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Abstract— A fixed time horizon evacuation model for a
large population of confined agents is proposed within the
mean field games framework. Unlike previously proposed
models relying on simulations or partial differential equation
analysis, the proposed model remains linear in the individ-
ual agent dynamics and quadratic in the cost functions,
ultimately dictating the agents’ motion. We use negative
definite matrices in the cost function to reflect congestion
effect during evacuations. This leads to Riccati equations
that generically display a finite escape time. Therefore, we
develop an existence theory for the infinite population mean
field game based equilibrium dynamics, and establish its ε-
Nash property for a large but finite population of agents.
Simulation results illustrating the numerical behavior of the
model are presented with stress effect and different social
interaction scenarios such as congestion and crowd following
behavior.

I. INTRODUCTION

Conceiving pedestrian evacuation strategies is a critical
task during the design process of facilities such as sub-
ways and tunnels or the organization of outdoor events.
Despite severe precautionary measures, numerous stam-
pedes are reported yearly [1]. This appears to be mainly
due to the ineffectiveness of evacuation plans. Thus, a
deeper understanding of pedestrian crowd behavior is
essential. Recently, multidisciplinary research by psychol-
ogists [2], computer scientists [3], and mathematicians
[4] has aimed at a better understanding and prediction
of pedestrian crowd behavior.

We can distinguish two main classes of mathemati-
cal models of population dynamics: microscopic [5] and
macroscopic [6]. In the former group, the population is
perceived as a set of interacting individuals, whereas in
the latter, it is perceived as a continuum. The advantage of
the microscopic approach over its macroscopic counterpart
is its modeling flexibility. The population can be either
homogeneous or heterogeneous, and the crowd model
can be designed so that it replicates the experimentally
observed pedestrian behaviors. However, this modeling
flexibility comes at the price of limited computational
scalability, whereas the complexity of macroscopic models
is independent of the number of individuals. Several
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macroscopic approaches have been proposed in the liter-
ature, such as kinetic models inspired by fluid dynamics
[7], the Hughes model [8], and Mean Field Game (MFG)
models [9], [10]. The MFG theory assumes a large number
of rational agents with weak coupling, which interact
through the population’s distribution. Applications of the
MFG theory include energy grids, opinion formation,
finance, and crowd management [11]. Our interest here
is in further extending the MFG-based analysis of crowd
dynamics. Several authors have modeled crowd behavior
using the MFG paradigm [12]. Lachapelle et al. [13]
proposed a two-population MFG-type based model that
integrates the congestion and crowd following behavior.
Aurell et al. [14] extended this model to include non-
local agent interactions. In a later work, Aurell et al.
[15] distinguished between two groups of agents: ‘tagged
pedestrians’ who represent, for instance, firefighters and
medics, and ‘ordinary pedestrians’ who are fleeing given
emergencies. Djehiche et al. [16] addressed the evacuation
process in a multi-level building under the MFG approach.
One of the shortcomings of these models is that, because
of assumed non linear interaction effects, they require
sophisticated PDE based calculations to produce the indi-
viduals’ laws of motion during an evacuation scenario. In
that context, we propose a formulation relying on a linear
quadratic framework, which leads to simple yet realistic
sets of control laws.

Our model is an extension of the collective choice
model (CCM) introduced by Salhab et al. [17] to a situa-
tion of multi-exit crowd evacuation. The CCM model was
initially used to characterize time-constrained collectively
influenced choices, e.g., in elections, when individuals feel
the pressure of the mean opinion around them. However,
while the mean state trajectory attracts the agents in
the CCM model, it repels them in our proposed crowd
evacuation model, since agents tend to avoid congested
areas in that case. Thus, unlike the CCM model, which
used positive penalty weights in a linear quadratic frame-
work, our extension requires the introduction of negative
definite weight matrices in the running cost function,
while the input penalty matrix remains positive definite.
Unfortunately, a negative running cost may lead to an
unrealistic scenario where agents could achieve infinitely
negative costs by escaping to infinity. This corresponds
to a finite escape time in certain Riccati equations [18].
Therefore, beyond proposing a novel and more tractable
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MFG model for crowd evacuation, our contribution is in
identifying sufficient conditions for the well-posedness of
the proposed model. We also provide an existence proof
of an asymptotic MFG equilibrium for our crowd model,
which had to be modified relative to that associated with
the CCM model [17]. Finally, We study the influence of
stress, which is a prominent psychological factor affecting
crowd behavior during an evacuation.

