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Abstract— This paper proposes a general modeling
framework adapted to the feedback control of traffic flows
in Eulerian models of the National Airspace System (NAS).
It is shown that the problems of scheduling and routing
aircraft flows in the NAS can be posed as the control of a
network of queues with load-dependent service rates. We
can then focus on developing techniques to ensure that
the aircraft queues in each airspace sector, which are an
indicator of the air traffic controller workloads, are kept
small. This paper uses the proposed framework to develop
control laws that help manage the NAS during a weather
event, given a probabilistic forecast of capacities. We also
address the management of airport arrivals and departures
subject to runway capacity constraints, which are highly
sensitive to weather disruptions.

I. INTRODUCTION

The frequent occurrence of air traffic delays in the Na-
tional Airspace System (NAS), along with the projected
increase in demand, motivate the scheduling of flight
operations to better utilize available system resources.
The process of planning operations a few hours ahead
of time in order to balance the available capacity and
the demand for resources is known as Traffic Flow
Management (TFM). This task is currently conducted by
air traffic controllers (ATC) manually, and contributes
significantly to their workload. In order to meet the
increasing traffic demand, there is a desire to introduce
a greater level of automation and decision support for
air traffic management.

Research on the TFM problem initially focused on
developing open-loop policies prescribing the position of
each aircraft in the system at each instant, and obtained
by solving large-scale integer programs [1], [2]. This
approach is clearly difficult to scale to the scheduling of
approximately 40,000 flights a day, and generally pays
only little attention to the many sources of uncertainty
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present in the system. Weather in particular is a major
source of disturbances. For instance, 66% of all NAS
delays in 2009 were attributed to weather [3]. Due to
the typical travel times of cross-country flights, open-
loop traffic flow management requires planning horizons
of 5-6 hours, which are arguably beyond the limits of
even state-of-the-art weather forecasting tools.

The disturbance attenuation properties of feedback
control make closed-loop control policies for the NAS
very attractive. Early attempts to introduce a limited
amount of feedback can be found in [4], building on
the previous integer programming-based formulations.
More recently, researchers have started developing new
models more tractable for the purpose of control, which
only record aircraft counts in specific control volumes
of airspace rather than follow each aircraft trajectory.
These aggregate models, called Eulerian models, are
gaining popularity [5]–[9] and have been shown to
have reasonable predictive capabilities [7]. Some first
attempts at feedback control using Eulerian models have
also been made, both in the context of centralized traffic
flow management [6], [10], and in a decentralized setting
for networks with a single origin and destination [11].
In this paper, we extend our previous work [12] and
present an Eulerian model for TFM that can be used to
control all resources of the NAS, rather than focusing
on high-altitude traffic as was considered in [5]–[7]. The
inclusion of airports is particularly important because
they are typically the bottlenecks of the system. More-
over, it can be shown that our general model, presented
in section II-C, captures as a special cases other recent
Eulerian models such as the CTM(L) model [7], while
offering additional modeling flexibility.

At the TFM level, our model provides high-level
directives to the ATCs prescribing the desired flow
rates of aircraft traveling through restricted resources
of the NAS. These resources can be runways, metering
points at certain airspace fixes, or flow control lines at
the boundaries of sectors or of flow constrained areas
during Airspace Flow Programs (AFPs) [13]. ATCs can
implement these directives by issuing orders at the path
planning level, such as aircraft speed changes, vector



for spacing or holding patterns, which modify the time
it takes for aircraft to travel between control boundaries.
The specific choices adopted by the ATC at the tactical
level require the precise knowledge of the current spatial
configuration of the aircraft and are not specified at the
TFM level.

The ability to integrate weather forecasts is perhaps
the single most desirable feature of TFM procedures.
Local weather events can be greatly amplified by net-
work effects without proper congestion control. We can
use our general control model to develop a tractable
model-predictive control strategy that can plan using
probabilistic weather forecasts.

