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Abstract— We consider algorithms for the curvature-
constrained traveling salesman problem, when the nonholo-
nomic constraint is described by Dubins’ model. We indicate a
proof of the NP-hardness of this problem. In the case of low
point densities, i.e., when the Euclidean distances between the
points are larger than the turning radius of the vehicle, various
heuristics based on the Euclidean Traveling salesman problem
are expected to perform well. In this paper we do not put a
constraint on the minimum Euclidean distance. We show that
any algorithm that computes a tour for the Dubins’ vehicle
following an ordering of points optimal for the Euclidean TSP
cannot have an approximation ratio better than Q(n), where
n is the number of points. We then propose an algorithm that
is not based on the Euclidean solution and seems to behave
differently. For this algorithm, we obtain an approximation

guarantee of O (min{(1+ 2)logn, (1+ %)2}>, where p is the

minimum turning radius, and ¢ is the minimum Euclidean
distance between any two points.

I. INTRODUCTION

In order to improve the performance of mobile robotic
networks, in particular unmanned aerial systems, researchers
are working on integrating the high level problem of mission
planning and the low level problem of path planning [1].
Indeed, the current practice of hierarchical control, where
the kinematic and dynamic constraints of the vehicles are not
taken into account at the mission planning level, can result
in poor overall performance, since the sequence of scheduled
activities can be very hard to execute on the physical system.

In this paper we consider the traveling salesman problem
(TSP): for a given set of points in the plane, design a
tour of shortest length going through all the points exactly
once. If the length is measured as the sum of the Euclidean
distances between consecutive points in the tour, we obtain
the Euclidean TSP (ETSP). Here however, we will require
the path generated to be feasible for a vehicle with certain
dynamic constraints, in particular for a model of unmanned
aerial vehicle (UAV). It is not currently known how to solve
efficiently this problem if a detailed physical description
of the vehicle is used. In theory, this problem could be
formulated as an optimal control problem and solved numer-
ically, for example using a mixed-integer linear program [2].
However this procedure is already complex if the sequence
of waypoints is specified, and so directly adding a hard

This work was supported by Air Force - DARPA - MURI award 009628-
001-03-132 and Navy ONR award N00014-03-1-0171.

J. Le Ny and E. Frazzoli are with the Laboratory for Information and
Decision Systems, Massachusetts Institute of Technology, Cambridge, MA
02139-4307, USA jleny@mit.edu, frazzoli@mit.edu.

E. Feron is with the School of Aerospace Engineering, Georgia Tech, At-
lanta, GA 30332, USA eric.feron@aerospace.gatech.edu

combinatorial problem to it is practical for only a very small
number of points. Hence in the past few years, there has been
some interest in algorithms for simple kinematic models,
in particular the Dubins’ model. The Dubins’ vehicle can
only move forward in the plane, at constant speed, and has
a limited turning radius. The advantage of this model is
that we can generate paths that are almost feasible for fixed
wing aircrafts, and therefore provide an order in which to
visit the points that is relevant for the low-level controller of
the vehicle. At the same time, for this model we have for
example an analytical characterization of the shortest path
between any two configurations, giving hope that efficient
algorithms with good performance can be designed to solve
the TSP.

In this paper, we continue the study of the TSP for
the Dubins’ vehicle (DTSP). Section II provides a short
survey of some recent work on this problem. In section III,
we comment on the heuristics based on following a tour
optimal for the ETSP and show a lower bound on the best
approximation ratio that these algorithms can achieve. In
Section IV we show that DTSP is NP-hard, since we are
not aware of any previous proof of this result published
in the litterature. Section V describes an algorithm that is
not based on a solution for the ETSP and seems to have a
different behavior for high point densities. An approximation
ratio of O (min{(l + %) logn, (l + %)2})1 is shown for this
algorithm, where p is the minimum turning radius of the
vehicle and € is the minimum Euclidean distance between
any two waypoints.

II. SURVEY OF RECENT RESULTS

Let us state precisely the Dubins’ traveling salesman
problem (DTSP). The configuration of a Dubins’ vehicle
in the plane is given by its position and heading (x,y,0) €
R? x (—m, 7). Its equations of motion are

x=vpcos(0)
y =vosin(0)
6 ="0u, withue[-1,1].

