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Abstract— Studies of traffic dynamics rely either on macro-
scopic models considering the traffic as a fluid, or on micro-
scopic models of drivers’ behavior. The connection between
the microscopic and macroscopic scales is often done via
empirical relationships such as the fundamental diagram for
macroscopic models, relating traffic flow or average velocity and
traffic density. In this paper, we consider a microscopic model
consisting of a large number of rational, utility-maximizing
drivers interacting on a single road. We then use the theory
of Mean Field Games (MFG) to deduce a macroscopic model
of traffic density emerging from these interactions. We show
how to determine a microscopic utility function for the drivers
compatible with standard empirical macroscopic fundamen-
tal diagrams. In addition to connecting the microscopic and
macroscopic models analytically rather than empirically, our
approach can offer additional flexibility to model drivers at the
macroscopic level, using a Hamilton-Jacobi-Bellman equation
coupled with the standard conservation law for the vehicles.

I. INTRODUCTION

Traffic modeling is a major area of study in transportation
engineering, since the accuracy of traffic predictions depends
directly on the quality of the models used [1]. Accurate
traffic predictions provide an invaluable service to the drivers,
allowing them to estimate their time to destination, and can
enable feedback in traffic control laws to mitigate congestion.

Macroscopic traffic models [2], [3] involve two fundamen-
tal quantities that depend on space and time, namely the
density of vehicles and the average velocity of traffic. Hence,
these models must be based on at least two equations. One of
them is simply the conservation law for the vehicles, inspired
by fluid mechanics. The other one depends on the model
chosen. In many cases [4]–[6], studies collect empirical data
to draw a fundamental diagram expressing velocity at each
location and time as a static function of density, see Fig. 1.
A fundamental diagram is typically valid for a given road
segment and possibly a time period of the day. Once this
fundamental relation is assumed, one can solve the resulting
partial differential equation (PDE) to compute the traffic
density [1]. Let us also mention second-order models [7],
which add a PDE modeling the traffic acceleration instead
of postulating a static fundamental diagram.

In addition to macroscopic models, traffic dynamics can
also be represented by microscopic models capturing the
dynamics of individual cars and their interactions. The most
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Fig. 1. An example of fundamental diagram, modeling in this case the
mean traffic velocity at position x as an affine function of the density of
vehicles at x. The relationship is typically obtained by least-squares fitting
of empirical observations at different locations and times on a given road
segment.

popular of these models are leader-follower models [8],
where a second-order ordinary differential equation models
the dynamics of each car, with the acceleration depending
on the separation distance with the car immediately in front
of it on the road. Given that the dimension of the state
space of the resulting system of differential equations scales
linearly with the number of cars, in practice such models
are more useful for simulation than mathematical analysis.
However, microscopic models have the desirable feature of
starting from first principles characterizing individual drivers,
hence they allow a priori the modeling of a richer set of
behaviors than macroscopic models. Connecting microscopic
and macroscopic models is thus of particular interest, as
it allows for example to calibrate certain parameters of
macroscopic models from observable microscopic quantities.
One can show in particular that certain macroscopic models
can be obtained as limits in a well-defined sense of leader-
follower models, when the number of vehicles tends to
infinity under an appropriate space and time scaling [4], [9].

In this paper we propose a new way of connecting micro-
scopic and macroscopic traffic models, using the approach of
Mean-Field Games (MFGs) [10]–[12]. This approach gives
us much freedom to define the behavior of individual drivers
at a microscopic level as utility-maximizing agents, with-
out restricting ourselves to the structure of leader-follower
models. At the same time, MFGs provide a framework to



derive a corresponding macroscopic model as the number of
drivers tends to infinity. In this case, each driver’s behavior is
influenced by the traffic density through his utility function,
and the evolution of the density must be consistent with
each driver maximizing his utility. Hence, the evolution of
traffic density and velocity is now described by a PDE system
composed of a Hamilton-Jacobi-Bellman equation describing
the average driver’s behavior, in addition to the conservation
law. The relationship between velocity and density is thus
dynamic as in second-order models. By choosing the mean
driver’s utility function appropriately, it is possible to fit
empirical observations such as the fundamental diagram.
This approach allows us to model the drivers in a natural
game theoretic framework rather than as simple kinematic
particles, which potentially opens the door to translating a
rich set of new behaviors to macroscopic models.