The rest of the paper is organized as follows. Section
II describes the general Eulerian model that we use for
TFM. Section III describes some natural control policies
for this model, including a distributed network control
policy and a model predictive control strategy. In section
IV we see how the model can be used to mitigate
the impact of weather disruptions, given probabilistic
forecasts. We also discuss simulation results for the TFM
problem over part of the Western United States.

II. EULERIAN MODEL OF THE NAS ADAPTED TO
NETWORK CONTROL
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Fig. 1. Five control volumes and their corresponding abstract buffer
model. The situation depicted here corresponds to two routes merging,
and all aircraft leaving through volume C. Each control volume except
E supports two flows with distinct characteristics (e.g., different
destinations, see section II-B.1), and each flow is associated with
one buffer. Note that the flow type of buffers 8 and 9 is the same,
which allows us to include routing decisions at the output boundary
of volume C. Each buffer has an associated maximum throughput
function. Thick gray lines represent additional resource constraints
coupling the control vectors of different buffers, see sections II-B.1
and II-B.2. For example, in this case, the buffers associated with the
same control volume have the same maximum throughput function.

To construct the network model that we use for TFM,
we start by deciding the points or lines through which

traffic flow rates need to be determined. These bound-
aries, called hereafter control boundaries, can consist of
sector boundaries, runways, airspace fixes, intersections
of major jet routes, or other metering points. Adding
more control boundaries provides more decision support,
but decreases the flexibility to adapt (at the tactical level)
to factors not modeled precisely at the TFM level. Each
control boundary has an associated traffic flow direction.

In Eulerian models, we are interested in controlling
the aircraft counts in certain control volumes rather
than individual aircraft trajectories. A control volume
is delimited by an input and output control boundary,
that is, all the traffic associated with it enters through
the same control boundary and exits through the same
one. Control volumes can overlap, for example, due to
intersecting traffic flows. Within a control volume, we
have one or more queues, also called buffers. Using
several queues in the same control volume allows us
to separate the traffic based on distinct characteristics,
such as destinations. Fig. 1 shows an example of model
with five control volumes and two distinct flows.

A. Maximum Throughput of a Single Buffer

We consider discrete-time models, and assume that a
suitable time period T is chosen to model the system
dynamics. This period also dictates the frequency of
updates to flow rate directives. The number of aircraft
in buffer i at time kT is denoted Qi(k). Note that all
buffers are associated with a control volume (see Fig.
1), and hence to an input and output boundary. The
maximum rate at which traffic can flow out of a buffer
during any time period depends on the number of aircraft
that it contains. The aircraft count associated with buffer
i follows the dynamics

Qi(k + 1) = Qi(k) +Ai(k) +
�

j∈J Uj(k)− Ui(k), (1)
0 ≤ Ui(k) ≤ Di(k), ∀k ≥ 0. (2)

Here, Ai(k) is the number of external arrivals in buffer
i during the time interval [kT, (k + 1)T ), originating
from unmodeled parts of the system (e.g., pushbacks
from airport gates). Ui(k) is the number of departures
from buffer i during the same period (the (k + 1)th

period), and is controlled by the ATC. J is the set of
buffers sending aircraft to buffer i. These terms will
be discussed in more detail later. In this section, we
focus on the quantity Di(k), which is the maximum
possible number of departures from buffer i during the
(k + 1)th period. Note that there is an additional non-
negativity constraint, Qi(k) ≥ 0, which will generally
be automatically satisfied by imposing the condition
Di(k) ≤ Qi(k) + Ai(k). We assume that Ui(k) can



depend on Qi(k) as well as Ai(k) and Di(k), therefore
these quantities must be known prior to determining
Ui(k). Knowing Di(k) requires the accurate prediction
of at most how many aircraft from buffer i can cross the
exit boundary of the control volume during the (k+1)th

period, a simple trajectory prediction problem for the
typical values of T used in flow control (1-15 min).

