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Abstract— In this paper, we consider a simple linear exponen-
tial quadratic Gaussian (LEQG) tracking problem for a multi-
agent system. We study the dynamical behaviors of the group as
we vary the risk-sensitivity parameter, comparing in particular
the risk averse case to the LQG case. Then we consider the
evolution of the performance per agent as the number of agents
in the system increases. We provide some analytical as well as
simulation results. In general, more agents are beneficial only
if noisy agent dynamics and/or imperfect measurements are
considered. The critical value of the risk sensitivity parameter
above which the cost becomes infinite increases with the number
of agents. In other words, for a fixed positive value of this
parameter, there is a minimum number of agents above which
the cost remains finite.

I. INTRODUCTION

With the rapidly growing interest in sensor networks
and distributed control systems, a large body of litterature
in recent years has focused on new and old engineering
problems that these networks pose. Examples include con-
sensus problems in various forms (see [1] and the references
therein), control design with pre-specified information pass-
ing structure and control under communication constraints
(e.g. [2], [3]), designing communication schemes in ad-hoc
networks [4], etc.

In some cases, the distributed architecture of the system
is imposed by the task in mind. But in a large number of
situations, especially involving mobile robotic networks, the
designer has a significant freedom in choosing the degree
of distributivity of the system, the number and type of
agents to use, etc. Yet relatively little work has focused
on understanding quantitatively the benefits of multi-agent
systems over centralized systems for various tasks, or the
impact of the number of agents on the performance of the
system, when this choice is available.

For a given task at hand, it is important to study these
problems, because they influence most of the system design.
Moreover, it is clear that more agents is not always beneficial.
For example, the capacity of a wireless sensor network is
expected to decrease as the number of nodes increases [5]. A
similar issue arises in mobile robotic networks where conflict
free vehicle routing is necessary and congestion increases
with the size of the network [6].
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In some recent work researchers have obtained asymptotic
performance scalings for certain multi-agent systems. Let
us mention [7], [8] on various dynamic routing problems.
One can also find in the computer science litterature a large
number of papers focusing on the minimum number of agents
necessary to perform certain tasks: for instance, the minimum
number of pursuers to catch an evader [9], or the minimum
number of guards for an art gallery [10].

In this work, we study a simple multi-agent tracking
problem using linear quadratic control tools, which are well
suited for performance evaluation. We focus on the evolution
of the performance per agent, as the number of agents in-
creases. Numerous papers describe multi-agent architectures
for tracking and estimation, the simultaneous localization and
mapping problem, pursuit-evasion games, etc., focusing on
the various subroutine designs described earlier (e.g. [11],
[12]). The model we consider is simple in comparison, but
our focus is on obtaining insight regarding the performance
asymptotics of the system, which these references do not
usually discuss.

The rest of the paper is organized as follows. Section
II describes our model and section III the general form of
its solution. We find in particular that a standard LQG for-
mulation might not provide a satisfying cooperative control
law for the group of agents, as the individual controllers
decouple, essentially because of the certainty equivalence
principle. We can obtain coupled control laws however if
we consider risk-sensitive agents. Intuitively, we expect the
set of risk-sensitive parameters where tracking is possible,
or the robustness to model disturbances of our system, to
increase with the number of agents. This is related to the
earlier observation that a minimum number of agents can
be necessary in certain pursuit-evasion games. Section IV
provides some analysis of this aspect. Increasing the number
of agents becomes critical in our scenario only in the case
of noisy dynamics and, of course, noisy measurements since
more agents obtain a better state estimator. We give elements
of analytical performance analysis as well as simulation
results in that section as well.

II. BASIC MODEL

We will consider the following tracking problem. There
is an evader moving randomly in Rd , subject to the linear



dynamics
ẋe = Axe +Gwe, (1)

where we is a standard d-dimensional white Gaussian noise,
and we let W = GG′.

