
Multi-Agent Task Assignment in the Bandit Framework

Jerome Le Ny, Munther Dahleh and Eric Feron

Abstract— We consider a task assignment problem for a fleet
of UAVs in a surveillance/search mission. We formulate the
problem as a restless bandits problem with switching costs and
discounted rewards: there are N sites to inspect, each one of
them evolving as a Markov chain, with different transition
probabilities if the site is inspected or not. The sites evolve
independently of each other, there are transition costs ci j for
moving between sites i and j∈ {1, . . . ,N}, rewards when visiting
the sites, and we maximize a mixed objective function of these
costs and rewards. This problem is known to be PSPACE-hard.
We present a systematic method, inspired from the work of
Bertsimas and Niño-Mora [1] on restless bandits, for deriving
a linear programming relaxation for such locally decomposable
MDPs. The relaxation is computable in polynomial-time offline,
provides a bound on the achievable performance, as well as
an approximation of the cost-to-go which can be used online
in conjunction with standard suboptimal stochastic control
methods. In particular, the one-step lookahead policy based on
this approximate cost-to-go reduces to computing the optimal
value of a linear assignment problem of size N. We present
numerical experiments, for which we assess the quality of the
heuristics using the performance bound.

I. INTRODUCTION
In the past decade or so, teams of autonomous collab-

orating unmanned aerial vehicles (UAVs) have started to
be actively used to perform various tasks of surveillance,
reconnaissance and information gathering in remote or dan-
gerous environments. Yet, the problem of assigning tasks
to these vehicles is in general a complex stochastic control
problem, and there is still a need to develop efficient methods
aimed at optimizing the performance of these multi-agent
systems. The multi-armed bandit (MAB) problem has long
been recognized as an important model to help researchers in
this task, because of its generality coupled with an efficiently
computable solution. Gittins devote a chapter of his book
[2] to the application of the MAB model to search theory.
Whittle introduced one of the most interesting extension,
the restless bandits (RB) problem [3], describing a potential
application to a fleet of aircrafts trying to track the positions
of enemy submarines. As long as the targets are assumed to
evolve independently (which is usually done for tractability),
the sensor management problem becomes essentially a multi-
armed bandit or restless bandits problem where one controls
the information states of the targets [4], [5].

Unlike the basic multi-armed bandit problem however,
an optimal solution to the more expressive restless bandits
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problem is unlikely to be computable efficiently, since the
problem is known to be PSPACE-hard [6]. Moreover, in
the case of moving sensors onboard UAVs, an important
component to take into account in the objective function are
switching penalties for changing targets, adding a traveling
salesman-like feature to an already difficult problem (the
multi-armed bandit problem with switching costs is NP-
hard).

In this paper, we extend our previous work on polynomial-
time relaxations of the restless bandits problem with switch-
ing costs (RBSC) [7], from the single agent to the multi-agent
case. In Section II, we formulate the RBSC problem in the
framework of Markov decision processes (MDP). In Section
III, we show how the local structure of the objective function
(decomposable by sites to inspect) and the assumption on
the independent evolution of the states of the sites allow us
to derive systematically a relaxation for this problem. The
performance measures used in a similar way in [1] for the
restless bandits problem are always marginals of the state-
action frequencies appearing in the exact formulation. The
relaxation provides an efficiently computable bound on the
achievable performance. Section IV describes how this relax-
ation can be used to create heuristics to solve the problem
in practice, and presents numerical experiments comparing
the heuristics to the performance bound. Section V presents
a preliminary analysis toward an a priori performance bound
for our heuristics.

II. MULTI-AGENT RBSC: EXACT FORMULATION

A. The State-Action Frequency Approach to MDPs

In this section, we first review the linear programming
approach based on occupation measures to formulate Markov
decision processes (MDP). The RBSC problem is then for-
mulated in this framework. A (discrete-time) MDP is defined
by a tuple {X,A,P,c} as follows:

• X is the finite state space.
• A is the finite set of actions. A(x) ⊂ A is the subset

of actions available at state x. K = {(x,a) : x ∈ X,a ∈
A(x)} is the set of state-action pairs.