In general, the travel times of aircraft through a con-
trol volume vary due to differences in speeds, trajectories
and environmental factors such as wind speed. Since it is
not tractable to keep track of all these variations exactly,
we treat them as disturbances on a nominal aggregate
model. We assume a stochastic model of arrivals and
departures in (1), (2). Moreover, we assume that the se-
quence of bounds {Di(k)}k≥N can be random, but such
that for a given load level Qi(k) = Qi, the variables
{Di(k)} are identically distributed, with mean denoted
µi(Qi) = E[Di(k)|Qi(k) = Qi]. We call the function µi

the maximum throughput function for buffer i. Usually,
the same function µi can be used for all buffers in the
same control volume, unless traffic flows are separated
into different buffers based on characteristics such as
aggregate trajectories or velocities. In order for this to be
a reasonable model of the maximum number of aircraft
departures in a period, the control volume should not
be too small relative to the sampling period, otherwise
several aircraft can enter and leave the volume during
the same period. A significant number of such aircraft
would require that the function µ depend on A(k).

Intuitively, µi should increase with Qi, since an
increase in traffic along a route reduces the separation
between departures. However, µi remains bounded due
to the minimum required separation distance between
aircraft, which limits the rate at which aircraft can cross
the exit boundary of the control volume. In general,
we expect µi to be a concave saturating function, as
depicted on Fig. 2. The exact values of the function
depend on the geometry of the control volume and
the typical aircraft trajectories between its boundaries.
The maximum throughput curve for a given buffer or
control volume can be obtained via simulation, by fitting
empirical data, or perhaps a combination of both. Note
that µ(0) = 0, and µ(1) is roughly inversely proportional
to the typical minimum travel time of an aircraft through
the region (measured in number of periods of length
T ). For the simulation results shown on Fig. 2 we
assumed that aircraft could travel at up to 500 knots,
that the control volume length is 100 nm with a simple
narrow linear geometry where all planes strictly follow
each other, and used ATC directives asking that aircraft
entering the volume set their velocity to the maximum

2 min

100 nm

Fig. 2. Maximum throughput for the exit boundary of a simple
linear control volume. The empirical curve of the mean number of
departures per period was obtained via discrete-event simulation, with
random arrivals. The error bars show the empirical variance of the
number of departures per period.

possible while respecting the separation constraint with
the previous aircraft. The sampling period T was 10
min. Note that for the purpose of evaluating µi, we can
consider the situation where the control volume contains
only buffer i. The interaction among flows of different
buffers within the same control volume are modeled
as additional constraints on the control variables Ui, as
discussed in section II-B.1.

In Fig. 2, we also assumed that successive aircraft
crossing the exit boundary of this control volume are
separated by at least 2 min. This results in the saturation
of the curve at 5 departures per period. For control
volumes that are not subject to such explicit metering
constraints, the saturation phenomenon still persists due
to the mandatory separation between aircraft, currently
set to 5 nm in enroute airspace. In our example, this
would result in a curve saturating at about 16 aircraft per
period instead of 5. Finally, we note that if the length
of the time period (T ) is changed from T1 to T2, the
resulting curve µi(Qi) can be obtained by scaling the
curve for T1 by T2/T1.

B. Additional Resource Constraints
We construct a network model of the NAS using con-

trol volumes containing buffers following the dynamics
(1), (2) as building blocks. Traffic flows in different
buffers compete for limited airspace resources, resulting
in additional linear constraints on the control variables,
which are described in the following paragraphs.

1) Shared Buffers within a Control Volume: For
a control volume containing m buffers, the control



vector for the exit boundary is denoted by U(k) =
[U1(k), . . . , Um(k)]T . If several distinct flows carry a
significant number of aircraft, the bounds Di(k) can
be large for several values of the index i and the
exit boundary of the volume might not be able to
accommodate

�m

i=1 Di(k) departures in a single period.
It may therefore be necessary to give priority to certain
flows over others, i.e., to schedule the flows at the control
boundaries. We add scheduling constraints of the form

c
T
U(k) =

m�

i=1

ciUi(k) ≤ r(k), ∀k ≥ 0. (3)

In general we take ci = 1 for all i, and r(k) is simply the
maximum number of aircraft that can cross the boundary
at period k. However, we may prioritize certain flows by
varying ci, and adjust r appropriately.