We have n identical pursuers, which are also described by
linear systems:

ẋp,i = Axp,i +Bup,i +
√

εFwp,i, i = 1, . . . ,n,

where wp,i are standard d-dimensional white Gaussian
noises, independent between different agents and from we.
ε is a parameter that will tend to 0 in parts of the analysis
later on. Let Z = FF ′. The initial positions of the agents are
also independent d-dimensional Gaussian random vectors.

Each pursuer incurs a running cost

1
2
(xp,i− xe)′Q(xp,i− xe) (2)

which is quadratic in the difference between its state and
the state of the evader. There is also a running control cost
1
2 u′p,i Rup,i for each agent, where R is a positive definite ma-
trix. Alternatively, the n mobile agents are tracking the center
of an ellispoid moving randomly in Rd according to (1),
whose shape is known and given by a positive semi-definite
matrix Q. A motivation for this model is cooperative soaring
and tracking ascending currents for a team of Unmanned
Aerial Vehicles.

Each agent has access to a relative measurement:

yp,i = C(xp,i− xe)+Hvp,i, i = 1, . . . ,n,

with vp,i a standard d-dimensional white noise. We let V =
HH ′ and assume V to be positive definite. The measurement
noise processes of the different agents are independent, and
also independent of the various noises in the dynamics. For
example, the agents could obtain noisy measurements of the
gradient of the quadratic cost function (2), in which case
C = Q. We will also consider the perfect measurement case,
where y = x, subject to no measurement noise.

We define xi = xp,i − xe, and the aggregate vectors x =
[x′1, . . . ,x

′
n]
′, y = [y′p,1, . . . ,y

′
p,n]
′, u = [u′p,1, . . . ,u

′
p,n]
′, wp =

[w′p,1, . . . ,w
′
p,n]
′, v = [v′p,1, . . . ,v

′
p,n]
′. We will also use the

Kronecker product of matrices, which we recall. If A = [ai j]
and B are matrices, then we have by definition:

A⊗B =

 a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 ,

and we will use the property:

(A⊗B)(C⊗D) = AC⊗BD.

The eigenvalues of A⊗B are {λiµ j} and the corresponding
eigenvectors {xi ⊗ y j}, where {λi}, {xi}, {µ j}, {y j} are
the eigenvalues and eigenvectors of A and B respectively.
Hence if A and B are positive definite matrices, so is A⊗B.
Denote by In the n× n identity matrix, by 1n the column
vector of ones of size n, and by En = 1n1′n the n× n
matrix of ones. Let An = In ⊗ A, and we define similarly

Bn,Fn,Zn,Cn,Hn,Vn,Qn,Rn. Finally, let Gn = 1n⊗G and the
spectral density matrix Wn be

Wn = En⊗W = GnG′n =

 W · · · W
...

...
W · · · W

 .

Then the evolution of the relative states is described by:

ẋ = Anx+Bnu+
√

εFnwp−Gnwe, x(0) = x0,

with observations
y = Cn x+Hnv.

We will assume that x0 is a Gaussian random vector with
mean x̄0 and covariance matrix Σ0 � 0.

A. Basic Example: Simple Integrators

In an example used repetedly in the following, the pursuers
are simply n integrators and the evader follows a standard
brownian motion:{

ẋe = we

ẋp,i = ui +
√

ε wp,i, i = 1, . . . ,n,

i.e., we have the dynamics

ẋ = u+
√

ε wp−

 we
...

we

 .

We will also take C = H = Id , i.e.,

y = x+ v.

III. RISK-SENSITIVE TRACKING

We formulate the tracking problem as an infinite horizon
linear exponential quadratic Gaussian (LEQG) problem:

minimize

J = lim
T→∞

2
θT

lnE

{
exp

θ

2

∫ T

0

1
n

(
n

∑
i=1

(xp,i− xe)′Q(xp,i− xe)

+
n

∑
i=1

u′p,i Rup,i

)
dt

}

= lim
T→∞

2
θT

lnE
{

exp
θ

2

∫ T

0

1
n

(
x′Qnx+u′Rnu

)
dt
}

.