• P are the transition probabilities. Pxay is the proba-
bility of moving from state x to state y if action a is
chosen.

• r : K → R is an immediate reward.
We define the history at time t to be the sequence of

previous states and actions, as well as the current state:
ht = (x1,a1,x2,a2, . . . ,xt−1,at−1,xt). Let Ht be the set of all
possible histories of length t. A policy u in the class of
all policies U is a sequence (u1,u2, . . .). If the history ht



is observed at time t, then the controller chooses an action
a with probability ut(a|ht). A policy is called a Markov
policy (u ∈UM) if for any t, ut only depends on the state
at time t. A stationary policy (u ∈US) is a Markov policy
that does not depend on t. Under a stationary policy, the state
process becomes a Markov chain with transition probabilities
Pxy[u] = ∑a∈A(x) Pxay u(a|x). Finally, a stationary policy is
a deterministic policy (u ∈UD) if it selects an action with
probability one. Then u is identified with a map u : X → A.

We fix an initial distribution ν over the initial states. In
other words, the probability that we are at state x at time 1
is ν(x). If ν is concentrated on a single state z, we use
the Dirac notation ν(x) = δz(x). Kolmogorov’s extension
theorem guarantees that the initial distribution ν and any
given policy u determine a unique probability measure Pu

ν

over the space of trajectories of the states Xt and actions At .
We denote Eu

ν the corresponding expectation operation.
For any policy u and initial distribution ν , and for a

discount factor 0 < α < 1, we define

Rα (ν ,u) = (1−α)Eu
ν

∞

∑
t=1

α
t−1r(Xt ,At) = (1−α)

∞

∑
t=1

α
t−1Eu

ν r(Xt ,At)

(the exchange of limit and expectation is valid in the case
of finitely many states and actions using the dominated
convergence theorem).

An occupation measure corresponding to a policy u is the
total expected discounted time spent in different state-action
pairs. More precisely, we define for any initial distribution
ν , any policy u and any pair x ∈ X,a ∈ A(x):

fα(ν ,u;x,a) := (1−α)
∞

∑
t=1

α
t−1Pu

ν(Xt = x,At = a).

The set { fα(ν ,u;x,a)}x,a defines a probability measure
fα(ν ,u) on the space of state-action pairs that assigns
probability fα(ν ,u;x,a) to the pair (x,a). fα(ν ,u) is called
an occupation measure and is associated to a stationary
policy w defined by:

w(a|y) =
fα(ν ,u;y,a)

∑a∈A fα(ν ,u;y,a)
,∀y ∈ X,a ∈ A(y), (1)

whenever the denominator is non-zero, otherwise we can
choose w(a|y) arbitrarily. We can readily check that

Rα(ν ,u) = ∑
x∈X

∑
a∈A

fα(ν ,u;x,a)r(x,a). (2)

We define for any class of policies U1

Lα
U1

(ν) = ∪u∈U1 fα(ν ,u),

i.e., the set of vectors described by the class of policies
considered. Also, let Qα(ν) to be the set of vectors ρ ∈R|K |

satisfying{
∑y∈X ∑a∈A(y) ρy,a(δx(y)−αPyax) = (1−α)ν(x),∀x ∈ X
ρy,a ≥ 0, ∀y ∈ X, a ∈ A(y).

(3)
Qα(ν) is a closed polyhedron. Note that by summing the
first constraints over x we obtain ∑y,a ρy,a = 1, so ρ satisfying
the above constraints defines a probability measure. It also

follows that Qα(ν) is bounded, i.e., is a closed polytope.
One can check that the occupation measures fα(ν ,u) belong
to this polytope, i.e., Lα

U (ν) ⊆ Qα(ν). The following the-
orem states that Qα(ν) describes in fact exactly the set of
occupation measures achievable by all policies, and that each
policy can be obtained as a randomization over deterministic
policies, which represent the extreme points of the polytope
Qα(ν). See [8] for a proof under a more general form.

