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Abstract—In mixed-initiative systems where teams of hu-
mans and automated agents collaborate to perform decision-
making tasks, determining factors of joint performance include
human cognitive workload and the level of trust placed by
the operators in the automation. Both workload and trust are
dynamic variables that change over time based on current task
allocation and on the result of past interactions. In this paper,
we propose a methodology leveraging quantitative models of
trust and workload to automatically and dynamically suggest
efficient task allocations in mixed human-machine systems. Our
approach is based on a Markov decision process framework
and is presented for concreteness in the context of a human-
machine team performing repeated binary decision-making
tasks. Simulation results show the emergence of interesting
automation behaviors such as seeking trust, attempting to
repair trust after an error and adjusting human workload
for optimal performance. Overall, the human-aware dynamic
task allocation strategy shows the potential of significant team
performance improvement compared to a static task distribu-
tion, even in the presence of significant errors in the trust and
workload models used.

I. INTRODUCTION

Designing automated agents that collaborate effectively
with humans is a challenging problem with a variety of
applications, e.g., the monitoring of industrial control sys-
tems or of groups of unmanned vehicles. Various approaches
for control sharing in human-machine teams have been
proposed and are surveyed in [1], [2]. Adaptive automation,
adjustable automation and mixed-initiative systems are dif-
ferent paradigms proposed to orchestrate human-automation
interactions [1], [3], [4], but all recognize the importance of
taking into account several human characteristics, such as
mental workload and the tendency of operators to trust more
or less their automation [5], [6]. In this paper, we propose a
methodology to automatically and dynamically suggest task
allocations between humans and automation, by leveraging
quantitative models of workload and trust to anticipate and
optimize the joint team performance.

An example of workload-aware dynamic task allocation
strategy is given in [7], where tasks described abstractly by
their service time are released for completion by a human
in order to maintain an optimal mental workload. Another
approach in [8] includes the varying nature of agent per-
formance in a group role assignment problem and proposes
a dynamic role allocation strategy. Here we consider more
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specifically tasks that involve decision-making, either by a
human or the automation, such as classifying objects or
events based on noisy sensor data. Signal detection theory
[6], [9], i.e., the application in psychology of tools from
statistical decision theory to the human decision-making
process, is used as a framework to model the impact of
workload on human performance. Based on this model, we
then develop a baseline task assignment strategy optimizing
steady state joint performance of a human-automation team.

Another critical factor influencing team performance is
conflict between partners. Human operators typically have
authority over the automation and can override its commands
or suggestions. For example, if s/he does not trust the
automation’s capability, the operator could prefer manual
control. Lee and See [5] discuss how mistrust or over-
trust in automation translate into under- or over-reliance,
impacting joint performance. Several factors can impact
how trust evolves during a mission, e.g., automation per-
formance, transparency [10] or cultural factors [11]. Despite
this complexity and the difficulty of measuring trust online
(through behavior, questionnaires or physiological measure-
ments), dynamic models can make reasonable predictions.
Quantitative models of trust dynamics, as proposed in [12]—
[16], enable the design of trust-aware automation [16]-[18],
i.e., automation that adapts its behavior to the current level of
trust of the operator. Here we use a simplified version of the
state-space model of trust dynamics of Gao and Lee [13],
which has indirectly inspired task allocation strategies in
[19], [20]. An advantage of such a model is its small number
of parameters, which moreover can be interpreted, and hence
it requires much less experimental data for calibration than
black-box models such as neural networks.

Given the dynamic nature of the trust model, our task
allocation problem is formulated as a Markov Decision Pro-
cess (MDP). The MDP framework is particularly well suited
when the state dynamics is stochastic and uncertain, which is
the case for cognitive variables such as trust and workload.
MDPs and their extension with partial state observations
(POMDPs) are used for human modeling and the design of
human-automation collaboration strategies in [16], [18], [21]
for instance. Defining the allocation problem as an MDP
requires modeling the human behavior (through trust and
workload) and the environment. Depending on the scenario,
defining and calibrating such models can be difficult. This
motivates us to explore the compromise between using a
simpler model leading to our baseline static policy or a
more complex dynamic model incorporating both workload
and trust, which leads to a dynamic adaptive task allocation
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strategy but would be more difficult to calibrate accurately.
The simulation results for the MDP show the emergence of
interesting automation behaviors that could be interpreted
as seeking trust, repairing trust after an error and adjusting
workload. Moreover the dynamic policy seems to bring real
benefits compared to the static task distribution ignoring
trust, even in the presence of significant modeling errors.