The 1
n factor is due to the fact that we want to obtain

a measure of performance per agent. If θ > 0 we consider
risk-averse agents, if θ < 0 the agents are risk-seeking and
in the limit of θ = 0, the agents are risk-neutral and we
recover the standard LQG formulation. There is a very large
litterature on the LEQG problem, as well as on more general
risk-sensitive control problems, that we cannot review here.
Suffices to say that the LEQG problem was introduced in the
engineering litterature and solved in the full information case
by Jacobson (who did not use the logarithmic transformation)
[13]. Links with differential games are emphasized already
in that paper, and the relationship to H∞ control is considered



in [14], [15], [16]. The risk-sensitive state estimator is not
the Kalman filter, and robustness properties of this filter have
been explored for example in [17]. An important motivation
for the early work of Jacobson in the full information case
was to obtain a controller which is not independent of the
noise in the dynamics, as arises in the LQG case because of
the certainty equivalence principle. This motivation translates
in our case into obtaining controllers for the pursuers which
are not independent of the known characteristics of the
random motion of the evader, certainly a desirable feature.

The LEQG output feedback solution over an infinite
horizon is described for example in [16], [18]. We start
by considering the full state feedback problem or perfect
measurement case, that is, y = x. Introduce the quantity

Sn(θ) = nBnR−1
n B′n−θ (Wn + εZn)

and consider the generalized algebraic Riccati equation
(GARE)

A′nX +XAn−X Sn(θ)X +
1
n

Qn = 0. (3)

Now define the quantity

θ
∗(n) = sup{θ ∈ R : the GARE (3) admits a

positive definite solution Xn,θ

}
. (4)

Assume that (A,B) is controllable and (A,Q) is observable.
Then we have that θ ∗(n) is positive, and for all θ < θ ∗(n),
the LEQG problem with perfect state measurements admits
an optimal state-feedback solution

u =−(nR−1
n B′nXn,θ )x, (5)

with the optimal cost being

J∗(θ ,n) = Tr((Wn + εZn)Xn,θ ). (6)

Furthermore the feedback matrix An−nBnR−1
n B′nXn,θ is Hur-

witz. In the following we will omit to write the dependence
with respect to θ of the solution of the GARE, and write
just Xn.

Now consider the output feedback solution for the problem
with imperfect measurements described earlier. Recall that
we assumed V > 0 and let Vn = In⊗V . Introduce the quantity

Tn(θ) = C′nV−1
n Cn−θ

Qn

n
,

and consider the two GAREs (3) and

YA′n +AnY −Y Tn(θ)Y +(Wn + εZn) = 0. (7)

Define the quantity

θ
∗
I (n) = sup{θ ∈ R : the GAREs (3) and (7) admit minimal
positive definite solutions Xn and Yn, respectively, and
the matrix I−θYnXn has only positive eigenvalues}.

For θ < θ ∗I (n), introduce the filter

dx̂ = (An +θYn
Qn

n
) x̂dt +Bn udt +YnC′nV−1

n (dy−Cn x̂dt),

x̂0 = x̄0.

Let x̃ = (I − θYnXn)−1x̂. Then one can compute that x̃ is
generated by the following differential equation:

dx̃ = (An−Sn(θ)Xn) x̃dt +(I−θYnXn)−1 Bũdt

+(I−θYnXn)−1YnC′nV−1
n (dy−Cnx̃dt),

where ũ = u + nR−1
n B′nXn x̃.

Now suppose that the pairs (A,B) and (An, [
√

εFn, −Gn])
are controllable. For the second condition, in practice we will
assume (A,F) to be controllable. Also, assume that the pairs
(A,C) and (A,Q) are observable, and Σ0 ≤ Yn, then for all
θ < θ ∗I (n), the optimal controller is given by

u∗ =−nR−1
n B′nXn(I−θYnXn)−1 x̂ =−nR−1

n B′nXn x̃.