Theorem 1: Lα
U (ν) = Lα

US
(ν) = convLα

UD
(ν) = Qα(ν).

Since deterministic policies represent the extreme points of
the polytope of occupation measures, we know from standard
LP theory that it is sufficient to look among the deterministic
policies for a policy maximizing Rα(ν ,u). Moreover, one can
obtain an optimal occupation measure corresponding to the
maximization of (2) as the solution of a linear program over
the polytope Qα(ν).

B. Exact Formulation of the RBSC Problem

In the RBSC problem, N projects are distributed in space
at N sites, and M ≤N servers can be allocated to M different
projects at each time period t = 1,2, . . . In the following,
we use the terms project and site interchangeably; likewise,
agent and server have the same meaning (they are the UAVs
in our application). At each time period, each server must
occupy one site, and different servers must occupy distinct
sites. We say that a site is active at time t if it is visited by a
server, and is passive otherwise. If a server travels from site k
to site l, we incur a cost ckl . Each site can be in one of a finite
number of states xn ∈ Sn, for n = 1, . . . ,N, and we denote
the Cartesian product of the individual state spaces S =
S1× . . .×SN . If site n in state xn is visited, a reward r1

n(xn) is
earned, and its state changes to yn according to the transition
probability p1

xnyn . If the site is not visited, then a reward
(potentially negative) r0

n(xn) is earned for that site and its
state changes according to the transition probabilities p0

xnyn .
We assume that all sites change their states independently of
each other.

Note that if the transition costs are all 0, we recover the
initial formulation of the RB problem [3]. If in addition the
passive rewards are 0 and the passive transition matrix is the
identity matrix, we obtain the MAB problem. If we just add
the switching costs to the basic MAB problem, we call the
resulting model MABSC.

We denote the set {1, . . . ,N} by [N]. We consider that
when no agent is present at a given site, there is a fictitious
agent called passive agent at that site. We also call the real
agents active agents, since they collect active rewards. The
transition of a passive agent between sites does not involve
any switching cost, and when a passive agent is present at a
site, the passive reward is earned. Therefore, we have a total
of N agents including both the real and passive agents, and
we can describe the positions of all agents by a vector s =
(s1, . . . ,sN), which corresponds to a permutation of [N] (due
to our constraint that different agents must occupy different
sites). We denote the set of these pemutation vectors by Π[N].
The M first components correspond to the real agents. For



example, with M = 2 and N = 4, the vector (s1 = 2,s2 =
3,s3 = 1,s4 = 4) ∈Π[4] means that agent 1 is in site 2, agent
2 in site 3 and sites 1 and 4 are passive.

For an agent i ∈ [N], we refer to the other agents by −i.
If we fix si ∈ [N] for some 1 ≤ i ≤ N, then we write s−i
to denote the vector (s1, . . . ,si−1,si+1, . . . ,sN), and Π[N]−si to
denote the permutations of the set [N]−{si}. In particular,
we write ∑s−i∈Π[N]−si

to denote the sum over all permutations
of the coordinates of the agents −i, over the set of sites
not occupied by agent i. We also write S−i to denote the
Cartesian product S1× . . .Si−1×Si+1× . . .×SN .

