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Abstract— The objective of source seeking problems is to
determine the minimum of an unknown signal field, which
represents a physical quantity of interest, such as heat, chemical
concentration, or sound. This paper proposes a strategy for
source seeking in a noisy signal field using a mobile robot and
based on a stochastic gradient descent algorithm. Our scheme
does not require a prior map of the environment or a model
of the signal field and is simple enough to be implemented on
platforms with limited computational power. We discuss the
asymptotic convergence guarantees of algorithm and give spe-
cific guidelines for its application to mobile robots in unknown
indoor environments with obstacles. Both simulations and real-
world experiments were carried out to evaluate the performance
of our approach. The results suggest that the algorithm has
good finite time performance in complex environments.

I. INTRODUCTION

The ability to detect the source of a signal is a fundamental
problem in nature. At a microscopic level, some bacteria are
able to find chemical, light, and magnetic sources [1], [2].
At a macroscopic level similar behavior can be observed in
predators who seek a food source using their sense of smell.
Reproducing this behavior in mobile robots can be used to
perform complex missions such as environmental monitoring
[3], [4], intelligence, surveillance, and reconnaissance [5],
and search and rescue operations [6].

This paper considers the following scenario. A mobile
robot is placed in an unknown environment with the goal
of locating the source of an unknown signal field, which
could express the spatial distribution of magnetic force, heat,
wireless signal, or chemical concentration. The robot has
access to noisy measurements of the signal only at its current
position. Since this source seeking problem arises in a variety
of situations we make minimal assumptions about the robot,
the environment, and the signal. Our approach consists of
climbing the gradient of the signal field by using a stochastic
approximation technique to deal with the underlying noise.
The main advantage of our strategy is that it does not rely on
a prior map of the environment or a model of the signal field
and can be applied to robots with various types of dynamics,
no localization capabilities, and limited computational power.

We do not claim that this approach performs better than
model-based ones when an accurate model of the signal
is available. However, when the environment is unknown,
constructing a good model a priori is not possible. For
example, the Navier-Stokes equations cannot be used to
model the diffusion of a gas signal without a prior map.
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On-line modeling of the signal might not be feasible either
because it requires time and computational resources, which
are limited on small platforms and in time-critical missions.

Recent work developing source seeking and gradient
climbing strategies includes [3], [7], which rely on a model
and require several sensing robots moving in a formation,
whereas we only have a single sensing robot at our disposal.
Furthermore, the authors do not address the effect of model
inaccuracies on the performance. Krstić and coworkers [8],
[9] apply techniques from extremum-seeking control to find a
local maximum of a field, assuming noiseless measurements.
In our case, the stochastic variations in the measurements can
be significant and cannot in general be neglected. Moreover,
the extremum-seeking approach is applicable only to specific
robot dynamics (e.g. unicycle, differential drive), while our
method can be used with more general robots. Stanković
and Stipanović [10] extended the extremum-seeking method-
ology to the case of noisy signals but considered obstacle-
free environments only. Similarly, other recent approaches
to source seeking [11], [12] consider only the obstacle-free
case, while we apply our technique to environments with
different obstacle configurations.

The simplicity of the stochastic approximation approach
in the face of the complexity of the envisioned scenarios
calls for an in-depth study of implementation issues. While
existing stochastic gradient algorithms guarantee asymptotic
convergence in convex environments, it is unclear if the
theoretical guarantees translate into finite-time results in non-
convex environments, which are meaningful in applications.

The contributions of this paper are as follows. First, we
adapt an existing stochastic gradient algorithm to provide
a trajectory in the robot’s local coordinate frame. Second,
we address the main challenge of applying this algorithm
in practice, i.e. the choice of parameters, by providing only
a few intuitive parameters to control the algorithm. Finally,
we examine the finite-time performance of the algorithm and
its applicability to a real wireless signal in a non-convex
environment. We consider a wireless signal because it is very
noisy and difficult to model and yet most approaches for
wireless source seeking are model-based (e.g. [13]).

The rest of the paper is organized as follows. In section
II we describe the considered scenario precisely. Section
III describes the algorithm and states its theoretical con-
vergence guarantees. We discuss practical modifications to
the algorithm in section IV in order to incorporate the
environment geometry and the robot characteristics. Finally,
in section V we present results from simulations and real-
world experiments and discuss the validity of our approach.