2) Intersecting and Merging Flows: Consider the sit-
uation depicted on Fig. 1. The input boundary of sector
C coincides with the output boundaries of sectors A and
B. U1 and U2 denote the control vectors associated with
the latter two regions, which support two flows each.
At the merge point, suppose we cannot accommodate
the sum of the maximum flow rates of A and B, and
increasing the flow rate out of one volume requires
reducing the flow rate out of the other. This aspect can
be incorporated by imposing linear constraints on the
control vectors of the form

c
T

1 U
1(k) + c

T

2 U
2(k) ≤ r(k), (4)

for some vectors c1, c2, and some scalar r. Here c1, c2

can be all-one vectors and r represents the maximum
number of aircraft that can enter volume C per period.
The contraint (4) is not active if the volumes are only
lightly loaded and the resulting bounds in (2) are small.

Intersections of major jet routes can be handled simi-
larly, and competition between flows for passage through
limited airspace resources can be modeled by additional
linear constraints of the form

C(k)U(k) ≤ R(k), (5)

where C(k) is a matrix, U is the vector of all control
variables for the problem, and R(k) is a vector.

3) Routing: We can easily can incorporate routing
decisions into the scheduling model presented so far, by
adding control variables. Allowing ATCs to make tacti-
cal routing decisions can help accommodate dynamically
changing conditions in the network, such as the impact
of weather on capacities. In the model of Fig. 1, aircraft
from buffer 6 in control volume C can enter buffer 8 or

9. The dynamics of the buffer 6 are then

Q6(k + 1) = Q6(k) +A6(k) + U2(k) + U4(k)
−(U6,8(k) + U6,9(k))

U6,8(k) ≥ 0, U6,9(k) ≥ 0, U6,8(k) + U6,9(k) ≤ D6(k).

Here U6,8 (resp. U6,9) represents the number of aircraft
routed by the ATC from buffer 6 to buffer 8 (resp. 9).

4) Sector Load Capacities: We can add bounds on
the vectors Q(k) to impose limits on the capacity of the
sectors. In general, these constraints take the linear form

MQ(k) ≤ S(k), (6)

where M is a matrix and S(k) a vector.
5) Airport Resources: To model an airport, arrival

queues of aircraft waiting to land are associated with
air traffic flows in the close vicinity of the airport,
and one or several departure queues contain the aircraft
on the ground waiting to take-off. All queues have
dynamics of the form (1), (2). Arrivals and departures
at an airport share ground resources. Consequently, the
arrival and departure control vectors are also subject
to resource constraints. If Ud is the control vector for
the departure queues and Ua is the control vector for
the arrival queues, the global vector U = [UT

a , UT

d
]T

is again subject to linear constraints of the form (5),
as discussed by Gilbo [14], [15]. These constraints
depend on runway configuration and can be determined
empirically or analytically [14], [16]. Note again that
these linear constraints (5) are not necessarily active
in low traffic conditions due to the more constraining
conditions (2). For the maximal departure throughput
µd, we can consider a model incorporating aircraft from
the time they pushback from the gate [17], [18]. In this
model, we have a nonlinear maximal throughput curve
for departures that depends on the number of aircraft in
transit between the gate and the runway. The airport
transit zone then constitutes the control volume. The
throughput curve obtained is again of the same form
as the one shown on Fig. 2 [17, chap. 5].