The state of the system at time t can be described by
the state of each site and the position s ∈ Π[N] of the
servers, including the passive ones (even if more compact
state descriptions are possible, our choice is motivated by the
formulation of the relaxation in the next section). We denote
the complete state by (x1, . . . ,xN ;s1, . . . ,sN) := (x;s). We can
choose which sites are to be visited next, i.e. the action a
belongs to the set Π[N] and corresponds to the assignment
of the agents, including the passive ones, to the sites for the
time period. Once the sites to be visited are chosen, there are
costs csiai for moving the active agent i from site si to site
ai, including possibly a nonzero cost for staying at the same
site. The reward earned is ∑

M
i=1 r1

ai
(xai)+∑

N
i=M+1 r0

a j
(xa j). We

are given a distribution ν on the initial state of the system,
and we will assume a product form ν(x1, . . . ,xN ;s1, . . . ,sN) =
ν1(x1) . . .νN(xN)δd1(s1) . . .δdN (sN), i.e., the initial states of
the sites are independent and server i leaves initially from
site di, with d ∈ Π[N].

The transition matrix has a particular structure, since the
sites evolve independently and the transitions of the agents
are deterministic:

P(x′;s′)a(x;s) =
M

∏
i=1

p1
x′ai

xai

N

∏
i=M+1

p0
x′ai

xai

N

∏
i=1

δsi(ai).

With these elements, we can formulate the RBSC problem
with multiple agents as follows:

maximize

∑
s∈Π[N]

∑
a∈Π[N]

∑
x∈S

(
M

∑
i=1

(r1
ai

(xai )− csiai )+
N

∑
i=M+1

r0
ai

(xai )

)
ρ(x;s),a (4)

subject to

∑
a∈Π[N]

ρ(x;s),a−α ∑
s′∈Π[N]

∑
x′∈S

ρ(x′;s′),s

M

∏
i=1

p1
x′si

xsi

N

∏
i=M+1

p0
x′si

xsi

= (1−α)
N

∏
i=1

νi(xi)δdi (si), ∀ (x,s) ∈S ×Π[N]

ρ(x;s),a ≥ 0, ∀ ((x;s),a) ∈S ×Π
2
[N].

with the decision variables ρ(x;s),a corresponding to an occu-
pation measure. Note that the formulation above is of little
computational interest since the number of variables and
constraints is of the order of |S |×(N!)2, that is, exponential
in the size of the input.

III. LINEAR PROGRAMMING RELAXATION

The complexity result known for the restless bandits prob-
lem justifies the search for efficient methods that approximate

the optimal solution of the RBSC problem. An interesting
feature of the multi-armed bandit framework is that it leads
naturally to a Markov decision process for each site. This was
already noticed by Whittle [3] (see also [9]), whose solution
was based on relaxing the hard constraints tying the project
together, enforcing them only in average.

In this section we will see that in the state-action frequency
domain, a relaxation can be easily obtained by considering
specific marginals of the occupation measure. Once the
relaxation is obtained, we can go back to the value function
domain of dynamic programming by taking the dual of
the relaxed linear program. Then it becomes clear that the
essential features of the problem that allow the method to
work are the separable structure of the objective function and
the independence assumption of the evolution of the sites.
When the coupling between the sites increases (for instance,
when we introduce switching costs to the RB problem), the
relaxation becomes more complicated and grows in size.
In general, the method used to derive a relaxation is the
following:
(i) identify the marginals of the state-action frequencies

that are sufficient to express the objective function in
(4).

(ii) express the constraints on these marginals by partially
summing the constraints in (4).

(iii) add the constraints due to the fact that these marginals
all derive from the same state-action frequency vector.

The link between this method and the work of Bertsimas
and Nino-Mora on restless bandits [1] was also highlighted
in our previous paper [7]. As we illustrate now, this method
is relatively systematic once the original linear program has
been formulated, and in principle can be extended to derive
relaxations for other problems with a certain decomposable
structure.