The optimal cost is

J∗I (θ ,n) = Tr
(

Yn
Qn

n
+YnC′nV−1

n CnYn Xn (I−θYnXn)−1
)

.

(8)

A. Application to the basic example

It is interesting to visualize the trajectories of the agents
in a simple case of the basic example. We consider a
situation with perfect information, and ε = 0. The agents
are tracking an evader according to the model of random
motion described earlier, but in this simulation the evader
in fact remains immobile at the origin. The trajectories are
shown on Fig. 1, for risk-averse, risk-neutral and risk-seeking
agents, and show different qualitative convergence behaviors.

The risk-neutral trajectories are essentially trivial in the
sense that the controllers are totally decoupled and the
control law for one agent depends only on its separation
from the target. In the risk-seeking and risk-averse case
however, the controllers become coupled, and each agent
needs information about the position of all the other pursuers
as well as the target. In the risk averse case, two set of
agents starting at different distances from the target try to
track it from both sides. Intuitively, the overshoot is due
to a pessimistic behavior which leads them to give more
importance to the case where the target moves away from
them.

IV. PERFORMANCE ANALYSIS

Equations (6) and (8) give the cost per agent when the
group of pursuers consist of n agents. In this section we study
how this individual cost evolves as the number of agents
increases.

A. Perfect State Measurements

1) LQG solution: The LQG solution is obtained for θ = 0
(risk neutral). In this case we can rewrite the control GARE
(3) as:

A′nX +XAn−X nBnR−1
n B′n X +

1
n

Qn = 0. (9)

Due to the block diagonal form of the matrices, the
equation decouples by agents. With our controllability and
observability assumptions, (9) has a unique positive definite



(a) Risk Seeking Agents. (b) Risk Neutral Agents.

(c) Risk Averse Agents.

Fig. 1. Trajectories for Risk Sensitive Agents.

solution ([19], corollary 13.8). In particular, if X1 is the
positive definite solution for one agent, i.e.,

A′X1 +X1A−XBR−1B′X +Q = 0

then by unicity the solution for n agents is verified to be

Xn =
1
n

In⊗X1.

The controller for the group, u = −(In ⊗ R−1B′X1)x, is
decoupled as well, that is, each agent considers only the
state difference between himself and the target, but not the
states of the other agents.

The cost per agent in the perfect information case is then

J∗(0,n) = Tr((Wn + ε Zn)Xn) =
1
n

Tr(En⊗WX1 + In⊗ ε ZX1)

= Tr((W + ε Z)X1) = J∗(0,1),

that is, the cost per agent is independent of the number of
agents.

2) Risk-Sensitive Solution with no dynamics noise: When
θ 6= 0, some coupling between the controllers of the agents is
introduced through the matrix Wn. This is a desirable feature
as intuitively we would like the agents to take advantage of
the fact that they can cooperate. We will take ε = 0 here,
which still leads to a nonsingular problem in the perfect
information case.

Consider first the case of one agent. We can always write
the solution as a pertubation of the LQG solution, i.e., as

X1 = X̃1 + X̂1,

where X1 is the solution to (3) for n = 1 and X̃1 is the solution
to (9) for n = 1.

Proposition 1: For n agents and ε = 0, the LEQG problem
with perfect state measurements admits an optimal state-
feedback solution solution (5) with the solution to (3) given

by

Xn =
1
n

In⊗ X̃1 +
1
n2 En⊗ X̂1. (10)

Proof: By definition we have that X̃1 and X̂1 verify:

A′X̃1 + X̃1A− X̃1BR−1BX̃1 +Q = 0 (11)

A′(X̃1 + X̂1)+(X̃1 + X̂1)A

− (X̃1 + X̂1)(BR−1B′−θW )(X̃1 + X̂1)+Q = 0. (12)

We try this candidate solution in the GARE (3) for ε =
0. Then by a straightforward calculation, using the identity
E2

n = nEn, we obtain:

1
n

In⊗ (A′X̃1 + X̃1A− X̃1BR−1BX̃1 +Q)+

1
n2 En⊗

[
A′(X̃1 + X̂1)+(X̃1 + X̂1)A

− (X̃1 + X̂1)(BR−1B′−θW )(X̃1 + X̂1)

−(A′X̃1 + X̃1A− X̃1BR−1B)
]

= 0.