The organization of the paper and a summary of our contri-
butions are as follows. Section II describes a general scenario
with repeated decision-making tasks to be performed either
by a human or automatically. Section III develops a model
of human performance capturing the impact of workload ,
together with a method for statically assigning an optimal
workload level. Section IV presents the dynamic trust model,
which is then included with the workload model in an
MDP framework in Section V. Finally, in Section VI we
compare through simulations the static and dynamic policies,
including the impact of modeling errors on performance.

II. SCENARIO DESCRIPTION

We focus on a team comprised of a human operator and
an automated system performing a sequence of decision-
making tasks. We assume that each new task is independent
of the previous ones and requires a binary decision, made
either by the human or the automation. Formally, each task
can be viewed as a hypothesis testing (or classification)
problem, where the decision-maker must distinguish for task
k between hypothesis Hy j (the null hypothesis) and H; j
(an interesting event), based on evidence Yj, a random
variable. Let D, € {0,1} denote the decision for task k,
with Dj, = 1 corresponding to “deciding Hy ;.

Whether the decision-maker is the human [9] or the au-
tomation [22], it can be abstracted by its resulting probability
of true positive Prp := P(Dy, = 1|H; ;) and false positive
Prp := P(Dy, = 1|Hp 1), assumed here independent of time
since the environment is stationary. We associate rewards to
decisions, as follows. For a successfully performed task (D
is a true positive or true negative) a reward R! is collected.
When an error occurs (false positive or false negative), a
value R < R! is collected, which can be negative. A
negative “reward” R™ < 0 is added when the task is
completed by the human, to capture situations where the
human operator would preferably focus on other tasks. The
joint performance of the team is measured by the sum of the
collected rewards over a sufficiently long horizon.

We divide time into periods of N € N successive tasks.
At the beginning of each period, the automation suggests
a task distribution, i.e., the proportion of tasks to be per-
formed by the operator during the period. Then, s/he can
choose to follow the recommended assignment or to perform
manually more or fewer tasks, e.g., because her/his trust in
the capabilities of the automation to perform the tasks is
low or high. We are looking for strategies that suggest task
distributions at each period in order to maximize the overall
team performance.

III. WORKLOAD-AWARE PERFORMANCE MODEL

In this section, we first present an analytical model captur-
ing the impact of workload on steady-state performance for
binary decision-making tasks performed by a human. This
model is then used to propose a static workload-aware task
assignment strategy that will serve as benchmark.

A. Workload-Performance Model

By considering both automation and human operator as bi-
nary decision makers, their Receiver Operating Characteristic
(ROC) curves capture the relation between the true positive
rate Prp and the false positive rate Prp [9], see Fig. 1 for
an example. The automation is assumed to have a fixed and
known ROC curve, whereas the human’s one is parametrized
by the workload. Hence, we model the human performance
by a family of ROC curves, which have to be determined.

Although relatively arbitrary ROC curves could be ob-
tained from experimental data, it is useful to adopt a family
of curves shaped by few parameters in order to simplify
the model calibration and interpret the effect of workload.
In particular, a central model of signal detection theory,
often used to study human decision under uncertainty, is the
equi-variance Gaussian model [9, Chapter 2]. In its simplest
interpretation, it corresponds to the problem of deciding if
Y; ~ N(0,1) (hypothesis Hy) or Y ~ N (d, 1) (hypothesis
Hy), where N(u,0?) denotes the normal distribution with
mean g and variance o2 and d > 0 is called the sensitivity.
However, this interpretation can be abstracted to retain only
the ROC curves, which in this case take the form

Prp(Ppp) = ®(d+ @' (Prp)), (1)

2
tion function (cdf) of a standard normal distribution N (0, 1)

and d can be interpreted as the intrinsic discrimination ca-
pability of the decision maker. Cognitive workload, denoted
W € [0, 1], reduces this capability in general, as it reduces
the time to study the evidence. One possible model is to
assume that the sensitivity of a human decision-maker is

d=d(W) = do(1—W). )

where ®(x) = \/% I e~t"/2dt is the cumulative distribu-

In this case , there is only one parameter dy > 0 to identify
experimentally, which is the maximum sensitivity of the
human when the workload tends to zero and also the rate
at which the sensitivity decreases with W. With (1)-(2),
increasing W brings the ROC curve closer to the diagonal,
which corresponds to a random classifier, choosing between
hypotheses with equal probability (flipping a coin).