We start by rewriting the objective function and we
identify the relevant marginals:

M

∑
i=1

N

∑
ai=1

∑
xai∈Sai

r1
ai
(xai)ρ

i
xai ;ai

+
N

∑
i=M+1

N

∑
ai=1

∑
xai∈Sai

r0
ai
(xai)ρ

i
xai ;ai

−
M

∑
i=1

N

∑
ai=1

N

∑
si=1

csiaiτ
i
si;ai

,

where the marginals appearing above are obtained as follows:

ρ
i
xai ;ai

= ∑
a−i∈Π[N]−ai

∑
s∈Π[N]

∑
x−ai∈S−ai

ρ(x;s),a

τ
i
si;ai

= ∑
a−i∈Π[N]−ai

∑
s−i∈Π[N]−si

∑
x∈S

ρ(x;s),a

and the superscripts refer to the agents.
Now to express the constraints for these marginals, it turns

out that the following variables are sufficient:

ρ
i
(x j ;si),ai

= ∑
x− j∈S− j

∑
s−i∈Π[N]−si

∑
a−i∈Π[N]−ai

ρ(x;s),a , (5)

∀ x j ∈ S j, ∀ (i, j,si,ai) ∈ [N]4



Clearly we have

τ
i
si;ai

= ∑
x j∈S j

ρ
i
(x j ;si),ai

= ∑
x1∈S1

ρ
i
(x1;si),ai

, ∀ (i, j,si,ai) ∈ [N]4,

(6)

ρ
i
xai ;ai

=
N

∑
si=1

ρ
i
(xai ;si),ai

, ∀ (i,ai,xai). (7)

Note that we could formulate everything in terms of the
variables (5), but we chose to introduce some additional
variables for readability. However, the second equality in
(6) is important to obtain a sufficiently strong relaxation;
it expresses a compatibility condition that is clearly true
because the marginals are obtained from the same original
distribution.

For agent i, some x ∈S and s in Π[N], we can sum the
constraints in (4) over xs j ∈ Ss j for j 6= i to get

∑
a∈Π[N]

ρ(xsi ;s),a
−α ∑

s′∈Π[N]

∑
x′si
∈Ssi

ρ(x′;s′),s p1{i≤M}
x′si

xsi
=

(1−α)νsi(xsi)δd1(s1) . . .δdN (sN), ∀ xsi ∈ Ssi ,

where 1{i ≤ M} is the indicator variable of the set {i ≤
M}. Then we can sum over s j, j 6= i, for a fixed si, rewrite
∑a∈Π[N]

= ∑
N
ai=1 ∑a−i∈Π[N]−ai

and ∑s′∈Π[N]
= ∑

N
s′i=1 ∑s′−i∈Π[N]−s′i

,
to obtain

N

∑
ai=1

ρ
i
(xsi ;si),ai

−α ∑
x′si
∈Ssi

N

∑
s′i=1

ρ
i
(x′si

;s′i),si
p1(i≤M)

x′si
xsi

=

(1−α)νsi(xsi)δdi(si) , ∀ (i,si,xsi) ∈ [N]2×Ssi . (8)

Last, there are still some compatibility conditions between
the marginals that have not been expressed. To obtain a
sufficiently strong relaxation, we want to take into account
the fact that no two agents can be at the same time in the
same site. This is expressed in terms of marginals as follows:

∑
si∈[N]

∑
ai∈[N]−a

ρ
i
(xa;si),ai

= ∑
k∈[N]−i

∑
sk∈[N]

ρ
k
(xa;sk),a

, ∀i,a,xa ∈ Sa, (9)

∑
si∈[N]−s

∑
ai∈[N]

ρ
i
(xs;si),ai

= ∑
k∈[N]−i

∑
ak∈[N]

ρ
k
(xs;s),ak

, ∀i,s,xs ∈ Ss. (10)

Intuitively, on the left hand side we have the probability that
agent i does not go to a site a (respectively does not currently
occupy a site s), which must equal the probability that some
other agent k (passive or not) goes to site a (respectively
occupy site s). These relations can be verified by inspection
of (5). Finally the relaxation is:

maximize
M

∑
i=1

N

∑
ai=1

∑
xai∈Sai

r1
ai
(xai)ρ

i
xai ;ai

+
N

∑
i=M+1

N

∑
ai=1

∑
xai∈Sai

r0
ai
(xai)ρ

i
xai ;ai

(11)

−
M

∑
i=1

N

∑
ai=1

N

∑
si=1

csiaiτ
i
si;ai

,

subject to

(8),(9), (10), (6), (7), ρ
i
(x;si),ai

≥ 0 , ∀(i,si,ai,x) ∈ [N]3×
N⋃

k=1

Sk.

