(
1− e−ε/n

)
2δ

)
where we used λ = ρ

ε on the last line. This gives the
distribution (7) with m = n, as stated in the Theorem for
the case T = 0.

The privacy-preserving noise introduced in Theorem 2 is
bounded and we get

ζ(i) ≤ ζ(i)t ≤ ζ
(i)
, ∀t ≥ 0, (13)

with ζ
(i)

= −ζ(i) = am for i = 1, ..., n, m = n(T + 1). In
the sequel, denote ζ = −ζ =

[
am . . . am

]T
and ζt =[

ζ
(1)
t . . . ζ

(n)
t

]T
. When the data aggregator receives the

differentially private signal ŷ, it can design an interval
observer and publish lower and upper estimates x̂ and x̂

for the state x. Releasing Φx̂ and Φx̂ preserves (ε, δ)-
differentially privacy for the data y by the resilience to post-
processing property. The equations of the interval estimator
can be written as follows

x̂t+1 = (A− LC)x̂t + Lŷt + wt − L+(vt + ζ)

+ L−(vt + ζ), x̂0 = x0,

x̂t+1 = (A− LC)x̂t + Lŷt + wt − L+(vt + ζ)

+ L−(vt + ζ), x̂0 = x0. (14)

Theorem 3. Let Assumptions 1 and 2 be satisfied. Then,
we get for (2)

x̂t ≤ xt ≤ x̂t, ∀t ≥ 0. (15)

Furthermore, we get ê, ê ∈ Lp∞ for the error signals êt :=
xt − x̂t, êt := x̂t − xt.

Note that the differentially private signals x̂, x̂, while
random, still maintain the order relation (15) of an interval
observer for each trajectory.

Proof. The proof follows interval estimation’s standard
argumentation [15], [16].

IV. SIMULATIONS

Consider a scenario involving a dynamic market with
n firms that supply the same product [17]. The production
dynamics of each firm is modeled as a linear system, which
is affected by its neighbor firms. Neighbors of the firm i
represent firms in different regions that cooperate or have
coordination relationships with i. The firm i, for 1 ≤ i ≤ n,
is modeled as follows

x
(i)
t+1 =(1− α)x

(i)
t + w

(i)
t +

α

|Ni|
∑
j∈Ni

x
(j)
t ,

where x(i)t represents the production output of the firm i,
Ni stands for its neighbors and |Ni| denotes the number of
its neighbors. As in [17], let α = 0.15, Ni = {i + 1} for
i = 1, . . . , n−1 and Nn = {1}. Consider n = 5. Therefore,
we get the global matrix A for (2)

A =


1− α α 0 0 0

0 1− α α 0 0
0 0 1− α α 0
0 0 0 1− α α
α 0 0 0 1− α

 .
The data y(i) of each firm i consists of a noisy measurement
of its production output: y(i)t = x

(i)
t + v

(i)
t . The process

noise w(i)
t and the measurement noise v(i)t of each firm i

are iid uniform random variables in the interval [0,W ] and
[0, V ] respectively. Therefore, we have w(i)

t = 0, v(i)t = 0,
w

(i)
t = W and v(i)t = V . The initial conditions of the state
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Fig. 2. Evolution of z =
∑5

i=1 Φixi, the differentially private ob-
server bounds

∑5
i=1 Φix̂i and

∑5
i=1 Φix̂i and the non private standard

observer bounds.

of each firm i are x(i)0 = 200, and for the design of the
observer we assume known the bounds on initial conditions
x
(i)
0 = 200−σ, x(i)0 = 200+σ, σ = 15, W = 1 and V = 1.

We take T =∞.
A data aggregator aims at releasing the total produc-

tion output from the data of the n firms, so the matrix
Φ =

[
1 . . . 1

]
. However, it needs to provide privacy

guarantees for the firms, since the production data y(i) is
highly sensitive. Consider the adjacency relation (5) with
ρ = 1. We set the privacy parameters to ε = ln(3) and
δ = 0.1. We select the interval observer gain as follows

L = 10−4 ×


8498 1498 −1 −1 −1
−1 8498 1498 −1 −1
−1 −1 8498 1498 −1
−1 −1 −1 8498 1498

1498 −1 −1 −1 8498

 ,
to satisfy Assumption 2. To provide differential privacy
guarantees for each firm’s data, we compute differentially
private interval estimates by applying Theorem 3. Figure
2 shows the difference between the differentially private
observed bounds ẑ, ẑ and bounds provided by standard non
private interval observers obtained from Theorem 1.

V. CONCLUSION

We have considered the problem of interval estimation
under a differential privacy constraint in this article. We
have designed an input perturbation architecture for differ-
entially private interval estimation. The performance of our
private interval estimator is illustrated through numerical

simulations. Future research could consider the design
a differentially private interval observer by using output
perturbation.
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