The rest of this paper is organized as follows. Section II
describes a microscopic game theoretic traffic model with
N drivers on a single road segment, which is the stan-
dard geometry used to derive classical macroscopic models
[1]. In Section III we analyse this problem as N tends
to infinity, from the point of view of MFGs. Section IV
discusses numerical methods to solve the coupled PDEs
of the macroscopic model, examples of simulation results,
and an application to fundamental diagram modeling from
microscopic parameters. Section V concludes the paper.

II. MODELING THE N DRIVERS PROBLEM

We consider a straight road on which N cars indexed by
i ∈ {1, 2, ..., N} are traveling in one direction. We denote
by L the length of this road, and consider for simplicity
that there is only one lane on the road, so that drivers
are not able to overtake each other, as in many standard
models [1], [9]. We assume then that the cars are ordered by
increasing value of the index i, with car i + 1 traveling in
front of car i. Driver i’s position is denoted xi(t) ∈ R, his
velocity is vi(t), and his motion extends from xi(0) = x0

i

to xi(T ) = xfi , with T > 0. For simplicity again, the
dynamics of each vehicle is described by a single integrator
dxi(t)
dt = vi(t), ∀i ∈ {1, 2, . . . , N} . The state of the

system at time t is given by the collection of car positions
x(t) := [x1(t), ..., xN (t)]T , and the vector of drivers’ deci-
sions expressing how they set their velocity at time t is given
by v(t) := [v1(t), ..., vN (t)]T .

Driver i sets vi(t) so as to maximize a benefit
JNi,T (v1, ..., vN ) :=

∫ T
0
fNi (x,v)dt defined as the integral

over the time horizon T of a utility function denoted
fNi (x,v) := fNi (x1, ..., xN , v1, ...vN ). Since this scenario
describes a non-cooperative dynamic game, we are interested
here in Nash equilibria, where each agent provides a best
response given the state and strategy of all other agents.
Exact computation of these equilibria for N large is in
general a difficult problem.

For concreteness and illustration purposes, in this paper

we assume the following utility function for the ith driver

fNi (x,v) = fNi (x, vi)

= vi

1− F

 1

N

∑
j>i

w(xj − xi)

− 1

2
αv2

i , (1)

which is the sum of three terms. The first term vi models
the fact that drivers want to arrive to their destination as
fast as possible. The last term −αv2

i /2 models the drivers’
carefulness when their velocity is too high, independently
of the traffic conditions. This term could also model the fact
that drivers want to limit their gas consumption, which is pro-
portional to the square or the cube of the velocity in classic
fluid friction models. Finally, the term −viF ((

∑
j>i w(xj−

xi))/N) models the fact that driver i adapts his velocity
to the positions of the cars in front of him, depending
on their distances. We introduce a weight w(xj − xi) for
each car j located in front of the ith driver, where w
is a bounded non-negative function on R+. This function
w is called the anticipation function in the following (see
also [7] for a similar terminology), since it captures how
drivers adapt their velocity to anticipate the behavior of cars
located in front of them. Note that in contrast to standard
leader-follower microscopic models, we do not restrict the
influence of the preceding cars on driver i to that of the
car immediately preceding him. Finally, the function F is
positive and increasing, with F (0) = 0. To illustrate the
usefulness of the model (1), we show below that F can
be determined to obtain a velocity-density profile consistent
with the empirical data of a fundamental diagram such as
the one of Fig. 1. Note that the factor 1

N before the sum∑
j>i w(xj − xi) allows us to bound the influence of the

drivers as N becomes large.
Remark 1: In the absence of traffic, a driver’s optimal

velocity is vmax := 1
α . In the presence of traffic, the velocity

that maximizes a driver’s benefit is always lower than vmax.

III. MEAN FIELD GAME ANALYSIS

In this section, we consider a sequence of N -driver
problems as defined previously, with N increasing to infinity.
This leads us via a heuristic argument to define a limiting
problem corresponding to a Mean-Field Game where a driver
adjusts his behavior based on the traffic density in front of
him.