6) Building Larger Models: Using the basic building
blocks presented in the previous sections, it is straight-
forward to construct larger networks adapted to the
control of traffic flows in the NAS. An example is
described in section IV. Consider, for example, a model
incorporating the scheduling and routing of aircraft
between origin-destination (O-D) pairs along a set of
possible preferred routes. Within control volumes, we
separate flows into distinct buffers based on their O-D
pair, indexed by m. A flight trajectory corresponds to a
path through the set of control boundaries. We can index
buffers by their associated input and output boundaries



as well as O-D pair, hence Qm
ij

is the load for O-D
pair m in the control volume going from boundary i to
boundary j. The dynamics of this buffer are then

Q
m

ij (k + 1) = Q
m

ij (k) +A
m

ij (k) (7)

+
�

s∈I(i,m)

U
m

sij(k)−
�

t∈O(j,m)

U
m

ijt(k),

�

t∈O(j,m)

U
m

ijt(k) ≤ D
m

ij (k), 0 ≤ U
m

ijt(k), ∀t ∈ O(j,m),

where I(i,m) and O(j,m) are the set of all control
boundaries preceding i, and the set of all control bound-
aries following j respectively, that are on an allowed
route between the O-D pair m. The variable Um

ijt
cor-

responds to aircraft of O-D pair m routed through the
control boundaries i, j and then through t. Other choices
of models are discussed in [12].

C. General Discrete Model
In the previous sections we have seen that, after

discretization of the airspace into control volumes car-
rying flows separated based on characteristics relevant
to the TFM problem, we obtain a network model with
dynamics which can be written in matrix form as

Q(k + 1) = Q(k) +B U(k) +A(k), ∀k ≥ 0 (8)
MQ(k) ≤ S(k), ∀k ≥ 0 (9)
C1U(k) ≤ D(k), ∀k ≥ 0 (10)
C2(k)U(k) ≤ R(k), ∀k ≥ 0 (11)
U(k) ≥ 0, ∀k ≥ 0. (12)

The matrix B consists of +1’s and −1’s and is essen-
tially the incidence matrix [19] for a graph whose nodes
are the buffers and edges are present between successive
buffers. In addition, there are nonnegativity constraints
Q(k) ≥ 0, which can usually be automatically enforced
through the constraints (10), see subsection II-A. The
difference between model (8) and queueing network
models studied in the literature on communication or
manufacturing networks [20] is the addition of the load
dependent constraint (10), modeling the fact that the
number of aircraft in a sector influences the maximum
rate at which aircraft leave the sector. However, we note
that if all components of Q(k) are large, then D(k)
tends to a constant vector, hence for high loads and
when considering stability issues, we expect the analysis
to be close to the one developed for standard queueing
network models.

III. CONTROL STRATEGIES

We now need to develop algorithms to determine
appropriate decisions U(k) for the closed loop control of

the system (8). Below, we describe two natural control
strategies, with very different computation and imple-
mentation requirements, that can be used for scheduling
and routing aircraft through the NAS. The first strategy,
the MaxWeight policy, is a distributed policy with very
few implementation requirements that could be used
under normal conditions, while the second approach
is a more demanding MPC controller that could be
used in rapidly-changing capacity scenarios, such as bad
weather days, as discussed in section IV.

A. Distributed MaxWeight Policy

The celebrated MaxWeight or maximum back pres-
sure policy for network control [21], proposed for air
traffic control in [12], can be obtained as follows.
At time period k, consider some control variables
Ui1 , Ui2 , . . . , Uib that are coupled by resource con-
straints from (10) and (11). Starting from Ui = 0, i =
i1, . . . , ib, we increase the variables by unit increments,
until none of them can be increased any further because
some constraint would then be violated. At each step,
we increment the control variable j for which the back
pressure Qσ(j) − Qσ(j)+ is maximum, where σ(j) is
the index of the buffer associated with j, and σ(j)+
is the index of the buffer following σ(j) for control j
(recall that several control variables can be associated
to the same buffer if rerouting is allowed). Weighted
versions of this policy can be used to give preferences
to certain routes over other. This policy is appealing
because it can be implemented locally by the ATC using
communication only with the neighboring sectors. See
[12] for a more detailed discussion of this control law.