B. Static Workload-Aware Task Assignment

Once a family of workload-dependent ROC curves is
chosen, we can formulate a task allocation problem. Here we
assume that the false positive rate Prp allowed for the task
is fixed, communicated to the human operator and included
in the automated classifier’s algorithm. For many tasks, this
requirement can be fulfilled by following threshold-based
decision rules, which are naturally implemented by humans.
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Fig. 1. A possible family of ROC curves for a human classifier, based on
the equal variance Gaussian model. Here the human ROC curves are drawn
with (1) and (2) for dgp = 4. The automation is also associated to a ROC
curve drawn with (1) where d* = 1.5.

We denote P! (resp. P2) the correct classification probability
of the human classifier (resp. the automation), i.e.,

P}(W) =pPtp(Prp;W) + (1 —p)(1 = Prp), ()
P¢ =pPrp(Prp) + (1 —p)(1 — Prp),

where p := P(H; ), the probability of having an “inter-
esting” event, is known. Since Prp is fixed, we omit it
as an argument of P%Dh , and Pl becomes a function of
W only. To define a static workload-aware task distribution
strategy, we find the workload W* (i.e., the proportion of
tasks assigned to the human) maximizing the overall reward

(= w)[RPE+ RO~ P2+

max
welo,1]

WI[R™ + R'PM(W) + R°(1 — Pf(W))]). )

For the scenario of Section II, the static policy simply assigns
W*N tasks to the human operator and (1 — W*)N tasks to
the automation at the beginning of each period.

After expanding (4), the problem can be written as

W), with 5
Wné?oﬁ]f( ), wi (5)

fW) =W [p(R' — RO)(P}p(W) — Pfip) + R™].

The following theorem gives conditions under which the
human operator is beneficial to the team, i.e., under which
the optimal workload is not zero.

Theorem 1: Fix a probability of false positives Prp for
the tasks. If P2, is a continuous function of W, the function
f in (5) reaches a maximum at some W* € [0, 1]. Moreover,
assume that R < R', p > 0, R™ < 0 and P}, is
differentiable at W = 0. Then we must have W* > 0 if

R’n’l
Pp(W =0) - Pip > p(R|1—|RO)’
and otherwise W* = 0. Moreover, if Prp(W =1) < P§p,
or if Prp(W =1) = P&, and R™ < 0, then W* € (0, 1).

Condition (6) implies that with a human intervention cost

R,, < 0, the human operator’s best performance (when the

(6)

workload is low, i.e., W = 0) has to be sufficiently higher

than the automation’s capability in order to benefit from the

human assistance, increasingly so as |R,,| increases.
Proof: To simplify the notation, we can rewrite (5) as

fW) = aWP(W) — W

with a := p(R! — R%) > 0, 8 := p(R' — R°)P&, — R™
and P(W) := P}, (W). The function f is a continuous real
valued function, hence attains its maximum on the closed
interval [0, 1]. Moreover,

f'(W) =a(P(W)+WP'(W)) - 8.

If f/(0) > 0, then the maximum of f in [0, 1] is not zero.
Noting that f'(0) = aP(0) — 3, this gives (6). Moreover,
we have f(0) = 0 and f(1) = aP(1) = 3 = a(P(1) —
P7 P) -+ R™. The second part of the theorem corresponds to
f(1) < £(0), in which case W* € (0,1). [ |

C. Computing W* for the Equal Variance Gaussian Model

The following proposition ensures that finding numerically
a global optimum W* for (5) (by dichotomy or by solving
f/(W) = 0) can be done efficiently for the equal-variance
Gaussian model.

Proposition 1: Assume that the ROC curves are given
by (1) with workload model (2). Under the conditions of
Theorem 1, f has a unique local maximum W* in (0,1)
and W* is the unique solution of f/(WW) = 0.