Let FNt (x) = 1
N

∑N
i=1 1{xi(t)≤x} be the empirical distri-

bution function of the drivers at time t ≥ 0, in the N -driver
problem. Then 1

N

∑
j>i w(xj−xi) =

∫∞
xi
w(y−xi)dFNt (y),

where the right-hand side is the Lebesgue-Stieltjes integral.
If there exists a non-decreasing right-continuous fonction
x 7→ Ft(x) such that

∫∞
xi
w(y − xi)dFNt (y) →

∫∞
xi
w(y −

xi)dFt(y) as N tends to infinity, and if moreover the
measure on R defined by µt((a, b]) = Ft(b)−Ft(a) admits
a density mt(x) with respect to the Lebesgue measure, then
we have

lim
N→∞

1

N

∑
j>i

w(xj − xi)→
∫ ∞
xi

w(y − xi)mt(y)dy.



In this case mt(x) represents the number of cars in the
interval [x, x + dx]. We make the assumption in this paper
that such a density exists.

We are thus led to the following limit problem for each
generic agent or “mean player”, which we call the Mean-
Field Game (MFG)

max
v(·)

JT (v) :=

∫ T

0

f(mt, x(t), v(t))dt

where {mt, t ∈ [0, T ]} is an (a priori unknown) flow of
traffic density functions, the mean player dynamics is dx

dt = v
and his utility function is

f(m,x, v) = v

(
1− F

(∫ ∞
x

m(y)w(y − x)dy

))
− 1

2
αv2.

(2)

A. Myopic Drivers

Before providing a solution for the previous MFG prob-
lem, in this subsection we consider the behavior of an
average driver who only maximizes its instantaneous utility
f(mt, x(t), v(t)) at each time instead of JT , which corre-
sponds to a model of bounded rationality. Simply remarking
that f is concave in v, the instantaneous myopic velocity is
then obtained as

∂f(mt, x(t), v)

∂v
= 0⇐⇒

v(t) =
1

α

(
1− F

(∫ ∞
x(t)

mt(y)w(y − x(t))dy

))
. (3)

We can use this myopic solution for example to choose F
in order to fit the empirical data of Fig. 1 say, i.e.,

v(t) = vmax

(
1− mt(x(t))

mlim

)
, ∀t,

assuming again myopic behavior of the drivers. Here mlim is
the traffic jam density and vmax the maximal traffic velocity.
A possible choice for F and w is

w(y) = δ(y), F (z) =
z

mlim
, (4)

where δ denotes the Dirac delta. Note that the fundamental
diagram makes the assumption that the average traffic veloc-
ity at x does not depend on the traffic conditions in front of
x, but only on the density at x.

The empirically fitted profile of Fig. 1 gives v(t) only
as a function of mt(x(t)). With our model, we can have
such a profile when choosing w(x) = δ(x). Keeping the
same function F as in (4) but using w to take into account
the upstream traffic, we obtain the following more general
relationship between velocity and density

v(t) = vmax

(
1−

∫ ∞
x(t)

mt(y)

mlim
w(y − x(t))dy

)
. (5)

B. Nash-MFG Equilibrium

We now return to the MFG problem and the maximization
of the utility function by each individual over the entire time
horizon. Since we are facing a game, the solution concept
considered needs to be defined. The Nash-MFG equilibrium
is defined as the situation in which the “mean driver” sets its
velocity to maximize his integral utility JT while anticipating
the behavior of the mean field, that is to say, the evolution
of the density of the other drivers. Since each driver is doing
the same, to have an equilibrium the dynamics of this density
must be consistent with the control actions of the individuals.
We define for t ∈ [0, T ] the value function

Vt(x) = max
v(·)

∫ T

t

f(mτ , x(τ), v(τ)) dτ.

For the existence and unicity of a Nash-MFG equilibrium,
we must make some additional assumptions.

Assumption 1: F is Lipschitz on its domain of definition,
and m0 is absolutely continuous and has a second order
moment, i.e.,

∫
R y

2m0(y)dy < +∞.