Without loss of generality, we will assume that the speed
of the vehicle vy is normalized to 1. p is the minimum
turning radius of the vehicle. u is the available control. The
DTSP asks, for a given set of points P in the plane, to find
the shortest tour through these points that is feasible for a

"We say f(n) = O(g(n)) if there exists ¢ >0 such that f(n) < cg(n) for
all n, and f(n) = Q(g(n)) if there exists ¢ > 0 such that f(n) > cg(n) for
all n.



Dubins’ vehicle. Given that we show below that this problem
is NP-hard, we will focus on the design of approximation
algorithms. An «-approximation algorithm (o > 1) for a
minimization problem with optimum OPT is an algorithm
that produces in polynomial time a feasible solution whose
value Z is within a factor ¢ of the optimum, i.e., such that

OPT <Z< aOPT.

Dubins [3] characterized curvature constrained shortest
paths between an initial and a final configuration. Let P
be a feasible path. We call a nonempty subpath of P a C-
segment or an S-segment if it is a circular arc of radius p
or a straight line segment, respectively. We paraphrase the
following result from Dubins:

Theorem 1 ([3]): An optimal path between any two con-
figurations is of type CCC or CSC, or a subpath of a path of
either of these two types. Moreover, to be optimal, a CCC
path must have its middle arc of length greater than 7p.

In the following, we will refer to these minimal-length
paths as Dubins’ paths. When a subpath is a C-segment, it
can be a left or a right hand turn: denote these two types
of C-segments by L and R respectively. Then we see from
Theorem 1 that to find the minimum length path between
an initial and a final configuration, it is enough to find
the minimum length path among six paths, namely among
{LSL,RSR,RSL,LSR,RLR,LRL}. Each of these paths can
be explicitly computed (see for instance [4]) and therefore
finding the optimum path and length between any two
configurations can be done in constant time.

A. Stochastic Case

Perhaps surprisingly, the stochastic version of the DTSP
is currently the best understood case. Let us assume that
the points to visit are distributed uniformly in a square.
Then it has been shown that the expected length of the
Dubins’ tour scales as n%/ 3 and there is an algorithm that is
essentially optimal [5], [6], [7]. The algorithm is reminiscent
of Karp’s partitioning algorithm [8], but the tiling of the
initial square is done using a shape that is more adapted to the
dynamics of the Dubins’ vehicle. From this body of work, it
is clear that the DTSP behaves differently from the ETSP. An
essential difference that prevents using directly the classical
techniques developed for Euclidean optimization problems
[9] is that the DTSP is not scale invariant: if the Euclidean
distances between the points are scaled down, the optimal
tour length for the Dubins’ vehicle is not scaled by the same
factor. Note also that it is known that the expected length of
the shortest Euclidean tour scales as n'/2 [10].

B. Algorithms based on a solution for the Euclidean TSP

If no input distribution is given, fewer results are available.
Except for the algorithm in [11], which we will review in
the last section, most of the existing algorithms seem to
build on a preliminary solution obtained for the Euclidean
TSP (ETSP) [12], [13], [14]. When the minimum Euclidean
distance between any two points is large compared to the

turning radius of the vehicle, this is a natural idea: as the
minimum turning radius tends to zero, the DTSP and ETSP
are the same. In [13], the authors impose that no two points
in an instance of the problem can be at a distance less than
twice the minimum turning radius. Under this hypothesis,
they provide a 4.64-approximation algorithm. Their algo-
rithm first solves the underlying ETSP using Christofides’
%-approximation algorithm [15], and so by using instead
Arora’s 1+ € approximation scheme [16] for the ETSP, we
get a guaranteed approximation ratio of about 3.1.

Once the order of the points is obtained from the ETSP
solution, a feasible path must be obtained. From Dubins’
result, the problem is then reduced to fixing the headings
at each point. The first algorithm proposed for the DTSP,
called the “Alternating Algorithm” [12] follows the edges
of the optimal Euclidean tour. All odd-numbered edges are
retained (i.e. the subpath is a straight line) as well as the
corresponding headings, and the even-numbered edges are
replaced with Dubins’ paths. [13] instead uses the fact that
the optimal path between an initial configuration and a final
point with fixed position but free heading is also precisely
characterized, of the form CS. Fixing the first heading, one
can thus compute successively the optimal path to the next
point in the ETSP solution. This fixes the next heading and
the algorithm finishes when it is back to the initial point.