Proof: Using the notation of the proof of Theorem
1, from (2) and (1) we have P(W) = ®(—dyW + K), for
K =dy+qand g = @1 (Prp). We know from the previous
proof that f/(0) > 0. Now we can show that f'(1) < 0:

/(1) =a(P(1)+ P'(1)) = 8 = f(1) + aP'(1)

2
We have already shown f(1) < 0 and P'(1) = — jzl = <

s

0, hence f’(1) < 0. Moreover f’ is differentiable and
f"(W) =a(2P' (W) + WP"(W))
_dpa ox (_ (—doW + K)?
Vor P 2
—: g(W) (d§W2 ~ KdoW — 2)

) [d%Wz ~ KdoW — 2

with g(W) > 0 always. The polynomial function I(W) =
d%W2 — KdoW — 2 has two real roots W7 and W5 (with
W1 < Wa) because of its discriminant A = d3(K?2+8) > 0.
We have Wi < 0 as [(0) < 0 and the coefficient d3 is
positive. Hence either f” is always negative and so f’ is
decreasing (if W > 1), or f” is negative until Wy and
then positive (if Wo < 1) and so f’ is decreasing and then
increasing. But since f/(0) > 0 and f’(1) < 0, in both cases
necessarily there must be a unique root of f/(W)=0. M

IV. MODELING HUMAN TRUST IN AUTOMATION

For the type of decision-making scenarios described in
Section II, the automation would only make suggestions
about the task distribution at each period, and the final
control would remain to the human operator. In that case, one
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can expect that s/he would decide to complete manually more
tasks (resp. fewer tasks) than suggested by the automation if
s/he does not trust (resp. overtrusts) its capabilities. To avoid
such sub-optimal situations, we consider the trust dynamics
in the design of the task allocation strategy.

Gao and Lee [13] proposed a quantitative model of op-
erator reliance on automation, based on the level of trust in
the automation’s capabilities. The model captures the impact
of the history of the human-machine interactions and the
dynamics of the underlying psychological process. Reliance,
i.e., the decision to use automated control over manual
control, is seen as a function of the difference between trust
and self confidence. Here, for simplicity, we include only
trust in our model of reliance, however it is possible to extend
the model with the self-confidence dynamics.

The human trust state is represented by two variables
denoted z = (T}, B;)T € R2, where T} represents the
trust level, B; the belief in the automation capability and
t denotes the period index. In other words, we update the
trust dynamics only every N tasks, as described in Section
II. These dynamics are influenced by two input variables,
the environment state xy and the automation action ayf, as
follows

Bt+1:Bt+77(0(x§,$?7a?)_Bt)+th (7)
Tipr = (1= )T
+p (B +n (Claf, 2f s af) — By) +w) +w/. (8)

Here p € [0,1] is a growth-decay parameter representing
the inertia of trust, so that 7} is influenced by both 7} and
B; 1. The parameter 7 € [0, 1] represents the “transparency”
of the automation interface, i.e., how well the true capability
of the system is conveyed to the user. The two sequences
wh = [wB,wl]T are independent and identically distributed
(iid) random variables with mean 0 and standard deviation
op and o7. Finally, C(z¢, 2} a}) € R represents the true
capability of the automation during the period ¢, which is
a function of the current environment state, the human state
and the automation action, and can be interpreted as a success
rate, the precision demonstrated by the automation when
completing its task, etc. The definition of C' depends on the
application and can be a delicate issue requiring preliminary
experimental calibration studies, because it assumes that the
human sees the automation’s capability as a one-dimensional
variable. In our scenario, C' could depend simply on the
automation’s correct classification rate, or could also include
the automation’s ability to suggest a “good” task distribution,
see Sections V and VI for examples. In addition to the
function C, calibration of this model requires identifying the
four parameters yu, 1, op, o, based on experimental data.
Calibration is, to some degree, user dependent. In [13], the
model demonstrates good prediction performance but some
errors can be attributed to individual behavioral differences.

V. DYNAMIC TASK ALLOCATION INCLUDING
WORKLOAD AND TRUST

The dynamic and uncertain nature of trust as a cognitive
state variable leads us to formulate the trust-aware task

m 7
] A, o
| & F A J

@@ ST)(1-af) (1-ST))1-a?)

Manual Manual

classification upon Automation classification on human
classification own initiative

A crco-s

automation request

[::] Objects well classified

Fig. 2. Distribution and outcomes for tasks during period .

allocation problem in the form of a Markov Decision Process
(MDP), integrating the workload model of Section III as
well. For simplicity, we consider here a situation where the
human operator cannot perform fewer tasks than suggested
by the automation but can only increase her workload.