B. Model Predictive Control

Model Predictive control (MPC) [22] is a general
tool that is well suited for the feedback control of
constrained systems of the form (8). Menon et al. pre-
viously proposed to use MPC to control a deterministic
Eulerian model of the NAS [6]. We use MPC for the
weather scenario considered in section IV. To obtain a
feedback control law via MPC for the general problem
(8), we proceed as follows. At period k0, we can observe
the state Q(k0), and the maximum possible number of
arrival and departures A(k0) and D(k0) for the period.
We fix a horizon length K ≥ 0, and choose U(k0)
by solving the following convex program with variables



Q = {Qk}k0+1≤k≤k0+K+1,U = {Uk}k0≤k≤k0+K

min
Q,U

f(Q) (13)

subject to (14)
Qk0+1 = Qk0 +BUk0 +A(k0)

Qk+1 = Qk +BUk + α(k), k0 + 1 ≤ k ≤ k0 +K

MQk ≤ S(k), k0 + 1 ≤ k ≤ k0 +K + 1 (15)
C1Uk0 ≤ D(k0) (16)
C1Uk ≤ µ(Qk), k0 + 1 ≤ k ≤ k0 +K (17)
C2(k)Uk ≤ R(k), k0 ≤ k ≤ k0 +K, (18)
Uk ≥ 0, k0 ≤ k ≤ k0 +K,

where f is chosen to be a convex function of Q, for
example a linear objective

f(Q) :=
K�

k=k0+1

c
T

k Qk + c
T

K+1QK+1, (19)

for some vectors {ck}k. We use the certainty-
equivalence heuristic [23] which consists of replacing
A(k) and D(k) of (8) by their average values α(k) and
µ(Qk). The program (13) is convex if we assume that
µ is concave, which is generally true, as seen in Fig. 2.

After solving (13), we the obtain a sequence of vectors
Uk0 , . . . , Uk0+K , which are real-valued. We round the
first vector Uk0 and use it as a control directive U(k0) =
Uk0 for the current period. We discard the other vectors
Uk0+1, . . . , Uk0+K . At the next period, we repeat the
procedure to obtain a new control, after observing the
new values of Q,A,D. Solving the convex program
(13) can be done via efficient interior point methods for
various choices of objective and throughput functions
[24]. For example, we can consider the linear objective
function (19) and an approximation of the maximal
throughput functions of the piecewise linear form

µi(qi) = min
1≤j≤mi

{aTijqi + bij , µi,sat}.

Then the constraint cT
i
ζ ≤ µi(qi) can be rewritten as

mi affine constraints

c
T

i ζ ≤ a
T

ijqi + bij , j = 1, . . . ,mi (20)
c
T

i ζ ≤ µi,sat.

Then the program (13) becomes a linear program. The
hard constraint (15) is usually removed to avoid in-
feasibility issues, in which case we can try to respect
capacity constraints by only penalizing sector loads in
the objective function.

We consider a naive rounding procedure to obtain
an integer-valued control vector U at each period (only

making sure that the constraints (16) are satisfied, which
is easy). The feasibility of MPC approach requires that
the ATCs have enough time to implement the directives,
and therefore needs the computation of (13) to be
possible in a time much shorter than the time period T .
This also requires a model that is not too large, hence a
discretization that is not too fine, as our model allows.
MPC can also benefit from recent advances in convex
optimization in solving large-scale problems [25].