The same idea is used in [14], where the authors also ex-
tend the method to computing the optimal subpaths between
three consecutive points of the Euclidean solution. Obviously
this cannot do worse than with two points. They also improve
empirically on that technique by using a receding horizon
version of the algorithm, using only the first Dubins’ path
in the three-point solution and recomputing at the middle
waypoint. More generally, one could try to compute subpaths
for a larger number of consecutive points, using if possible
an analytical solution similar to the two point case, or
numerically, using for example a mixed-integer formulation.

III. PERFORMANCE LIMIT FOR ETSP-BASED
ALGORITHMS

There is however a limit on the performance one can
achieve using the technique described in the previous para-
graph, computing first an ordering based on the optimal so-
lution for the Euclidean TSP. This limit is significant in par-
ticular in the case where the points are densely distributed in
the plane. Then algorithms based on the Euclidean metric are
not necessarily a good choice any more, returning sequences
that will require too many maneuvers from the vehicle. The
metric used to compute the distances is clearly an important
element, and for example the angular-metric TSP [17], which
also aims at modeling a kinematic constraint, has little to do
with the ETSP. It is also interesting to note that the solution
obtained for the stochastic DTSP did not involve the ETSP
solution.

Theorem 2: Any algorithm for the DTSP following the
ordering of points that is optimal for the ETSP has an
approximation ratio R, which is Q(n). If we impose a lower



bound ¢ sufficiently small on the minimum Euclidean dis-
tance between any two waypoints, then there exist constants
C,C’, independent of n, such that the approximation ratio is

c
not better than T

Proof: Let us call the configuration of points shown on
fig. 1 a chain. Let n be the number of points, and suppose
n = 4m. For clarity we focus on the path-TSP problem but
extension to the tour-TSP case is easy, by adding a similar
chain in the reverse direction. The optimal Euclidean path-
TSP is shown on the figure as well. Suppose now that a
Dubins’ vehicle tries to follow this order of points, and
suppose ¢ is sufficiently small. Then it should be clear that
for each sequence of 4 consecutive points, two on the upper
line and two on the lower line, the Dubins’ vehicle will have
to execute a maneuver of length at least C, where C is a
constant of order 27wp. For instance, if the vehicle tries to
go through the two top points without a large maneuver, it
will exit the second point with a heading almost horizontal
and will have to make a large turn to catch the third point
on the lower line. Hence the length of the Dubins’ path will
be greater than mC.

On the other hand, a Dubins vehicle can simply go through
all the points on the top line, execute a U-turn of length C’ of
order 27p, and then go through the points on the lower line,
providing an upper bound of 2ne for the optimal solution.
So we deduce that the worst case approximation ratio of the
algorithm is at least:

n

R, > .
"= 2ne+C
But we can choose € as small as we want and thus R, = Q(n).
|

Fig. 1. A chain and the associated Euclidean optimal path.

Remark 3: In [1], the authors determine the order of the
points without using the solution of the Euclidean TSP.
Instead, they construct the geometric center of the waypoints,
calculate the orientations of the waypoints with respect to
that center, and traverse the points in order of increasing
orientations. It is easy to adapt Theorem 2 to this case, using
a “circular chain” for example.

IV. COMPLEXITY OF THE DTSP

It is usually accepted that the DTSP is NP-hard, but, to
the authors’ knowledge, no proof of this result has been
published so far. Note that adding the curvature constraint
to the Euclidean TSP could well make the problem easier,
as in the bitonic TSP [18, p. 36412, and so the statement does
not follow trivially from the NP-hardness of the Euclidean

2The authors would like to acknowledge Vincent Blondel for this example

TSP, which was shown by Papadimitriou [19] and by Garey,
Graham and Johnson [20].

Deducing the result directly from the result for the ETSP
or the asymmetric TSP does not seem easy. Instead, we can
go back to Papadimitriou’s proof and exploit his construction.
A sketch of the proof is provided below. As a side remark, it
is not clear that DTSP is in NP. In fact, there is a difficulty
even in the case of ETSP with distances that are not rounded,
because evaluating the length of a tour involves computing
many square roots. In the case of DTSP, given a permutation
of the points and a set of headings, deciding whether the
tour has length less than a bound L might require computing
trigonometric functions and square roots accurately, even if
the headings are restricted to be rational multiples of 7.
Hence in the following we concentrate on the NP-hardness
result.