The rest of the paper is organized as follows. In Section
II, we define the finite population model and heuristically
hypothesize its corresponding infinite population counter-
part. In Section III, given an arbitrary continuous mean
population trajectory, we develop the Riccati equation
corresponding to a generic agent’s best response. Sec-
tion IV then provides sufficient conditions on the time
horizon length T and weight parameters in the cost for
the existence of an optimal control. In Section V, we
characterize the destinations’ domains of attraction for
an arbitrary assumed mean state continuous trajectory
and probability distribution for the initial conditions. In
Section VI, following [17], we prove the existence of
an equilibrium for the posited infinite population game
and its ε-Nash property in the finite case. In Section VII,
we design several simulations to illustrate the crowd’s
behavior with given stress levels and social interaction
scenarios. Section VIII concludes the paper.

II. MATHEMATICAL MODEL

A. Scalar finite population model

To motivate the use of a negative running cost in our
proposed model, we first start by presenting a scalar
finite horizon ([0, T ]) non-cooperative game involving a
finite number N of agents with simple integrator dynamics
and randomly spread over a region of the space. We
assume that there exist l exits and that agents try to avoid
congestion by maximizing their mean square interdistance
(i.e. ∆xi,p = xi − xp for arbitrary agents i and p). The
proposed cost function and dynamic (kinetic) model for
the ith generic agent can be written as follows:

min
j∈{1..l}

inf
ui(.)

∫ T

0

− 1

N

N∑
p=1

(xi − xp)2 +Ruu
2
i dt

+M(xi − dj)2

s.t.
d

dt
xi = ui, xi(0) = xi,0.

where xi and xp are the ith and the pth agent’s position
respectively, ui(.) is the ith agent control policy assumed
in principle to be a feedback on its state and that of
all other agents, dj designates the jth exit position, Ru
and M are positive control and terminal cost penalty
weights respectively. Let X̄(N)(t) = 1

N

∑N
p=1 xp(t) and

σ2
X

(N)
(t) = 1

N

∑N
p=1(xp(t) − X̄(N)(t))2 be the popula-

tion’s empirical mean and variance respectively. Then, by

adding and subtracting X̄(N), the generic agent’s running
cost function Li can be rewritten as follows:

Li

(
xi, ui, X̄

(N)
)

= −
(
xi − X̄(N)

)2

− 1

N

N∑
p=1

(
xp − X̄(N)

)2

+Ruu
2
i

As N → ∞, assuming that agents’ initial states are
independent and identically distributed random variables
and as is usual in MFG based analysis that the coupling
of agent states through their cost functions vanishes, the
running cost becomes Li(xi, ui, X̄) = −(xi−X̄)2−σ2

X+
Ruu

2
i , where t 7→ X̄(t) and t 7→ σ2

X(t) are respectively
the mean and variance of the state of a generic agent, now
considered as given continuous deterministic trajectories.
Thus, for an infinite population the evacuation model for
a generic agent becomes

min
j∈{1..l}

inf
ui(.)

∫ T

0

−(xi − X̄)2 − σ2
X +Ruu

2
i dt

+M(xi − dj)2

s.t.
d

dt
xi = ui, xi(0) = xi,0. (1)

In the case of a non-cooperative MFG, the population
variance can be considered as a frozen exogenous input
that does not depend on the agent’s control nor affects
its decisions. Thus, when computing the agent’s best
response, the term σ2

X can be dropped. We also note that
the state-related terms in the running cost are negative.
This reflects the fact that agents tend to maximize their
inter-distances to achieve freer motion. Based on these
observations, we propose in the next subsection a more
general multidimensional model as it can capture agents
psychological attitudes (e.g., stressed, or not stressed) as
well as their social interactions (i.e., congestion avoidance
versus crowd following behavior).

B. Multidimensional infinite population evacuation model

We assume that the agents’ initial states are independent
and identically distributed. P0 denotes agents’ initial states
distribution. x(t) ∈ Rn and u(t) ∈ Rm are respectively
the generic agent’s position and control vectors. X̄(t) is
the population mean at time t. Then, the agent’s best
response to a given population mean trajectory X̄(t) can
be obtained by solving the following optimal control
problem

min
j∈{1..l}

inf
u(.)