At the beginning of period ¢, the automation suggests that
a fraction af € [0, 1] of the N tasks be carried out by the
human. This decision is allowed to depend on the state up
to period ¢ — 1. During this period and up to the beginning
of period ¢+ 1, the cognitive state of the operator is denoted
xP = [T}, By]*, which follow the dynamics (7)-(8), and we
assume that the human actually performs a fraction

W= ai + (1 —ai)(1 - S(T1)) ©9)

of the tasks during period ¢, where S is an increasing function
mapping trust T; € R to (0,1) and assumed to be a sigmoid
x+— 1/(1+exp(—5(x —0.5))). In other words, an operator
with a higher level of trust takes a smaller share of the
fraction (1—a) of tasks initially assigned to the automation.
We define W, in (9) to be the workload of the operator
during period t. This workload affects the performance
PR(W;) of the operator during period ¢, according to the
model (3). We also define A;, the number of correct decisions
made by the automation during period ¢ divided by N, while
H™ and H} are similar ratios for the number of correct
decisions made by the human for tasks: i) suggested by the
automation; and ii) taken on her own initiative. We have

Ay =S(T)(1 - af) Py, H{" = a} Pl (W)
Hp = (1 - S(Tt))(l - af)Pf(Wt) :

Fig. 2 provides a graphical representation of these different
quantities. The overall system state is simply z7, i.e., in this
scenario there is no external environment state to remember.
This state is assumed to be perfectly observable by the
automation but with one period delay, in order to make
the new recommendation af,; € [0, 1]. This is the case in
scenarios where the correctness of decisions can be evaluated
online. Since S is one-to-one and S(7T7}) is observed through
the operator’s actions during period ¢, the model essentially
assumes that 7; has been observed by the end of period t.
The variable B; can be observed for example by asking the
operator to rate at each period the automation’s capabilities.
Nonetheless, in future work we plan to extend our model
to a partially observed MDP (POMDP), to model situations
where part of the state is not directly observable , i.e., we
might only have noisy observations of z* and perhaps x¢.
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The following reward function is defined at the beginning
of period t (see Fig. 2 for the interpretation of the terms)

R(x},af) = (R' + R™)(H]" + H{)+

(R + B™)((af = H") + (1= S(T) (1~ af) — H} )+

R'A; + RO(S(T)(1 — af) — Ay),
with R', R® and R™ defined in Section II. We can then
search for an automation’s policy, i.e., a sequence of func-
tions 7; mapping ! ; to af, maximizing the expected
discounted reward over an infinite horizon
)E ZatR(x?,wt(aciLl)) ,

t=1

max
7=(70,m1 ...
with & € [0,1) a discount factor.

Finally, we need to define the automation’s true capability
function C' entering the dynamics (7)-(8). We consider that
the human measures the automation’s capability to both
making correct decisions and suggesting “good” task dis-
tributions. Concretely, here C' is the rate of correct decisions
made by automation and by the human in her assigned tasks

H" + Ay
af +S(Ty)(1 —af)
VI. SIMULATION RESULTS

C(:L‘?, a?) =

(10)

The MDP model defined in Section V was implemented in
the Julia programming language using the software package
for MDPs [23], and approximately optimal policies were
computed with its Local Approximation Value Iteration
solver. This algorithm allows a continuous state represen-
tation, but the action space had to be discretized (with a
stepsize of 0.05). For the simulations, we chose the following
parameter values: n = 0.5, u = 0.5, op = 0, op = 0.2,
R' = 100, R® = —100, p = 0.5 and Ppp = 0.1. The
intervention cost R™ is set to zero, so that the only impact
of a human intervention is via an increase of her workload.
The values for the detection performance model are shown
in Fig. 1 and the discount factor is o = 0.98.

The policy computed from the MDP is compared to the
static strategy of Section III based only on the detection
performance model, without taking into account the effect
ot trust, which in all cases evolves according to (7)-(8)
and the workload according to (9). Fig. 3 illustrates the
typical behavior of the two strategies in simulations. In both
simulations the trust and belief states start at a low level
To = 0 and By = 0. On Fig. 3, one can see that the
MDP strategy gives more tasks to the human when her trust
level is high (e.g., at period 13), anticipating the low rate
of intervention, in order to set her workload at the correct
value. However, it still gives some tasks to the human when
her trust level is low (e.g., at period 2 or 24), in order to
increase her trust level, e.g., through the influence of H;™
on the function C' in (10).

Fig. 4 shows the distribution over 10,000 simulations
of the total discounted reward collected by each policy. It
suggests that the MDP policy brings a real benefit to the
long term team performance compared to the static policy.