Theorem 1: Under Assumption 1, the following PDE sys-
tem

∂Vt(x)

∂t
+ max

v

{
f(mt, x, v) + v

∂Vt(x)

∂x

}
= 0 (HJB)

∂mt(x)

∂t
+
∂(mt(x) vt(x))

∂x
= 0 (CL)

VT (x) = 0, m0(x) given, for all x,

where vt(x) in (CL) is the maximizing value of v in (HJB),
has a unique solution (x, t) 7→ (Vt(x),mt(x)). We call
this solution together with (x, t) 7→ vt(x) the Nash-MFG
equilibrium.
The proof of Theorem 1 follows [13, Theorem 3.1]. Equation
(HJB) is a Hamilton-Jacobi-Bellman equation and (CL) is a
conservation law for the drivers’ density. Note also that for
the assumed utility fonction (2), which is quadratic in v, the
maximization in (HJB) can be performed explicitly to yield

vt(x) =
1

α

(
1− F

(∫ ∞
x

mt(y)w(y − x)dy

)
+
∂Vt(x)

∂x

)
,

(6)

and thus the maxv can be removed from the equation by
substitution of this solution.

Remark 2: The quantity v(t) in the previous sections is a
Lagrangian velocity, i.e., the velocity of a moving driver with
trajectory x(t). Theorem 1 provides an Eulerian velocity field
vt(x), i.e., the mean-driver’s velocity at location x at time t.
The relation between the two quantities is v(t) = vt(x(t)).

IV. SIMULATIONS AND RESULTS

In this section, we discuss numerical schemes to compute
a Nash-MFG equilibrium, as well as some simulation results.
Since it is more convenient to work with dimensionless
variables, we define ρt(x) = mt(x)

mlim
, where mlim was defined

above (4). We take (with a slight abuse of notation) F (ρ) = ρ
to be the function (4), found to be compatible with an affine



velocity/density relationship under the myopic solution, and
redefine

f(ρ, x, v) = v

(
1−

∫ ∞
x

ρ(y)w(y − x)dy

)
− 1

2
αv2

accordingly. The triple {ρt(x), vt(x), Vt(x)} is the solution
of the PDE system

∂Vt(x)

∂t
+ max

v

{
f(ρt, x, v) + v

∂Vt(x)

∂x

}
= 0 (7a)

∂ρt
∂t

(x) +
∂(ρt(x)vt(x))

∂x
= 0 (7b)

VT (x) = 0, ρ0(x) given (7c)

where vt(x) is the result of the maximization in (7a), which
is computable explicitly as explained in the previous section.

A. Backward-forward iterations

System (7) is a backward-forward nonlinear PDE system.
To solve it numerically, we solve (7a) backwards, starting
from VT (x) = 0, assuming initially ρt(x) = ρ0(x), for all
t ∈ [0, T ]. We then inject the solution v(1) found after this
step in the forward conservation equation (7b) to find a new
solution ρt(x) denoted ρ(1), assuming the initial condition
ρ0(x) and v = v(1). We continue to iterate these two steps
until the solutions converge to a fixed point.

To solve numerically this system, we introduce the step-
sizes ∆x = L

m and ∆t = T
n where m,n are integers. We

define ρij , v
i
j and V ij to be the approximations of ρj∆t(i∆x),

vj∆t(i∆x) and Vj∆t(i∆x) for i ∈ {0, . . . ,m} and j ∈
{0, . . . , n}. The following finite differences scheme is used
to solve the backward HJB equation [14]

V ij+1−V
i
j

∆t + 1
2α(vij)

2 = 0

vij = 1
α

(
1− ρ̃ij +

V i+1
j −V ij

∆x

)
where ρ̃ij =

∑
k≥i ρ

k
jw ((k − i)∆x) ∆x is the numerical

approximation for
∫∞
i∆x

ρj∆t(y − i∆x)w(y)dy.
We solve the conservative equation (7b) with a finite

volume conservative Lax-Wendroff scheme [15]. Define

ρij =
1

∆x

∫ xi+1/2

xi−1/2

ρj∆t(x)dx

where xi±1/2 =
(
i± 1

2

)
∆x. Defining ρi(t) =

1
∆x

∫ xi+1/2

xi−1/2
ρt(x)dx and integrating (7b) between xi−1/2 and

xi+1/2, we obtain

dρi

dt
(t) =− 1

∆x
{ρt(xi+1/2)v(xi+1/2, t)

− ρt(xi−1/2)v(xi−1/2, t)}.

Integrating this equation between j∆t and (j+1)∆t, we get

ρij+1 = ρij −
1

∆x

∫ (j+1)∆t

j∆t

{ρt(xi+1/2)v(xi+1/2, t)

−ρt(xi−1/2)v(xi−1/2, t)}dt.