II. SOURCE SEEKING PROBLEM

Consider a robot with dynamics described in the world
coordinate frame by ṡ = f(s, u), where u ∈ Rm is the
control input and s(t) = (x(t), θ(t)) is the robot’s state with
translation x(t) ∈ Rn and orientation θ(t) ∈ Θ ∼= Rl. The
robot evolves in a workspace W ⊂ Rn, which is a priori
unknown, and has a field of view F (s) ⊆W. We assume that
the workspace is the free space in the environment, excluding
the obstacles. The task of the robot is to reach the minimum
of a scalar field L : W → R, which represents a physical
quantity of interest. Due to sensor and environment noise, the
robot has access only to measurements of the form L̂(x) =
L(x) + ν(x) at its current position x ∈ W, where ν(x) is a
random noise term.

Our approach is to divide the source seeking problem
into two parts. First, we generate a trajectory converging
to the unknown source and then steer the robot along it.
This separation allows applying the stochastic source seeking
strategy to robots which have various dynamics and employ
different navigation schemes.

Problem 1 (Source Seeking): Generate a sequence of
points {pk} ⊆W, which satisfies:

lim
k→∞

pk = p̄ ∈ P ∗ almost surely (a.s.),

where P ∗ is the set of points in the workspace, which
minimize the signal field.

The second part of the task is to generate control inputs,
which drive the robot along the trajectory specified by Prob-
lem 1 and we address it by making the following assumption:

Assumption 1: The source seeking robot is able to follow
a sequence of reachable points {pk} in the free space W
using a combination of planning and control.

The combination of planning and control is a widely used
approach to robot navigation both in literature and practice
and we adopt it to ensure that our source seeking strategy can
be applied to robots with various dynamics, which already
have a path-following scheme in place. As a result, the
burden of generating points pk, which are reachable and easy
to follow is placed on the algorithm used for Problem 1.

III. STOCHASTIC APPROXIMATION ALGORITHM FOR
SOURCE SEEKING

This section presents a solution to a relaxed version of
Problem 1, in which P ∗ is a nonempty set of local minima
of the signal field L and the workspace W is convex. We
employ a modified version of the random direction stochastic
approximation (RDSA) algorithm [14] in order to generate
the required sequence {pk} ⊆ W. The general form of a
stochastic approximation algorithm is:

pk+1 = ΠW[pk − akĝk(pk)], k = 0, 1, . . . , (1)

where ĝk : Rn → Rn is an approximation to the true gradient
of the signal field L at the point pk, ak ∈ R>0 is a sequence
of gain coefficients, and ΠW denotes projection onto the

constraint set W. We propose the following gradient estimate:

ĝk(pk) :=
√
n

[
L̂(pk+)− L̂(pk−)

‖pk+ − pk−‖2

]
Tkdk, (2)

where dk ∈ Rn is a random direction vector with probability
distribution µk : Rn → [0, 1], and Tk is a rotation matrix,
whose role is explained below. Also, pk+ := ΠW[pk +
ck+Tkdk] and pk− := ΠW[pk − ck−Tkdk] are two sampling
points determined by gain coefficients ck− , ck+ ∈ R≥0.

At iteration k of the algorithm, the signal field is sampled
at points pk− and pk+ in order to estimate its directional
gradient at pk. Then, a step is taken in the negative direction
of the gradient estimate to generate the next estimate of the
source location pk+1. Repeating this procedure generates
a sequence of points {(pk, pk− , pk+)}, which represents a
trajectory in the world coordinate frame. The role of the
matrices Tk is to transform this trajectory to the body
coordinate frame of the robot. At time tk, which is the
beginning of the k-th iteration, the sampling points can be
written in the robot body frame:

zk− = ΠW[−ck−R(−θ(tk))Tkdk]

zk+ = ΠW[ck+R(−θ(tk))Tkdk]

zk+1 = ΠW[−akR(−θ(tk))ĝk(0)],

where θ(tk) is the robot orientation and R(−θ(tk)) is a
rotation matrix. Choosing Tk = R(θ(tk)), allows the robot
to run the algorithm without the need for localization:

zk+1 = ΠW

[
−ak
√
n

[
L̂(zk+)− L̂(zk−)

‖zk+ − zk−‖

]
dk

]
(3)

The design parameters of the algorithm are ak, dk (i.e.
µk), ck− , ck+ , and Tk. Successful application of this algo-
rithm to a robot platform in a realistic environment requires
a careful choice of the design parameters, which takes
the robot capabilities and the geometric constraints of the
environment into account in order to ensure that the resulting
sequence {(pk, pk− , pk+)} is easy to follow.