There are O(N4 ×maxi |Si|) variables ρ i
(x,a,s), which is

polynomial in the size of the input. This number if inde-
pendent of the number of real agents in the instance of our
problem. Note that in [7], we obtain in the single agent
case a relaxation with O(N3 ×maxi |Si|) variables, which
is therefore preferable to (11) in the case M = 1. From a
careful comparison of (11) with the relaxation obtained in
[7] for the single agent case, we verified that when M = 1 the
two formulation are equivalent, even if (11) involves more
variables and constraints. However, (11) has the advantage
of being valid for any number of agents, and this number
can be given as a parameter to our problem.

IV. HEURISTICS

A. One-Step Lookahead Policy

Computing the optimum value of the relaxation presented
in the previous section provides a bound on the performance
achievable by any assignment policy. It is also useful to actu-
ally design a policy for the system, via standard suboptimal
control techniques.

By taking the dual of the linear program obtained from
the state-action frequency formulation, we obtain a linear
program whose variables, indexed by the different states of
the system, have the interpretation of the value function for
these states [8]. Indeed, this dual program can be obtained
directly from Bellman’s equation. Now we can take the dual
of our relaxed formulation (11); in this paper, we do not
consider the structure of this dual program in detail, but we
note that the dual objective function involves a subset of the
dual variables corresponding to the constraints (8) and can
be written

minimize
N

∑
i=1

N

∑
si=1

∑
xsi∈Ssi

λ
i
xsi ,si

νsi(xsi)δdi(si) ,

where the dual variables of interest are the λ i
xsi ,si

. Now
consider the system at a given time, for which the state
is (x1, . . . ,xN ;s1, . . . ,sN), with (s1, . . . ,sN) a permutation of
[N]. Given the interpretation of the dual variables mentioned
above, it is natural to try to form an approximation J̃(x;s)
of the value function in state (x;s) as

J̃(x1, . . . ,xN ;s1, . . . ,sN) =
N

∑
i=1

λ̄
i
xsi ,si

, (12)

where λ̄ i
xsi ,si

are the optimal values of the dual variables
obtained from the LP relaxation. The separable form of this
approximate cost function is useful to design an efficiently
computable one-step lookahead policy, as follows. At state
(x;s), we obtain the assignment of the agents by solving

ũ(x;s) ∈ argmaxa∈Π[N]

{
g((x;s),a)+α ∑

x′∈S

Pxax′ J̃x′,a

}
,

where g((x;s),a) = ∑
M
i=1(r

1
ai
(xai)− csiai) + ∑

N
i=M+1 r0

ai
(xai),

and Pxax′ = ∏
M
i=1 p1

xai x
′
ai

∏
N
i=M+1 p0

xai x
′
ai

. We obtain the fol-



lowing maximization problem:

max
a∈Π[N]

 M

∑
i=1

r1
ai
(xai)− csiai +α ∑

x′ai
∈Sai

λ̄
i
x′ai

,ai
p1

xai x
′
ai

 (13)

+
N

∑
i=M+1

r0
ai
(xai)+α ∑

x′ai
∈Sai

λ̄
i
x′ai

,ai
p0

xai x
′
ai

 .

Assuming that the optimal dual variables have been stored in
memory, the maximization above is actually easy to perform.
The evaluation of one parenthesis involves only the data of
the problem for the current state of the system, and one
summation over the states of one site, i.e., takes a time
O(maxi |Si|). Let us denote the terms in parenthesis mi,ai .
All these terms can be computed in time O(N2 maxi |Si|),
and (13) can be rewritten:

max
a∈Π[N]

N

∑
i=1

mi,ai .