The Lax-Wendroff method consists in doing the following
approximation∫ (j+1)∆t

j∆t

ρt(xi+1/2)v(xi+1/2, t)dt ≈
∆t

2
(ρijv

i
j + ρi+1

j vi+1
j )

− (∆t)3

2∆x

vij + vi+1
j

2
(ρi+1
j vi+1

j − ρijvij).

We then get the following explicit scheme for the conserva-
tion equation (7b)

ρij+1 = ρij −
∆t

2∆x
(ρi+1
j vi+1

j − ρi−1
j vi−1

j )

+
1

2

(
∆t

∆x

)2 {vij + vi+1
j

2
(ρi+1
j vi+1

j − ρijvij)

−
vi−1
j + vij

2
(ρijv

i
j − ρi−1

j vi−1
j )

}
.

For the scheme to be consistent (in this case, to the second
order), we must also impose the Courant-Friedrichs-Lewy
condition on the stepsizes, i.e., ∆t < α∆x [15].

B. Convergence of the algorithm

Let ρ(k) = {(ρij)k, i ∈ {0, . . . ,m}, j ∈ {0, . . . , n}}
be the solution obtained after k ∈ N backward-forward
iterations. To show numerically that the algorithm converges
to a fixed function, we consider the squared L2 distance
between ρ(k+1) and ρ(k)

ε2k =
∥∥∥ρ(k+1) − ρ(k)

∥∥∥2

=

n∑
j=0

m∑
i=0

((ρij)k+1 − (ρij)k)2∆x∆t.

If this quantity converges to zero fast enough, the algorithm
converges to a fixed function.

Proposition 1: The forward-backward algorithm con-
verges if

∑
k≥0 εk <∞.

Proof: By the triangle inequality, we have for k, p ∈ N∥∥∥ρ(k+p) − ρ(k)
∥∥∥ ≤ p−1∑

l=0

∥∥∥ρ(k+l+1) − ρ(k+l)
∥∥∥
L2

≤
p−1∑
l=0

εk+l ≤
∑
l≥k

εl.

The last quantity tends to 0 as k tends to infinity. Therefore,
{ρ(k)}k∈N converges since it is a Cauchy sequence.

Corollary 1: If there is a > 0 and b ∈ R such that
log εk < b− ak, the forward-backward algorithm converges.

C. Numerical results

1) Dirac anticipation function: We first compute solu-
tions for an initially non-saturated traffic, with ρ0 having
a (truncated) Gaussian profile, maxx ρ0(x) = 1

4 , and a Dirac
anticipation function w = δ. Fig. 2 gives an example of
traffic evolution for the Nash-MFG equilibrium. We see that
the maximal density decreases over time, which means that
traffic tends to get less congested, as expected. Fig. 3 shows
the final velocity distribution at t = T as a function of x,
confirming that the velocity decreases with higher density.
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Fig. 3. Profile of the final velocity vT (x), for the scenario of Fig. 2.

The fact that the distribution is symmetric with respect to its
maximum point is expected, since with w = δ the drivers
do not account for the density in front of them to set their
velocity. The convergence of the algorithm is illustrated on
Fig. 4. We see that log εk seems to be decreasing linearly
asymptotically, which means from Corollary 1 that the algo-
rithm converges to a fixed point.

2) Exponentially decaying anticipation function: We re-
peat the preceding simulations, but for a more realistic
anticipation function, in this case

w(y) =
1

λ
e−

y
λ , (8)

with λ a positive parameter. We choose λ somewhat arbi-
trarily for illustration purposes to be 0.1

√
V ar(X0) where

V ar(X0) =
∫
R(x − E(X0))2ρ0(x)dx, with E(X0) =∫

R xρ0(x)dx. The results of this simulation are presented
on Fig. 5 and 6. We see in particular that the velocity
profile becomes non-symmetric, because of the drivers now
adjusting their velocity to the traffic density in front of them,
in particular slowing down sooner as they sense the higher
density upstream.