Optimal policy Static policy

B 30
steps steps

Fig. 3. Allocation of the tasks during each period of time of a 50 steps
simulation. The fraction of tasks af assigned to manual classification by
the automation are in cyan, the additional tasks taken by the human are in
magenta. The tasks performed by the automation are in gray. For instance,
in the left simulation, during period 13, the automation suggests that 40%
of the tasks should be completed by the human and the operator accepts
this distribution. However, in period 14, the automation suggestion is the
same but the operator decides to classify an additional tenth of the tasks.
In the left figure, the policy used is computed from the MDP, in the right
one, the policy is static with a = 0.38 for all t.

—— optimal policy
200 [ static policy

150 -

occurrence

-500 0 500 1000
total reward

Fig. 4. Reward occurrence for optimal (blue) policy and static (red) policy
collected during 10,000 simulations of 50 steps each.

A. Robustness to Errors in the Human Performance Model

In the following, we discuss the performance of the MDP
policy in the presence of discrepancies between the models
used to compute it and the simulation model. This is intended
to capture, to some extent, the effect of errors that will
occur when calibrating models in the real world. First,
suppose that the workload effect on sensitivity is in fact
d(W) = (dg + e)(1 — W) instead of (2) used in the MDP,
thereby changing the operator’s ROC curves When the error
e is positive (resp. negative) the human is more (resp. less)
efficient than expected. Fig. 5 shows that the MDP strategy
still performs better than the static strategy when both are
using the erroneous model. The performance gap between
both strategies appears to decrease as e grows however.

7] ¢ ¢
Dot
;

} @ Optimal policy
@ Static policy

2 -1 0 1 2 3
Error in human performance model

Discounted reward
o

-250

-500
-750 {
-3

Fig. 5. Mean reward of the dynamic and static policies for a constant error
in the human performance model, computed over 1000 simulations. Bars
indicate one standard deviation on each side.
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Fig. 6. Mean reward (for 1000 simulations) for the dynamic and static
policies for different true capability functions ((10), (11), (12) and (13))
used in the simulation. The MDP assumes (10) to compute the policy.

B. Robustness to Errors in the Trust Model

The definition of the function C' defining the automation’s
true capability from the human’s point of view is generally
a difficult issue [13]. To test robustness against errors in
modeling C, we compute the MDP policy using (10) but we
choose another function in the simulation and performance
evaluation. As a result, the trust evolves differently than ex-
pected when computing the policy. The following candidate
functions were tested

 Strict automation responsibility: only the automation’s
successes in completing the tasks are considered
A
S(T)(1 —af)
o Biased team responsibility: the overall team success is
considered but the payoffs R°,R! and R™ are ignored.

(1)

Ch (xilv a?) =

Co(zl a?) = A, + H™ + HY. (12)

« Objective team responsibility: the payoffs are consid-
ered (almost the same definition as the MDP)

R(zf,af) — (R° + R™)
Rl — (RO + Rm)
Fig. 6 shows that for each of the functions above, the
dynamic policy still performs better than the static policy.

Future work will consider other robustness tests, e.g., to
errors in the parameters 7 and o7 .

Cs(x},af) = (13)

VII. CONCLUSION

This paper has presented two strategies to allocate
decision-making tasks in human-machine teams. The first,
static one, takes into account the effect of workload on
human performance, while the second strategy also includes
a dynamic trust model to predict reliance on automation.
The MDP-based approach improves joint long term per-
formance and can handle human or environmental changes
more gracefully since it produces a closed-loop strategy.
Simulation results show that this performance improvement
holds even in the presence of significant mismatches between
the anticipated models and the models actually used in
simulations. Future work will focus on translating these ideas
to real-world human-automation interaction scenarios and
identifying parameters based on experimental data.

[1]

[2]

[3]

[4]

[5]
[6]
[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

3246

REFERENCES

J. Y. C. Chen and M. J. Barnes, “Human—agent teaming for multirobot
control: A review of human factors issues,” IEEE Transactions on
Human-Machine Systems, vol. 44, no. 1, pp. 13-29, Feb 2014.

S. Musi¢ and S. Hirche, “Control sharing in human-robot team
interaction,” Annual Reviews in Control, vol. 44, pp. 342-354, 2017.
R. Parasuraman, K. A. Cosenzo, and E. De Visser, “Adaptive automa-
tion for human supervision of multiple uninhabited vehicles: Effects on
change detection, situation awareness, and mental workload,” Military
Psychology, vol. 21, no. 2, pp. 270-297, 2009.