This is a linear assignment problem, which can be solved
by linear programming or in time O(N3) by the Hungarian
method [10]. Thus, the assignment is computed at each time
step in time O(N2 maxi |Si|+N3) by a centralized controller,
which needs to store the optimal dual variables of the
relaxation in addition to the parameters of the problem.

B. Computational Considerations

The major bottleneck limiting the use of our method for
large-scale problems is the computation of the relaxation
(11) which involves a large number of variables. Hence,
to solve a problem with 10 sites which can each be in
one of five states already requires solving a linear program
with 50000 variables (independently of the number of agents
used). This relaxation is computed off-line, in order to obtain
a bound on the achievable performance and the optimal
dual variables. Howevever, the limits of the state-of-the-art
linear programming technology are reached for relatively
small problems. For these problems, the one-step lookahead
policy described in the previous paragraph is easily computed
in real-time. If more time is available, then this one-step
lookahead policy can sometimes be used as a base policy to
obtain a rollout policy [11], whose performance is known to
be at least as good as the base policy, and in practice offers
interesting improvements.

It is also interesting to consider decentralized algorithms.
Assuming that each agent stores only his own optimal dual
variables and the parameters of the problems, we expect that
existing work on the distributed computation of the value of
the assignment problem [12] can be used. We will explore
this direction in future research.

C. Numerical Experiments

We now briefly present some numerical experiments with
the proposed policy. We can compare the lower bound on the
optimal reward obtained through the use of a specific policy
to the upper bound obtained from the relaxation. We also
compare the one-step lookahead policy to a simple greedy

TABLE I
NUMERICAL EXPERIMENTS

Problem α N M Zr Zosl Zg
Problem 1 0.9 4 1 372 369 259
Problem 2 0.95 5 2 4527 4382 4488
Problem 3 0.95 5 2 1304 1131 670
Problem 4 0.9 8 4 2788 2397 1933
Problem 5 0.9 10 5 4234 3689 3571

policy, where the approximate cost-to-go J̃ is taken to be
0. It is known that this greedy policy is optimal for the
MAB problem (single agent case), when the rewards are
deteriorating, i.e., projects become less profitable as they are
worked on.

Linear programs are implemented in AMPL and solved
using CPLEX. Due to the size of the state space, the expected
discounted reward of the various heuristics is computed via
Monte-Carlo simulations. The computation of each trajectory
is terminated after a sufficiently large, but finite horizon: in
our case, when α t times the maximal absolute value of any
immediate reward becomes less than 10−6. Table I presents
results for various RBSC problems. The number of states per
site in the scenarios varies between 3 and 5. We adopt the
following nomenclature:

• Zr: optimal value of the relaxation.
• Zosl : estimated expected value of the one-step lookahead

policy.
• Zg: estimated expected value of the greedy policy.

Problem 1 is designed to make the greedy policy under-
perform: one of the sites has a higher initial reward but it
is also very costly to move from this site to the others (the
distances are asymmetric here). Note that in this problem
the one-step lookahead policy performed remarkably well,
and in general it is not as clear how to make it strongly
underperform. Problem 2 and 3 have the same number of
sites and agents, but in problem 2 the switching costs are
small compared to the rewards, whereas in problem 3 the
costs and rewards are of the same order of magnitude. These
problems confirm that high transition costs have a dramatic
importance on the performance of the greedy policy. If they
are negligible however, it is not clear that it is beneficial to
use the one-step lookahead policy. Problems 4 and 5 have
randomly generated data. The LP relaxation for problem 5
was computed in about 30 minutes on a relatively recent
desktop running CPLEX.