∫ T

0

{−(x− X̄)TRx(x− X̄) + (x− dj)TRd

(x− dj) + uTRuu}dt+ (x(T )− dj)TM(x(T )− dj)

s.t.
d

dt
x = Ax+Bu, x(0) = x0. (2)

where A ∈ Rn×n, B ∈ Rn×m, the pair (A,B) is assumed
controllable. Rx, Rd ∈ Rn×n and M,Ru ∈ Rm×m are
symmetric cost matrices. Ru and M are positive definite.
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For the simulations in Section VII, we choose Rx to
be either a positive semi-definite or a negative semi-
definite matrix which reflects, respectively, congestion
avoidance or crowd following behavior. Furthermore, a
positive semi-definite matrix Rd is associated with what
we designate as stress effect. It is meant to simulate the
psychological pressure that an agent feels as long as it
remains far from its candidate destination. We denote by
Jj,M (x0, u, X̄) the cost for the agent starting at x0 and
applying the control u(t), t ∈ [0, T ]. Finally, we denote
by Evdj ,M (x0, X̄) the evacuation problem associated with
the destination dj , the terminal penalty matrix M , the
population mean X̄ , and the agent’s initial position x0.

III. IDENTIFYING THE AGENT’S BEST RESPONSE

The determination of a generic agent’s best response
turns into an optimal control calculation whenever one
considers the infinite population problem. In fact, it re-
duces to a local state feedback control law whenever the
mean trajectory X̄ is considered given. In this section, we
fix the destination and consider the resulting optimization
problem for each destination Evdj ,M (x0, X̄). We assume
that the control horizon length is such that the optimal
control for Evdj ,M (x0, X̄) exists for all x0 ∈ Rn. Then,
each agent chooses the destination with the least cost. We
define Vj,M and H the value function and the Hamiltonian
associated with the cost Jj,M :

H(x, u, X̄,∇xVj,M , t) = −(x−X)TRx(x−X) (3)

+ (x− dj)TRd(x− dj) + uTRuu+∇xV Tj,M (Ax+Bu)

Using the dynamic programming approach, we derive the
associated Hamilton-Jacobi-Bellman equation, which can
be written as follows:
∂

∂t
Vj,M (x, X̄, t) + min

u
{H(x, u, X̄,

∂

∂x
Vj,M , t)} = 0

where Vj,M (x, X̄, T ) = (x− dj)TM(x− dj) (4)

We search for a quadratic value function

Vj,M (x, X̄, t) = xTϕ(t)x+ ψTdj (t)x+ χdj (t) (5)

where ∀t ∈ [0, T ], ϕ(t) ∈ Rn×n is symmetric, ψdj (t) ∈
Rn and χdj is a scalar. Since Ru is positive definite, H is
strictly convex, and thus, the optimal control, if it exists, is
unique. By setting equation ∂

∂uH = 0, the optimal control
u∗dj ,M should satisfy

u∗dj ,M = −R−1
u BTϕx− R−1

u BT

2
ψdj (6)

which gives for the HJB equation (4)

x
dϕ

dt
x+

dψTdj
dt

x+
dχdj
dt

=

xT (Rx −Rd − ϕA−ATϕ+ ϕBR−1
u BTϕ)x

+ (2dTj Rd − 2X̄TRx − ψTdjA+ ψTdjBR
−1
u BTϕ)x

+ X̄TRxX̄ − dTj Rddj +
1

4
ψTdjBR

−1
u BTψdj

Thus, ϕ, ψdj and χdj should satisfy

d

dt
ϕ = ϕSϕ− ϕA−ATϕ−Q (7)

d

dt
ψdj = (ϕTS −AT )ψdj + 2(Rddj −RxX̄) (8)

d

dt
χdj =

1

4
ψTdjSψdj + X̄TRxX̄ − dTj Rddj (9)

where ϕ(T ) = M,ψdj (T ) = −2Mdj , χdj (T ) = dTj Mdj
and S = BR−1

u BT , Q = Rd−Rx. Thus, the weights ψdj
and χdj exist if a solution to the Riccati equation (7) exists
over the interval [0,T]. Using a completion of squares
argument, we prove that u∗dj ,M is an optimal control for
Evdj ,M (x0, X̄).