Indeed, in the first term we have (11) and in the second term
we have the difference between (12) and (11).

Moreover, this solution Xn is positive definite and stabi-
lizing. This follows from the fact that the eigenvalues of

In⊗M +
En

n
⊗N,

for any diagonalizable matrices M and (M + N), are the
eigenvalues of M with multiplicities (n−1) as well as those
of (M +N). A set of corresponding eigenvectors are yi⊗w j,
where the yi are (n− 1) vectors spanning the kernel of En
(which is symmetric) and the w j are eigenvectors of M, and
1n⊗ vi, for vi eigenvector of (M +N). It is then easy to see
that the eigenvalues of Xn are thoses of X1 and X̃1, and those
of An− nBnR−1

n B′nXn are the eigenvalues of A−BR−1B′X1
and A−BR−1B′X̃1. But X1 and X̃1 are stabilizing and positive
definite.

Remark 2: In particular, we see that the critical value
θ ∗(n) is independent of n in the perfect information case
when ε = 0.

We can then compute the cost of this solution to the risk-
sensitive tracking problem, for ε = 0. We get

J∗(θ ,n) = Tr(Wn Xn) = Tr(
1
n

En⊗WX̃1 +
1
n2 E2

n ⊗WX̂1)

= Tr(W (X̃1 + X̂1)) = J∗(θ ,1).

Hence, as in the LQG case, the cost per agent in the case
ε = 0 is independent of the number of agents.

3) Risk-Sensitive Solution with noisy dynamics: The risk-
sensitive solution in the perfect measurement case seems to
be most relevant when noise is present in the dynamics of
the agents. In this case, the cost-per-agent is not independent
of the number of agent any more, and moreover, the critical
value of the parameter θ ∗(n) increases with n. Another way
to say this is that for a fixed value of risk aversion θ ∗, there



is a minimum number of agents that are necessary to obtain
a finite cost.

We only provide a numerical illustration of this fact. Fig.
2 shows the cost per agent in the basic example with ε = 0.1.
We set θ ∗ = 0.97. In this case, the cost per agent is finite
only if 4 agents or more are used. The lower bound is the
cost per agent for ε = 0.

0 5 10 15 20 25 30 35 40
10

15

20

25

30
Cost per agent (θ ∗ = 0.97)

Number of agents

ε = 0
ε = 0.1

Fig. 2. Cost per agent in the basic example with noisy dynamics, under
perfect measurements. The cost is infinite for less than 4 agents.

B. Imperfect State Measurements

In the case of imperfect measurements, there is one
obvious advantage of using more agents. As the number of
agents taking measurements with independent noise sources
increases, a better state estimate can be constructed. In this
section, we consider the imperfect measurement tracking
problem, with the simplifying assumption A = 0. Note that in
this case, the matrix (An,

√
εFn−Gn) is not stabilizable when

ε = 0, resulting in an only marginally stable filter. Hence we
have to keep a small noise term in the calculation, but in the
analysis we will consider the dominant part as ε → 0, for
which a clear answer is available.

1) LQG solution: For θ = 0 (risk neutral), the filter
algebraic Riccati equation (7) for A = 0 becomes:

−Y C′nV−1
n Cn Y +(Wn + εZn) = 0. (13)

Let Y1 be the positive definite solution (unique in the LQG
case) of the Riccati equation (13) for one agent, i.e.,

−Y1 C′V−1CY1 +(W + εZ) = 0.