V. A “PERFORMANCE” BOUND

In this section, we present a result that offers some insight
into why we expect the one-step lookahead policy to perform
well if the linear programming relaxation of the original
problem is sufficiently tight. Essentially, we can follow the
type of analysis presented in [13]. First, we note that the
vector J̃ in (12) is a feasible vector for the linear program
dual of (4). That is, J̃ is a superharmonic vector for the
original RBSC problem, and we recall that the exact optimal



cost is the smallest superharmonic vector [14]. Writing ν for
the vector of initial probability distribution, we see then that

ν
T J̃ ≥ ν

T J∗ (14)

where J∗ is the optimal value function, minimizing the dual
of (4).

Proposition 2: Let fα(ν , ũ) be the occupation measure
vector associated with the one-step lookahead policy ũ, and
Jũ the cost associated to this policy. We have

ν
T (J∗− Jũ)≤

1
1−α

fα(ν , ũ)T (J̃− J∗) (15)
Proof: In the following we denote by Tũ and T (with

T J = maxu TuJ) the dynamic programming operators. The
cost of policy ũ is given by Jũ = TũJũ, i.e.,

Jũ(x;s) = g((x;s), ũ(x;s))+α ∑
x′∈S

Px ũ(x;s)x′Jũ(x′, ũ(x;s)).

Let gũ be the vector of size N!× |S | with components
g((x;s), ũ(x;s)), and Pũ the stochastic matrix with compo-
nents Px ũ(x;s)x′ . We take a compatible ordering of the states
for all vectors and matrices, and we have then

Jũ = gũ +αPũJũ.

Now (I−αPũ) has an inverse since Pũ is a stochastic matrix
and α < 1, so we get

Jũ = (I−αPũ)−1gũ.

Under policy ũ, the state of the system evolves as a Markov
chain, and we have Pu

ν(Xt = x,St = s) =
[
νT P t

ũ
]

x,s.
So the occupation measure (state frequency) is

fα (ν , ũ) = (1−α)
∞

∑
t=0

α
t
ν

T Pt
ũ = (1−α)νT (I−αPũ)−1. (16)

Now

J̃− Jũ = (I−αPũ)−1 [(I−αPũ)J̃−gũ
]
= (I−αPũ)−1 [J̃− (gũ +αPũJ̃)

]
.

By the definition of the lookahead policy gũ + αPũJ̃ = T J̃.
So we obtain

J̃− Jũ = (I−αPũ)−1 [J̃−T J̃
]
.

Then starting from (14) and using (16)

ν
T (J∗− Jũ)≤ ν

T (J̃− Jũ)≤
1

1−α
fα (ν , ũ)T (J̃−T J̃).

Now by Bellman’s theorem and the fact that J̃ ≥ T J̃, we get
T J̃ ≥ T 2J̃ ≥ . . .≥ J∗. So

ν
T (J∗− Jũ)≤

1
1−α

fα(ν , ũ)T (J̃− J∗),

which is the inequality in the proposition.
In words, the proposition says that starting with a distri-

bution ν over the states, the expected difference in reward
between the optimal solution and the one-step lookahead
policy is bounded by a weighted distance between the
estimate J̃ used in the design of the policy and the optimal
value function J∗. The weights are given by the occupation
measure of the one-step lookahead policy. Note that this
is true for every one-step lookahead policy that uses a

superharmonic vector as an approximation of the cost-to-
go. In future research, we intend to investigate the structure
of the relaxation further in order to refine the upper bound
(15).

VI. CONCLUSIONS

We have presented a linear programming relaxation for
the restless bandits with switching costs problem, which
extends our previous work from the single agent to the multi-
agent case. This framework, motivated by a multi-UAVs task
assignment problem, is general enough to model a wide
range of dynamic ressource allocation problems of relatively
modest size. An important feature of the method is that it au-
tomatically provides a bound on the performance achievable
by any policy. The techniques rely on the separable structure
of the problem and should be useful for other problems with
similar structure. We designed a one-step lookahead policy
based on this relaxation, which can be implemented in real-
time, and should also be implementable distributively. Future
work will focus on trying to obtain a better characterization
of the performance of our heuristics.
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