Proposition 1: If the assumptions listed below are satis-
fied, the algorithm in (1) and (2) is a solution to a relaxed
version of Problem 1, in which P ∗ is a nonempty set of local
minima of signal field L in a convex workspace W.

Assumptions on the problem parameters:
(A1) L is bounded and three times cont. differentiable
(A2) For all k ∈ N, the random noise on L satisfies:

E[ν(pk+)2] <∞, and E[ν(pk−)2] <∞
E[ν(pk)|p0, . . . , pk, dk] = 0 a.s.,

(A3) The iterates pk remain bounded: supk ‖pk‖ <∞ a.s.
Assumptions on the design parameters:

(Sample point gains) ck := max{ck− , ck+} > 0, ck → 0
(Gradient gains) ak > 0, ak → 0,

∑∞
k=0 ak = ∞, and∑∞

k=0 a
2
k/c

2
k <∞

(Direction vectors) dk are i.i.d. with distribution µk, which
is symmetric with respect to reflections about the coor-
dinate axes, and satisfy E[‖dk‖22] = n and E[dkd

T
k ] = I .



Proof : Let d′k := Tkdk and notice that:

E
[
‖pk+ − pk−‖2√

n

]
=

(ck+ + ck−)‖Tk‖2E(‖dk‖2)
√
n

= (ck+ + ck−)

Then, the result follows from a slight modification in the
proof of the RDSA algorithm [14, Chapter 5.6 and 10.7],
which takes into account that ck−d

′
k 6= ck+d

′
k. �

Despite initial impressions, the assumptions on the prob-
lem parameters are quite weak. The smoothness condition
on L (A1) guarantees that the estimate of the gradient
ĝk is almost surely an unbiased estimate of gk to within
an O(c2k) error, which is guaranteed to be small by the
assumptions on the design parameters. In related work [3],
[7], the assumptions on the signal field are stronger than
ours because (A1) is satisfied whenever the real signal can
be modeled reasonably by an almost everywhere three times
differentiable and bounded function. For example, a wireless
signal is typically modeled by a function, which depends
on the inverse squared distance between the measurement
point and the source and is smooth everywhere except at
the source [15]. Assumption (A2) places no restrictions on
the distribution of the signal noise and only requires that it
has a finite second moment, which is valid for a variety of
situations. For example, the noise associated with the free-
space loss of a wireless signal is modeled as a Rayleigh
distribution, which has finite variance. The second part of
(A2) requires that the noise is a martingale difference but if
necessary this can be weakened to the case of correlated
noise (see [14, Chap 6]). Assumption (A3) is the most
challenging to verify in the general theory of stochastic
approximation but in our application it can be dealt with
by assuming that the workspace W is bounded.

IV. INCORPORATING GEOMETRIC CONSTRAINTS AND
ROBOT CHARACTERISTICS

This section provides specific guidelines for successful
application of the source seeking algorithm to a mobile robot.
The assumption that the workspace W is convex is relaxed
since our goal is to apply the algorithm in an environment
with obstacles. As a result, the theoretical almost sure
convergence result from the previous section is lost but we
would like to show that the algorithm still works in practice
with the appropriate choice of parameters.

Of course, there are environments in which the obstacle
configuration prevents the robot from finding the source even
if it is reachable. Often, the estimate of the source location,
which the robot makes based on its approximation of the
directional gradient, is outside of the explored portion of the
environment. The robot attempts to reach it for a certain time
limit τ , after which the next iteration is started, i.e. the robot
samples at its current position to get a new source estimate.
The planned trajectory to the source estimate cannot be fol-
lowed indefinitely because in the worst case, there might not
be a feasible path. The stochastic approximation algorithm
will not be successful in environments which require the
robot to go in a direction opposite to the directional gradient

of the signal field for a period of time longer than τ because
the robot might get stuck going back and forth.