IV. CONDITIONS FOR THE EXISTENCE OF A
MINIMIZING CONTROL

In order to gain insight into the properties of the Riccati
equation (7) and the existence of optimal control for
a generic agent, we start by analyzing the scalar case,
which is analytically tractable. Subsequently, we extend
the results for a decoupled form of the multidimensional
case. Then, we provide a theorem for a more general case.

A. Scalar Case

The scalar evacuation model is as follows:

min
j∈{1..l}

inf
u(.)

∫ T

0

{−Rx(x− X̄)2 +Rd(x− dj)2 +Ruu
2}dt

+M(x(T )− dj)2

s.t.
d

dt
x = u, x(0) = x0. (10)

Thus, the scalar Riccati equation for the coefficient ϕ is:
d

dt
ϕ =

1

Ru
ϕ2 + (Rx −Rd), ϕ(T ) = M, (11)

where ϕ,Rx, Rd ∈ R and M,Ru ∈ R+. This equation
can be solved explicitly to obtain

ϕ(t) =


v tan (p1t+ q1), if Rd < Rx

1
p2t+q2

, if Rd = Rx

v tanh(−p1t+ q3), if Rd > Rx,M < v

v coth(−p1t+ q4), if Rd > Rx,M > v,

(12)

where

p1 =

√
|Rx −Rd|

Ru
, p2 = − 1

Ru
, v =

√
Ru|Rx −Rd|

q1 = tanh−1 (
M

v
)− Tp1, q2 =

1

Ru
T +

1

M

q3 = −p1T + tanh−1(
M

v
), q4 = −p1T + coth−1(

M

v
)

We conclude that the only case where the Riccati equation
does not admit a solution is when Rd < Rx and Tesc =
(π2 + arctan (Mv ))/p1 ≤ T . Thus, in case Rd < Rx, the
game time horizon T should be less than Tesc.
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B. Multidimensional Case

Now, we extend the scalar results to the multidimen-
sional problem. As in the scalar case, when Q � 0
(i.e. Rx � Rd), there exists a solution for the Riccati
differential equation (7) for all time horizon T ≥ 0 [19,
Theorem 4.1.6]. We now consider the case where A = 0
and matrices S,Q and M are diagonal. In this case, the
system of Riccati differential equations can be decoupled
into n independent scalar Riccati equations. Thus, the
result obtained in the scalar case applies and we have the
following theorem:

Theorem 4.1: If A = 0, the matrices S,Q, and M
are diagonal, and ∃{1..r} ∈ {1..n} such that Qi,i <
0 (i.e. [Rx]i,i < [Rd]i,i),∀i ∈ {1..r}, then, the Ric-
cati differential equation (7) admits a continuous so-
lution if and only if the time horizon T < Tesc =

min
i∈{1,..,r}

{ 1√
|Qi,i|Si,i

(π2 + arctan (Mi,i

√
Si,i
|Qi,i| ))}.

For a more general case, we have the following theo-
rem:

Theorem 4.2: The following statements hold:

1) The Riccati equation (7) admits an equilibrium ϕ0 ∈
Cn×n [20, Theorem 16].

2) The escape time Tesc for the Riccati equation (7)
corresponds to the first time t > 0 where t →
D(t, ϕ0) vanishes [19].

3) The vanishing time of t→ D(t, ϕ0) does not depend
on the equilibrium ϕ0 [19, Lemma 2].

Where: D(t, ϕ0) = det[I +

∫ t

0

eÃ
T pSeÃpdp(M − ϕ0)]

Ã(ϕ0) = AT − ϕ0S

The last step is to prove the continuous solution of the
Riccati equation (7), if it exists, is unique. Such a result
is guaranteed by the Radon lemma (Theorem 3.1.1, [19]).

V. CHARACTERIZATION OF BASINS OF
ATTRACTION

In this section, we characterize the mapping between
agents’ initial positions and their final destination choice.
By doing so, we subdivide the initial positions space into
regions called basins of attraction. For that, we, first,
define the basin of attraction as follows:

Dj(X̄) = {x ∈ Rn|Jj,M (x, u∗dj ,M , X̄) (13)

≤ Jk,M (x, u∗dk,M , X̄),∀k ∈ {1, . . . , l}}

Assumption 1: Without loss of generality, we assume that
if the agent’s initial position x0 ∈

⋂k
m=1Djm(X̄) , for

some j1 < . . . < jk, then the player i goes toward j1.
Under Assumption 1, the evacuation problem (2) admits
a unique optimal control law. The next theorem provides
an explicit form for the basins of attractions and its proof
is essentially computational.