Let us first define an instance of the decision version of
the Dubins TSP, which with a slight abuse of notation we
also call DTSP.

Dubins traveling salesman problem (DTSP): Given a set
of points in the plane with rational coordinates and a rational
number L > 0, does there exist a tour for the Dubins’ vehicle
visiting all these points exactly once, of length at most L?

We also consider the two cases tour-DTSP and path-DTSP,
depending on the presence of the requirement that the vehicle
must start and end at the same point or not. Euclidean path-
TSP and tour-TSP are both NP-hard.

Theorem 4: Tour-DTSP and path-DTSP are NP-hard.

Proof: [sketch] This can be seen as a corollary of
Papadimitriou’s proof of the NP-hardness of Euclidean TSP
(ETSP), to which we refer [19]. First recall the Exact Cover
Problem: given a family F of subsets of the finite set U, is
there a subfamily F’ of F, consisting of disjoint sets, such
that F’ covers U? This problem is known to be NP-complete
[21]. Papadimitriou gives a polynomial-time reduction of
Exact Cover to Euclidean TSP. That is, given an instance
of the Exact Cover problem, we can construct an instance
of the Euclidean Traveling Salesman problem and a number
L such that the Exact Cover problem has a solution if and
only if the ETSP problem has an optimal tour of length less
than or equal to L. In fact, it can be observed that in the case
where Exact Cover does not have a solution, Papadimitriou’s
construction, possibly rescaled, gives an instance of the
ETSP which has an optimal tour of length > (L+ 1), not
just > L.

Now it is intuitively clear, and more precisely proved in
[12], that there is a constant C such that for any instance &
of ETSP with n points and length ETSP(Z?), the optimal
DTSP tour for this instance has length less than or equal
to ETSP(Z?)+ Cn. This bounds is obtained using the per-
mutation of points corresponding to the optimal Euclidean
tour, and we can take C = 37” p. Of course the length of the
curvature constrained tour is always greater than or equal to
the length of the Euclidean tour.

Using this, if we have n points in the instance of the ETSP
constructed as in Papadimitriou’s proof, we can construct



a new ETSP instance by simply scaling all the distances
by a factor 2Cn. Then if Exact Cover has a solution, the
ETSP instance has an optimal tour of no more than 2CnL
and so the curvature constrained tour has a length of no
more than 2CnL 4 Cn. If Exact Cover does not have a
solution, the ETSP instance has an optimal tour of at least
2CnL + 2Cn, and the curvature constrained tour as well.
So Papadimitriou’s construction, rescaled by 2Cn and using
2CnL+ Cn instead of L, where n is the number of points
used in the construction, provides a reduction from Exact
Cover to DTSP. [ ]

The reduction works basically because, as the Euclidean
distances between the points increase, the additional length
Cn of the curvature constrained tour becomes negligible
compared to the length of the Euclidean tour. Theorem 4
thus shows that DTSP is at least as hard as ETSP. However it
does not capture the potential additional difficulty due to the
problem of optimizing the headings at each point. This later
problem is essentially a continuous optimization problem
however, and it is not clear that the standard complexity
theory for discrete problems is the tool we should use to
capture this aspect. Note that there is an important literature
on complexity theory for certain continuous problems, see
[22].

V. A RANDOMIZED ALGORITHM

In this section, we describe an algorithm which does not
use an ordering of the waypoints obtained from a solution
for the ETSP and we provide a simple analysis of its
approximation ratio. We do not assume any bound on the
minimum Euclidean distance between any two points of an
instance. This algorithm was described in [11], although we
refine somewhat the analysis here.

A first version of the algorithm can be described as
follows:

1) Fix the headings at all points to be 0.

2) Compute the n(n — 1) Dubins’ distances between all
pairs of points.

3) Construct a complete graph with one node for each point
and edge weights given by the Dubins’ distances.

4) We obtain a directed graph where the edges satisfy the
triangle inequality. Compute an approximate solution
for this asymmetric TSP.