The rest of this section concentrates on the choice of
the design parameters ak, µk, ck− , and, ck+ with two
goals in mind: first to take the geometric constraints of the
environment and the robot characteristics into account so
that the generated sampling points {(pk, pk− , pk+)} are easy
to follow and second to provide only a few high-level and
intuitive parameters to the user of the algorithm. As a result,
the choice of the design parameters is simplified to specifying
only the following two constants:
• Aggressiveness factor r > 0: a constant determining the

size of the steps of the algorithm. Intuitively, r is the
amount of meters, by which the position of the robot is
expected to change in the early iterations. The further
away the source is expected to be, the larger the value
of r should be.

• Stability factor s ≥ 0: a constant which allows for large
steps in the early iterations of the algorithm without
causing instabilities. It should be set to 5− 10 percent
of the expected number of iterations of the algorithm.

A. Choosing the direction vectors dk
Several choices for the distributions of dk have been

considered in literature [16], [14], [17] with a Bernoulli
distribution in each coordinate being preferred in applica-
tions. We note that the Bernoulli distribution is an optimal
choice only for signal fields, which are aligned with the
coordinate axes in a way that their third cross-derivatives
∂3L/∂xi∂xj∂xk are all zero [18]. Since the signal field
will not be axis aligned in a non-convex W it is beneficial
to choose dk uniformly from all possible directions. In
particular, we let µk be a Shell distribution, which is defined
as follows: choose di ∼ N(0, 1) for i = 1, . . . , n and then
rescale the vector to guarantee that its magnitude is

√
n as

required in Proposition 1.

B. Choosing the gradient gains ak
The usual form used for the gradient gain coefficients in

literature [16], [14] is:

ak =
a

(k + 1 + s)α
, k = 0, 1, . . . , (4)

where a > 0 is a constant, s is the stability factor mentioned
earlier, and α > 0 governs the decay rate for the gains and
can be set to α = 0.602 as suggested in [16, chap. 6].

A modification to this choice is required for our applica-
tion. If the numerator a is constant, the gain coefficients ak
are monotonically decreasing, which is not desirable because
the robot will be taking decreasing steps along the gradient
and it might get trapped in a location, where the magnitude
of the gradient estimate is small. We replace a with a
varying numerator a0k > 0, which is inversely proportional
to the magnitude of the gradient estimate. This is beneficial
because when the magnitude of the gradient estimate is large,
the robot takes small steps in a controlled manner towards
the source but if the magnitude of the gradient estimate



decreases, the gain coefficients increase allowing the robot
to follow the gradient even if the signal field is very flat.
Based on these observations we propose:

a0k =
r(1 + s)α

1
w

∑k
j=k+1−w

1
n‖ĝj(pj)‖1

, k = 0, 1, . . . , (5)

where r is the aggressiveness factor, w ∈ N is a window over
which the mean magnitude of the elements of ĝk is averaged,
and n is the dimension of ĝk. The size of w determines the
speed at which ak reacts to changes in the magnitude of the
gradient estimate. We used w = 10 in our experiments.

C. Choosing the sample point gains ck− and ck+
A typical schedule used in the stochastic approximation

literature [16], [14] for the sample point gain coefficients is:

ck− =
c0−

(k + 1)γ
, ck+ =

c0+
(k + 1)γ

, k = 0, 1, . . . , (6)

where c0−, c
0
+ ∈ R≥0 are constants and γ ∈ R>0 is the

gain decay rate. In practical applications, a slow decay leads
to better finite sample performance and a good choice is
γ = 0.101 (see e.g. [16]). The constants c0− and c0+ are
typically set to the standard deviation of the measurement
noise in L at the current position of the robot by measuring
the signal several times.

The gains ck− , ck+ , and the direction vector dk affect the
position of the sampling points pk− and pk+ as specified in
(2). While the choice in (6) is applicable to the obstacle-free
case, when dealing with a general environment it needs to
be modified to accommodate for the constraints introduced
by the obstacles. Let bk+ be the value for ck+ originally
suggested by the form in (6). Suppose that the robot is
traveling from its previous estimate pk−1 towards pk. As
soon as pk is in the field of view F (s), we choose pk+ in
F (s) to ensure that it is reachable. Algorithm 1 with y ← pk
and r ← bk+ shows how to sample dk and simultaneously
choose ck+ , with a magnitude as close to bk+ as possible.
The shell distribution is sampled for a direction dk, which