S. Jiang and R. C. Arkin, “Mixed-initiative human-robot interaction:
definition, taxonomy, and survey,” in 2015 IEEE International Confer-
ence on Systems, Man, and Cybernetics. 1EEE, 2015, pp. 954-961.
J. D. Lee and K. A. See, “Trust in automation: Designing for
appropriate reliance,” Human factors, vol. 46, no. 1, pp. 50-80, 2004.
C. D. Wickens, J. G. Hollands, S. Banbury, and R. Parasuraman,
Engineering psychology and human performance. Psych. Press, 2015.
K. Savla and E. Frazzoli, “A dynamical queue approach to intelligent
task management for human operators,” Proceedings of the IEEE, vol.
100, no. 3, pp. 672-686, 2011.

Y. Sheng, H. Zhu, X. Zhou, and W. Hu, “Effective approaches to
adaptive collaboration via dynamic role assignment,” IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, vol. 46, no. 1, pp.
76-92, 2015.

T. D. Wickens, Elementary signal detection theory. Oxford University
Press, USA, 2002.

J. Y. C. Chen, M. J. Barnes, A. R. Selkowitz, and K. Stowers, “Effects
of agent transparency on human-autonomy teaming effectiveness,” in
IEEE International Conference on Systems, Man, and Cybernetics
(SMC), Budapest, Hungary, October 2016.

S. Chien, M. Lewis, K. Sycara, A. Kumru, and J. Liu, “Influence of
culture, transparency, trust, and degree of automation on automation
use,” IEEE Transactions on Human-Machine Systems, vol. 50, no. 3,
pp. 205-214, 2020.

J. Lee and N. Moray, “Trust, control strategies and allocation of
function in human-machine systems,” Ergonomics, vol. 35, no. 10,
pp. 1243-1270, 1992.

J. Gao and J. D. Lee, “Extending the decision field theory to model
operators’ reliance on automation in supervisory control situations,”
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans, vol. 36, no. 5, pp. 943-959, 2006.

S. Lee, Y.-J. Son, and J. Jin, “An integrated human decision mak-
ing model for evacuation scenarios under a BDI framework,” ACM
Transactions on Modeling and Computer Simulation, vol. 20, no. 4,
2010.

A. Xu and G. Dudek, “OPTIMo: Online probabilistic trust inference
model for asymmetric human-robot collaborations,” in ACM/IEEE
International Conference on Human-Robot Interaction (HRI), 2015.
C. Nam, P. Walker, H. Li, M. Lewis, and K. Sycara, “Models of trust
in human control of swarms with varied levels of autonomy,” IEEE
Transactions on Human-Machine Systems, vol. 50, no. 3, pp. 194-204,
2020.

A. Xu and G. Dudek, “Maintaining efficient collaboration with trust-
seeking robots,” in 2016 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2016, pp. 3312-3319.

M. Chen, S. Nikolaidis, H. Soh, D. Hsu, and S. Srinivasa, “Trust-aware
decision making for human-robot collaboration: Model learning and
planning,” ACM Transactions on Human-Robot Interaction, vol. 9,
no. 2, February 2020.

H. Saeidi and Y. Wang, “Trust and self-confidence based autonomy
allocation for robotic systems,” in IEEE Conference on Decision and
Control (CDC), Melbourne, Australia, December 2015.

H. Saeidi, J. R. Wagner, and Y. Wang, “A mixed-initiative haptic tele-
operation strategy for mobile robotic systems based on bidirectional
computational trust analysis,” IEEE Transactions on Robotics, vol. 33,
no. 6, pp. 1500-1507, 2017.

L. M. Hiatt, C. Narber, E. Bekele, S. S. Khemlani, and J. G. Trafton,
“Human modeling for human—robot collaboration,” The International
Journal of Robotics Research, vol. 36, no. 5-7, pp. 580-596, 2017.
P. J. Bickel and K. A. Doksum, Mathematical statistics: basic ideas
and selected topics, volume I, 2nd ed. CRC Press, 2015.

M. Egorov, Z. N. Sunberg, E. Balaban, T. A. Wheeler, J. K. Gupta, and
M. J. Kochenderfer, “POMDPs.jl: A framework for sequential decision
making under uncertainty,” Journal of Machine Learning Research,
vol. 18, no. 26, pp. 1-5, 2017.

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on June 17,2021 at 01:08:47 UTC from IEEE Xplore. Restrictions apply.