In step 4 of the algorithm, we have obtained a metric
asymmetric TSP (ATSP) because once the headings at two
points A and B are fixed, the length of the Dubins’ path from
A to B is in general different from the length of the Dubins’
path from B to A. Unfortunately there are less available
results for the asymmetric TSP than for symmetric case. The
smallest approximation ratio currently known seems to be
0.842logn [23], improving upon the logn of Frieze et al.
[24] and the 0.9991ogn in [25]. For the path version of the
problem, there is only a O(logn) approximation [26].

There is however some additional information that we can
exploit once the headings have been fixed, which differentiate
the problem from a general ATSP. We have the following:

Lemma 5: Let cf,, denote the Dubins’ distance from point
X; = (x5,y;) to point X; = (xj,y;) in the plane after the
headings {6 };_, have been fixed. Then:

d;; 4
max =2 < 14 —p,
ij dji €
where € is, for the rest of this section, the minimum
Euclidean distance between any two waypoints.

Proof: This result is based on the following stronger

fact:
dyj < dji+4mp.
To show this, consider the Dubins’ path from the configu-
ration (X;, 6;) to (X;,0;). We construct a feasible path (not
necessarily optimal) for the Dubins’ vehicle, to return from
(X;,0;) to (Xi, 6;). The Dubins’ vehicle moves along an intial
circle (of radius p), a straight line or a middle circle, and
a final circle. In the computation of the forward Dubins’
path, there are two possible initial circles, and two possible
final circles to consider. In every possible case, we can
maneuver the Dubins’ vehicle on these circles, to return
from configuration (X;,6;) to (X;,6;). The length of the
intermediate part is never increased. It can be verified in
the different cases that the additional length of a return path
constructed this way is never more than 47p plus the length
of the forward path. An example for a RSL path is provided
on Fig. 2.

Now the bound of the lemma is obtained since d; j>¢€ 1

X

X

Fig. 2. A feasible return path for a RSL Dubins’ path.

With this bound on the arc distances, we can use a
modified version of Christofides’ algorithm to obtain a
% (1 + 4%) approximation for the ATSP in step 4 [24].

The complexity of the three first steps is O(n?). For
simplicity, we will consider only the algorithms of Frieze
et al. to solve the ATSP. That is, we run both algorithms
and choose the tour with minimum length, thus obtaining

€
algorithm for solving the ATSP runs in O(n?), so overall
the running time of our algorithm is O(n?).
To analyze the performance of this algorithm, we will use
the following bound.

an approximation ratio of min (logn,% 14 #2)). The



Lemma 6: Let d;; be the length of the Dubins’ path
between two configurations (X;,6;) and (X;,0;) and let g;
be the Euclidean distance between X; and X;. If we perturb
the initial and final headings by angles less than & € (—x, 7],
and call dA, ; the new Dubins’ length, we have

A 3|8| + 7|sin &
dij<<1+2pmax{| |+8|s1n2|’ (D
ij

|8| + 4arccos (1 -] sing\/Z)
Tp

dij. (2

Proof: The bound follows from the discussion in
section 4.8 of [27]°. Let us mention that the two terms in
the max on the right-hand side correspond to the cases where
the initial Dubins’ path is a CSC path with opposite initial
and final turning directions and a CCC path respectively.
Perturbations of a CSC path with identical initial and final
turning directions are dominated by the first term. Moreover,
for the second term, the fact that a CCC optimal path must
have minimum length 7p was used. [ ]

By fixing the headings a priori, we can make an error
up to |6| = m with respect to the optimal heading at each
point. Hence if d;; are the Dubins’ distances between the
points if the optimal headings were selected, and d; ; are the
distances after we fix the headings in step 1, we obtain from
the lemma:

Ciijﬁ <1+max{87£p,]34})dij Z:C1 d,'j. (3)

Call OPT the optimal value of the DTSP and o* the
corresponding optimal permutation specifying the order
of the waypoints. We have OPT = Z;’;ll ds+(io*(i+1) T
do*(nyo+(1) := L({dij}, 0"). Considering the permutation c*
for the graph problem (where the edge weights are the
distances {d;;}) and 6* the optimal permutation for the graph
problem, we have

L({d;j},67) < L({dy;},0") < C1L({di;},07).