Then we have

(
En√

n
⊗Y1)(In⊗CV−1C)(

En√
n
⊗Y1) = (

E2
n

n
)⊗ (W + εZ)

= En⊗W + εEn⊗Z,

and so as ε → 0, the solution to the n agent problem, for
which the right hand side in the previous equation is En⊗
W + εIn⊗Z, approaches Yn = En√

n ⊗Y1.
The total cost is

J∗I (0,n) = Tr(Yn
Qn

n
+(Wn + εZn)Xn).

We have already seen that if ε = 0, the second term of this
expression becomes independent of n. Hence, as ε → 0, the

cost approaches

J∗I (0,n)≈ 1
n

Tr
{

(
En√

n
⊗Y1)(In⊗Q)

}
+Tr(WX1)

≈ 1√
n

Tr{Y1Q}+Tr(WX1).

In conclusion, as the number of agents increases, the tracking
performance per agent converges to the control performance
for one agent at rate 1/

√
n, due to a better estimation

performance only. This is intuitively expected from our
understanding of the asymptotic normality of maximum
likelihood estimators. However, if we consider the more
general diffusion process with A 6= 0 and ε 6= 0, it is not
clear if this asymptotic rate of convergence still holds.

2) Risk-Sensitive Solution: Again let us consider the case
A = 0 and ε → 0. In the limit ε = 0, the solution to the
control GARE is given by (10) and this equation does not
influence the critical value of the parameter θ ∗I . The filter
GARE is:

Y (In⊗ (CV−1C− θ

n
Q))Y = En⊗W + εIn⊗Z. (14)

Hence as in the LQG problem, we see that as ε → 0, the
solution to this equation approaches

Yn =
En√

n
⊗ Ỹ1,n, (15)

but an essential difference is that now, Ỹ1,n is the solution to
the equation:

Y (CV−1C− θ

n
Q)Y = W + εZ, (16)

which is not the single agent equation, but depends on n
through the parameter θ/n. Fig. 3 provides some experi-
mental results on the performance of the multi-agent system
in various cases considered above.

If the constraint that I− θYnXn must have only positive
eigenvalues were not present, from (16) θ ∗I (n) would increase
linearly with n. Now it is easy to check from (10) and (15)
that as ε → 0, YnXn approaches

YnXn ≈
En

n3/2 ⊗ Ỹ1,nX1,

En/n has eigenvalues 1 and 0, so the condition as ε → 0
becomes

ρ(θỸ1,n,θ X1,θ ) <
√

n,

where ρ denotes the spectral radius. We have indicated the
dependence of Y1,n and X1 on θ in this condition. Fig. 4
shows the evolution of the critical value θ ∗I (n) with the
number of agents, computed for the basic example. We
obtained similar experimental results for ε 6= 0. However if
A 6= 0 it seems that we can obtain different behaviors.

Note that in the various cases considered above, when an
analytical solution could be obtained it always implied that
for solving the n agent problem, we only need to solve a
Riccati equation of the same size as for one agent. Hence
significant computational reduction can be achieved by tak-
ing advantage of the symmetries present when considering
homogeneous agents.
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Fig. 3. Cost per agent in the basic example with noisy dynamics and
observations (P.M.=perfect measurements, I.M.=imperfect measurements.
A=0). In the case ε = 0.1 and noisy observations, the cost is infinite for
less than 10 agents.
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Fig. 4. Evolution of θ ∗I (n) with the number of agents in the basic example
(ε ≈ 0, A=0).

V. CONCLUSION

In this work we have considered a basic tracking task to
be performed cooperatively by a team of mobile sensors.
We have given some elements of analysis and partial results
concerning the influence of the size of the group on the indi-
vidual performance. Intuitively, there seems to be much gain
to be obtained by multi-agent systems in terms of robustness
and in a risk-sensitive context. Even the simple linear model
considered leads to non-trivial analysis problems, and we
believe that more work on these toy problems is needed.
Indeed it seems that the focus on difficult implementation
issues arising in multi-agent systems has often overshadowed
the study of the actual benefits of these architectures.
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