Algorithm 1 Rejection Sampling of dk
1: Input: Position y ∈ Rn in the robot body frame, radius r ∈ R≥0,

and field of view F (s) ⊆W
2: Output: Step size ck+

and direction vector dk
3: Let dS be a small area element on the surface of the hypersphere of

radius
√
n centered at y

4: count← 1
5: repeat
6: Sample dk from the shell distribution
7: if (1− P({dk ∈ dS}))count < 0.05 then
8: decrease r; count← 1
9: else

10: count← count+ 1
11: until r = 0 or there is a path between y and (y + rdk) in F (s)
12: return dk and ck+

← r

selects a possible sample point q = pk + rdk. Line 11
checks if the path from pk to q is within the robot’s field
of view and if so the chosen values for dk and ck+ ← r
are returned. Otherwise, another sample for dk is chosen.
Thus, the allowable values for pk+ = pk + ck+dk lie on the

Fig. 1. A Scarab robot equipped with an XBee-PRO RF module.

intersection of the field of view F (s) and the ball of radius
r
√
n centered at pk. Due to the obstacles, there might not be

a feasible choice for dk with the specified radius r. When
the probability of selecting a sampling point in any small
region dS on the surface of the sphere of radius r is above
95% but a suitable direction has not been chosen yet, the
radius is decreased (Line 6).

Once the direction dk is known, the choice of ck− is the
maximum distance that can be traveled along −dk starting
from pk and up to bk+ or until an obstacle is reached.

V. PERFORMANCE EVALUATION

We carried out simulations and real-world experiments
in an indoor environment using a differential drive robot
to seek a wireless signal source in order to evaluate the
validity of our approach to source seeking. We used an A∗

planner to generate a feasible path along the sampling points
supplied by the algorithm. The robot was controlled using
a predictive controller, which simulates possible trajectories
over a short time horizon and evaluates them based on
a multi-objective cost function, which takes into account
orientation correctness, proximity to the planned path, speed,
obstacle avoidance, and distance to the goal. Details about
the implementation of the controller are presented in [19].

A. Platform Description

1) Robot: The real-world experiments were carried out
on a nonholonomic Scarab robot (Fig. 1), which is equipped
with an on-board computer, power management system,
wireless communication, and is actuated by stepper motors. It
uses a Hokuyo URG laser range finder for obstacle detection.
Its physical dimensions are 30 x 28 x 20 cm with a mass of
8kg. Two Scarabs were used in the source seeking scenario,
one transmitting a wireless signal and the other acting as
a seeker. The received signal strength (RSS) between the
source and the seeker was measured using a XBee-PRO RF
module.

2) Simulation software: Simulations were carried out in
MATLAB using a simulated wireless signal field of the
form: L(z) = Ptx(z) + Gtx(z) − Ltx(z) − Lfs(z) −
Lm(z)+Grx(z)−Lrx(z), where Ptx is the transmitter output
power, Gtx is the transmitter antenna gain, Ltx represents
transmitter losses, Grx is the receiver antenna gain, and Lrx
represents receiver losses. Furthermore, Lfs is a free space
loss calculated as follows:

Lfs(z) = −27.55 + 20 log10 2400 + 20 log10 ‖z− zsrc‖−R

where z is the measurement position and R =
√
X2 + Y 2

is the signal noise with parameters X ∼ N(ν cos θ, σ2) and
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Fig. 2. A path followed by the robot after 20 iterations of the source
seeking algorithm in an obstacle-free environment. The blue circles indicate
positions at which the robot measured the signal strength. The white dots
indicate the starting and final positions of the robot and are 21.85 m and
1.47 m away, respectively, from the actual position of the source.
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Fig. 3. Distance to the source calculated over 50 independent replications
of the algorithm for several run lengths in an obstacle-free environment.
The source was 21.85 m away. The bars show one standard deviation.

Y ∼ N(ν sin θ, σ2) for some real θ, ν, and σ2. Finally, a
multi-wall path loss model Lm described in [20] was used.

B. Simulation Results

A set of simulations was run for an obstacle-free environ-
ment using the wireless field model described above. The
positions of the source and the seeker as well as a sample
trajectory after 20 iterations of the algorithm are shown in
Fig. 2. The final distance to the source after running the
algorithm for several run lengths is shown in Fig. 3. For
each run length, the performance was averaged over 50
independent runs of the RDSA algorithm. These results con-
firm experimentally the convergence guarantees for a convex
(obstacle-free) workspace. Starting 21.85 meters away and
running the algorithm for only 30 iterations resulted in a
mean error in the source estimate of less than 30 cm. For
these simulations we used r = 1.5, s = 4, and w = 10.