3) Comparison between the anticipation functions and
fundamental diagram: Fig. 7 attempts to illustrate the re-
lationship between velocity and density similarly to the fun-
damental diagram, when w is a Dirac (blue curve) and when
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Fig. 4. Evolution of the quantity log ε2k as a function of the number of
iterations k. The condition of the corollary 1 appears to be met.
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Fig. 5. Evolution of the traffic density from t = 0 to t = T for the same
parameters as on Fig. 2, except for w(y) = 1

λ
e−

y
λ .

w is the exponentially decaying function (8) (red curves). In
the second case, we represented two curves corresponding
to the situations where the driver is behind or in front of
the density spike. Drivers located in front of the spike, who
do not see a higher traffic density in front of them, drive
faster when their anticipation function is not a simple Dirac
function, which is intuitively plausible. Mathematically, this
is explained by the fact that

∫∞
x
ρt(y)w(y − x)dy < ρt(x)

when ρt(·) is decreasing in x, since
∫∞

0
w(y)dy = 1. By

the same reasoning, we obtain that drivers located behind
the density spike drive more slowly as they anticipate the
slower upcoming traffic. This phenomenon caused by the
anticipation function provides thus one explanation for the
dispersion seen in Fig. 1 of the density-velocity pairs around
the fundamental diagram.

Our final result shows that for small values of λ, the
difference between the red and the blue curves caused by
the anticipation function on Fig. 7 is approximatively given
by vmaxλ

∂ρt(x)
∂x . This means that drivers will adapt their

velocity proportionally to λ. Although this result is shown
for the myopic velocity (3), which differs from the optimal
solution (6) by the term ∂Vt(x)

∂x , in this simulation the latter
term turns out to be small and the two solutions are close.
This can be seen in the case of w = δ since the blue curve
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is very close to a line.
Proposition 2: Suppose that ρt(·) is n times continuously

differentiable and w is given by (8). Suppose that for each
x ∈ R and for each t ∈ [0, T ], |∂

nρt(x)
∂xn | < M . Finally,

suppose that the drivers are myopic, setting their velocity to
vt(x) = vmax

(
1−

∫∞
x
ρt(y)w(y − x)dy

)
, as in (5). Then

we have vt(x) = vmax

(
1− ρt(x)−

∑n−1
k=1 λ

k ∂
kρt(x)
∂xk

)
+

O(λn).
Proof: Using Taylor-Lagrange formula, for x ∈ R and

y > x, there is ξ ∈]x, y[ such that

ρt(y) = ρt(x) +

n−1∑
k=1

(y − x)k

k!

∂kρt(x)

∂xk
+

(y − x)n

n!

∂nρt(ξ)

∂xn
.

By the definition of the Γ function, we have
∫∞

0
yke−ydy =

k!, and hence

vt(x) = vmax

(
1−

∫ ∞
x

ρt(y)w(y − x)dy

)
= vmax

(
1−

n−1∑
k=0

∂kρt(x)

∂xk

∫ ∞
x

(y − x)k

k!
e−

(y−x)
λ dy

)

+ vmax

∫ ∞
x

(y − x)n

n!

∂nρt(ξ)

∂xn
e−

y−x
λ dy

vt(x) = vmax

(
1− ρt(x)−

n−1∑
k=1

λk
∂kρt(x)

∂xk

)

+vmax

∫ ∞
x

(y − x)n

n!

∂nρt(ξ)

∂xn
e−

y−x
λ dy.

Finally, by triangle inequality :∣∣∣∣∫ ∞
x

(y − x)n

n!

∂nρt(ξ)

∂xn
e−

y−x
λ dy

∣∣∣∣ ≤Mλn.

V. CONCLUSIONS

In this paper, we formulated an N -driver game-theoretic
problem to model the traffic dynamics on a single road. In
this model, fully rational drivers aim at maximizing the inte-
gral of their utility function. We then defined a corresponding
Mean-Field Game, justified intuitively as the limit of the
N -driver model when N goes to infinity. This new “second-
order” traffic model adds to the conservation law a backward
HJB equation representing the drivers’ behavior. We also
showed that myopic drivers in this framework are sufficient
to explain the fundamental diagram of a first order traffic
model, by setting the drivers’ utility function appropriately.
Future work will investigate more formally the link between
the MFG model and the model with N finite, in particular
the concept of ε-Nash equilibrium for the latter [11].
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Birkhäuser, 1992.