Theorem 5.1: The basins of attraction are separated by
hyperplanes and have the following expression:

Dj(X̄) = {x ∈ Rn|αTjkx ≤ βjk + δjk(X̄),∀k ∈ {1, . . . , l}}
where: (14)

αj,k = γdj (0)− γdk(0), βj,k = dTkRddk − dTj Rddj

+

∫ 0

T

1

4
(γTdkSγdk − γ

T
djSγdj ) + dTj Rddj − dTkRddkds

δj,k(X̄) =
1

2

∫ 0

T

(γTdkSζX̄ − γ
T
djSζX̄)ds

γdj (t) = −2φ−(t, T )Mdj + 2

∫ t

T

φ−(t, s)dsRddj

ζX̄(t) = −2

∫ t

T

φ−(t, s)RxX̄(s)ds

φ−(t, x) = exp (

∫ t

x

ϕT (s)dsS −AT (t− x))

VI. FIXED POINT AND NASH EQUILIBRIUM

In this section, we will prove the existence of an
ε−Nash equilibrium for the proposed evacuation model
in the multidimensional case. We start by establishing the
MFG equations. Since each agent is heading toward an
exit dj , j ∈ {1..l} and by using the linearity of both agents
dynamics and ψdj , the system of MFG equations can be
expressed as follows:

d

dt
X̄ = (A− Sϕ(t))X̄ − 1

2
Sψdλ(t)

d

dt
ψdλ = (ϕTS −AT )ψdλ + 2(Rddλ −RxX̄) (15)

with X̄(0) = X̄0, ψdλ(T ) = −2Mdλ

where dλ = Ei∈{1..l}(di) =
∑l
i=1 pidi is a convex com-

bination of exit positions {di, i ∈ {1..l}} and {p1, .., pl}
are the exit choices probability distribution.
Now, we explicit the form of the MFG fixed point. This
allows us to transform our search for the MFG fixed
point from one in the space of functions into one in a
probability simplex of size l. The following theorem is a
generalization of Theorem 3 and 8 in [17].
Assumption 2: We assume that the probability measure
P0 is such that the measure of hyperplanes is zero.

Theorem 6.1: Under Assumption 2, the following three
statements hold:

1) If X̄ is a fixed point for the system of MFG
equations (15), then, it can be written as:

X̄(t) = F1(t)X̄(0) + F2(t)dλ

where F1,F2 are some continuous functions of t.
2) The system of MFG equations (15) admits at least

one fixed point.
3) The decentralized strategies in (6) lead to an ε−

Nash equilibrium.
Proof: Due to space constraints, we only provide

the main idea for the proof of statement (1). Any solution
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for (15) corresponds to some exits choices probability
distribution. Therefore, we fix the probability distribution
of exits choices {p1...pl}. Then, we define the variable
n(t) = ϕX̄(t) + 1

2ψdλ(t) where dλ =
∑l
j=1 pjdj . We

recognize that X̄, n correspond respectively to the state
and costate of the following optimal control problem:

min
u

∫ T

0

1

2
(x− dP )TRd(x− dP ) +

1

2
uTRuudt

+
1

2
(x− dP )TM(x− dP )

s.t. ẋ = Ax+Bu, x(0) = X̄(0)

Thus, any solution X̄ for (15) can be written as:

X̄(t) = F1(t)X̄(0) + F2(t)dλ

where F1,F2 are some continuous functions of t.
For statement (2), we use the proof of Theorem 5 in

[17], which relies on Brouwer’s fixed point theorem. For
statement (3), we consider a finite population with N
agents coupled through the cost function defined in (2)
and we replace the population’s mean by its empirical
mean X̄(N). Then, we use the proof of theorem 8 in [17]
to establish the statement.