Next, we applied the algorithm to non-convex environ-
ments, for which convergence to the source cannot be
guaranteed theoretically. Fig. 4 shows an example trajectory
followed by the source seeker during a simulated run on
a map of out engineering department. We simulated 50
independent replications for seven different run lengths to
investigate the finite-sample performance (Fig. 5). We can
see that as the number of iterations increases, the mean
distance from the estimated source position to the actual
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Fig. 4. A path followed by the robot while running the source seeking
algorithm for 20 iterations. The white dots indicate the starting and the final
positions. The seeker and the source were 17.85 m apart initially and 0.75
m apart in the end.
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Fig. 5. Distance to the source calculated over 50 independent replications of
the algorithm for several run lengths in an environment with obstacles. The
initial distance from the source was 17.85 m. The bars show one standard
deviation from the mean.

one decreases. The variance in the position of the source
estimate in this case is much larger than in the obstacle-free
case because when obstacles are present the robot can get
trapped as mentioned in the beginning of Section IV and
then its estimate of the source does not improve regardless
of how long the algorithm is run for. The parameters in this
case were r = 2.5 and s = 7.

C. Experiment Results

The simulations show that the finite time performance of
the algorithm is good even in non-convex environments but
suffer from one drawback. It is difficult to develop a realistic
RSS model for an indoor environment because temporal and
spatial fluctuations in the signal due to fading and shadowing
are very significant [15]. To evaluate the applicability of the
stochastic gradient algorithm to a real wireless signal and to
study the implementation issues in detail, we resorted to real-
world experiments. Fig. 6 shows the map of the environment
and the trajectory followed by the robot after 10 iterations
of the algorithm in one of the experiments. The parameters
were r = 3.5 and s = 4. Several experiments with various
starting positions of the source and the seeker were run in
the same environment. While we do not have enough data
to reproduce the extensive convergence analysis shown in
the simulations subsection, the experiments showed that the
algorithm is applicable to real signals.
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Fig. 6. Path followed by the robot in a real experiment on the fourth floor of
the ESE Department, UPenn, for 10 iterations of the algorithm. The seeker
was 17.9 m away from the source initially. The red circle shows the final es-
timate of the source location and is 2.2 m away from the actual one, denoted
by the blue cross. See attached video or http://www.seas.upenn.
edu/˜atanasov/ICRA2012_StochasticSourceSeeking.mp4
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Fig. 7. History of measurements taken by the robot while seeking for the
source in a real experiment.

A video demonstrating the performance of the source seek-
ing algorithm for the scenario shown in Fig. 6 is submitted
as an attachment. The robot’s movement is less erratic when
further away from the source because the change in the
gradient is significant and easy to discern. Closer to the
source, however, the signal field is relatively flat and the
noise in the measurements affects the gradient estimation
significantly. Fig. 7 shows the wireless signal measurements
taken by the robot in the experiment shown in the video.

VI. CONCLUSION

This paper presents a strategy for estimating the position of
a signal source in a complex environment, using a stochastic
gradient descent algorithm. Our approach is applicable to
robots with various types of dynamics, signal fields corrupted
with stochastic noise, and environments with general obstacle
configurations. No prior knowledge of the environment or the
signal field is required.

Among the drawbacks of the stochastic approximation
algorithm is its sensitivity to the choice of parameters. We
have provided specific guidelines which take the geometric
constraints of the environment into account and reduce the
choice to two intuitive high-level parameters. These new
parameters are the main determinant of the algorithm’s

performance and are easier to specify because they can be
interpreted in physical terms.

Even though the convergence of the algorithm is theoret-
ically guaranteed only asymptotically and for obstacle-free
environments, our experiments suggest that the algorithm has
good finite time performance in complex real environments.
In future work we plan to carry out additional real-world
experiments in order to reproduce the extensive convergence
analysis which was performed for the simulations. Addition-
ally, we would like to investigate how much leniency there
is in the choice of the high-level parameters and to apply the
algorithm to other signals, which are difficult to model.
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