We do not obtain the optimal permutation for the ATSP on
the graph in general, instead we use the approximation algo-
rithm mentioned above. Calling 6 the permutation obtained,
we have:

L((d).6) < min (1ogn.5 (14952 ) ) £((d,).6)

< (C1 min (logn,z (1 + 472?))) OPT.

Therefore, we obtain with the specific assignment of head-
ings (or any assignment in fact) an approximation guaranteed
to be within a factor

B1p 1Y\ o3 (1 4P
<l+max{ : 3}) m1n<logn,2<l+ c )>

31t appears that eq. (4.38) and (4.48) in [27] contain a typographical error,
namely a p is missing.

of the optimum. More succintly, for the case of high point
densities which is of most interest for us, this bound is of

. 2
the order O (mm (%logn, (2) )

A. Randomized Version

Instead of fixing all the headings to O in step 1 of
the algorithm, it is perhaps more natural to choose them
randomly and independently in (—x, ] for each point.

Consider an optimal tour, and two successive points i, j
in this tour. The Dubins’ path between these two points has
length d;;, and the optimal headings are 6; and 6;. Following
[27] in the derivation of the bound (1), we know that if we
make an error of § € (—m, 7] on 6;, the difference in path
length is bounded by:

Ad gpmax{3|5|+n’|sin(§)|, S

|6| 4 4 arccos <1— sin§|/2>}.

This leads to the inequality (1), with an additional factor
2 when taking into account the error on 6; as well. Now
(4) is derived for a change from 6; to 6;+ 0 in the initial
heading. Of course, we do not know the optimal 6; so the
natural idea is to choose (6;+ ) uniformly in (—m, 7], in
which case the error § is distributed uniformly in (—7, 7] as
well. This implies that Ad becomes a random variable whose
expectation is bounded by:

T
E[Ap] §p/ max{3|5|—|—n’|sing,
-7

) dé
|6+ 4 arccos <1 —|sm2|/2>} o
<6.79p.

Replacing the corresponding expression in (1), we obtain
as a final upper bound:

A 13.58
Eld,) < (1+ 8_"’)51,7. 5)
ij

It is also possible to refine the bound using the fact that a
CCC path has length at least wp as in lemma 6, but for
our purpose € and p will be of the same order and (5)
is then enough. It improves by a factor of roughly 2 on
the bound obtained earlier when all headings were fixed
deterministically, although now the bound is in expectation.
If we repeat the previous analysis, we obtain the following
result:

Theorem 7: There is a randomized polynomial-time algo-
rithm that, given a set of n points in the plane, returns a
Dubins’ traveling salesman tour with expected length within

a factor
(1 + 13'581)) min (10gn,3 (1 + W))
£ 2 £

of the length of the shortest Dubins’ tour. The running time
of this algorithm is O(n?).



Of course, in practice, one should try to run the random-
ized algorithm several times and choose the shortest tour
obtained, in order to increase the probability that this tour
has a length less than the expected value.

VI. CONCLUSION

We have presented several results on the Dubins’ traveling
salesman problem, including a proof of its NP-hardness. We
argued that, although much of the recent literature studying
this problem has focused on a large separation between the
input waypoints, the most challenging problem is probably
to devise good algorithms for the case where the points are
densely packed. We obtained a lower bound on the approx-
imation ratio that any algorithm which tries to follow the
order of points optimal for the Euclidean tour can achieve.
In general, guided by the existing results for the stochastic
case, we expect the Dubins’ TSP and Euclidean TSP to have
significantly different characteristics. Finally we presented
an algorithm for the DTSP that is not based on the ETSP
solution. Although the theoretical approximation guarantee
that we provide in this paper is not necessarily very strong,
our technique has several interesting practical features. First,
the algorithm is fast and very simple and experimentally
tends to have a good behavior for high point density. We can
therefore run it simultaneously with other existing algorithms
and take the best solution. Moreover, note that one could
obtain the headings using any existing algorithm, such as
the alternating algorithm for example, and then recompute
the ordering of the points using the ATSP solution. This
has the potential of improving the practical performance
of any algorithm, but was so far not used apparently, even
in experimental studies. Finally, by computing the ordering
of the points after the headings, we are not subject to the
counter examples of the type presented in section III. We
are currently pursuing this idea to potentially remove the
p/€ term in the approximation ratio.
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