VII. SIMULATIONS AND NUMERICAL RESULTS

To illustrate the population behavior, we consider 1000
agents uniformly spread over the domain {(X,Y )|X ∈
[−10, 10], Y ∈ [−10, 10]} and moving in R2 according to
dynamics A = 02×2, B = I2×2. Exits are placed at:

d1 =

(
−20.3
20

)
, d2 =

(
20.9
19.6

)
, d3 =

(
−20.2
−20.2

)
, d4 =

(
19.9
−20.5

)
We vary the matrix weight Rd ∈ {0, 8, 30}×I2×2 to depict
the different psychological attitudes (i.e., non stressed,
moderately stressed, and highly stressed). Rx describes
the social interactions and is either definite positive for
the congestion avoidance case or definite negative for the

crowd following case Rx = ±
(

18 0
0 9

)
. The rest of the

model parameters are as follows:

M = 8.103 × I2×2, Ru = 2.105 × I2×2

By using Theorem 4.1, we calculate the escape time
for the congestion without stress case 104.71 s and the
congestion with moderate stress 140 s. The high stress
case does not exhibit a finite escape time since Rx � Rd.
Such variation illustrates the stress effect which retains
agents from diverging. For our evacuation model, we
choose the time horizon to be less than both escape times
T=90 s.
To evaluate the agents separating distance, we proceed by
calculating the mean position of each group heading to
a given destination. Then, we find, at each time t, two
circles Cmax(t) and Cmin(t) centered at the origin where
Cmax(t) is the smallest circle enclosing all the calculated
group mean positions at given instant t and Cmin(t) is the

biggest circle not containing any of the means positions.
We define the groups’ separating distance ∆(t) as the
difference between the radius of Cmax(t), and Cmin(t).
Fig.1(a) and Fig.1(b) represent the mean trajectories and
the groups’ distances, respectively. Dashed curves repre-
sent congestion cases, while continuous curves are for
crowd following cases. Blue, orange, and black curves
designate respectively situations with low, moderate, and
high levels of stress.
The simulation results show that the social interaction
effect impacts the groups’ distance curve shape, which
tends to be convex for the congestion cases and concave
for the crowd following cases (See Fig.1(b)). On the other
hand, Fig 2 shows that when increasing stress, agents tend
to rush toward their chosen exits at the beginning of the
evacuation process then slow down at the end. Besides,
independently of considered social interaction scenarios,
the population density increases with the stress factor.
Indeed, the more stressed the agents are, the thinner the
groups’ trajectories branches are (See Fig 2). We also
note that for the stress-free crowd following scenario, no
agent chooses exit d2, and by increasing stress, agents
consider it and the exits choices probability distribution
approaches 0.25 for all destinations (See Table I). Such
tendency illustrates how stress urges agents to choose the
closest exit to their initial position and to rush toward it.
Finally, except for the stress-free crowd following case
where agents stuck together and do not consider exit d2,
the population’s mean remains close to its initial value.
Such observation is due to the quasi-symmetry of exits
around agents’ initial space distribution and their initial
spatial uniform distribution.

VIII. CONCLUSION

This work proposes an MFG based model for evacu-
ation processes. It introduces several aspects potentially
impacting the effectiveness of a given evacuation plan:
social interactions through congestion avoidance or crowd
following behavior, as well as agents’ psychological state
through stress. The proposed model may be used for
crowd motion prediction during an evacuation process or
as a microscopic based model to describe the individual
reasoning mechanism at a decision-making level. We also
provide sufficient conditions for the solvability of the
model. We provide a method to accelerate numerical
simulations by subdividing the destinations choices space
by hyperplanes. In future work, we aim at making agents’
behavior dependent on the mean of their destination
choice cohort rather than the global population mean.
Furthermore, we intend to introduce a collaborative aspect
for the current model by allowing agents’ control over the
population variance.
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Fig. 1: Means and groups’ distances

(a) Congestion without stress (b) Crowd following behavior
without stress

(c) Congestion with moderate
stress

(d) Crowd following behavior
with moderate stress

(e) Congestion with high stress (f) Crowd following behavior
with high stress

Fig. 2: Agents trajectories for given stress levels and
social interaction scenarios

TABLE I: Destinations choices probabilities

d1 d2 d3 d4

Congestion
avoidance

without stress 0.297 0.228 0.224 0.251
moderate stress 0.276 0.236 0.236 0.252

high stress 0.302 0208 0.234 0.256
Crowd

following
behavior

without stress 0.584 0 0.155 0.261
moderate stress 0.345 0.137 0.245 0.273

high stress 0.294 0.208 0.252 0.246

discovery grant of the second author and a grant from
Ecole Polytechnique de Montreal.
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