IV. WEATHER MANAGEMENT

Our discussion so far assumes that parameters such as
the average capacities at control boundaries are known
constants. However, if a region experiences bad weather,
its capacity to accommodate traffic flows can be greatly
reduced. Weather forecasts useful for detailed aircraft
route planning are becoming available for TFM [26]. In
this section we consider the systematic integration of
probabilistic weather forecasts within the TFM system
for the NAS. Currently, some limited forms of flow
management procedures taking weather into account are
Ground Delay Programs and Airspace Flow Programs
[13], but we would like to generalize and coordinate
such programs in a more systematic way, while in-
corporating real-time information in a feedback loop.
Preparing a region of the NAS for fast recovery from a
weather event is a problem similar to those encountered
in production systems subject to machine breakdown
[27], [28]. Here we extend the MPC approach of section
III-B to the situation where the capacity constraints
evolve randomly in time according to a probabilistic
weather forecast.

A. A Model Integrating Weather Uncertainty
The weather state evolves as a Markov chain

{w(k)}k≥0 on a finite state-space W, with time-varying
transition kernel P(w(k + 1) = w�|w(k) = w) =
[P (k)]ww� . The transition kernel is assumed known,
determined from probabilistic weather forecasts. The
weather state influences some of the parameters appear-
ing in the model of section II-C, namely the capacity
vectors S,R and the matrix C2. We continue to ignore
the hard state constraint (9) in our algorithms, and focus
instead on the control constraints (11). The vector R

generally describes the number or aircraft that control
boundaries can accomodate, hence clearly depends on
the weather state, and is fixed for example by Airspace
Flow Programs [13]. The fact the the matrix C2 changes
with the weather state is evident from the fact that this
matrix includes the models of the capacity envelopes
of airports (see section II-B.5). These envelopes vary
in shape according to the weather state [16]. Hence



we replace the constraints (11) by C2(w(k))U(k) ≤
R(w(k)). Note that one could easily include weather-
related changes in other parameters, for example the
throughput functions µ.

B. Certainty-Equivalent MPC

We can now develop a certainty-equivalent model pre-
dictive controller (CE-MPC) similar to the one described
in section III-B. Namely, at period k0, we observe the
weather state w(k0), and we replace constraint (18) by

C2(w(k0))Uk0 ≤ R(w(k0))

E[C2(w(k))|w(k0)]Uk ≤ E[R(k)|w(k0)],
k0 + 1 ≤ k ≤ k0 +K, (21)

where the expectations in the constraints (21) can be
computed recursively for the next K stages at the cost of
essentially K matrix multiplications of size |W|× |W|.
The optimization problem is still convex, and a linear
program under the assumptions stated in section III-B.

C. Simulation Results

We consider the TFM problem over a portion of the
western part of the United States. The airspace mod-
eled is primarily within the Oakland Air Route Traffic
Control Center (ZOA), and we consider the airports
at Los Angeles (LAX), San Francisco (SFO), Seattle
(SEA), Portland (PDX), and Las Vegas (LAS). External
traffic also enters the system, mainly via the major routes
coming from the east towards SFO, LAX and SEA.
After identifying the major routes supporting most of the
traffic, we define control boundaries at which we would
like to regulate traffic rates, and the corresponding con-
trol volumes. The resulting queueing network is shown
on Fig. 3. It consists of 50 queues, with most of the
control consisting of scheduling decisions, with a few
routing decisions. The capacity envelopes for the airports
were obtained from [16]. The throughput functions for
the control volumes were only approximately identified,
based on the length of the control volumes, the required
separation distance (5 nm), and assuming simple traffic
geometries in the volumes as in Fig. 2. All buffers have
a limited capacity of 20 aircraft, and there are coupled
capacity constraints for the buffers at the intersection
East of SFO and in the arrival area of SFO.

For this system, we simulate a bad weather event
around San Francisco that changes the capacity envelope
at SFO airport according to the data given in [16].
We assume that after some initial period with optimal
capacity, the weather changes to one of 3 states: low
(L), medium (M) and high (H) weather impact (in the
H state, SFO allows no departures and accepts only 10

arrivals per hour; M corresponds to IFR conditions and
L to Marginal conditions in [16]). The chain can jump
between these 3 states for some time, but eventually
reaches a final absorbing state with optimal capacity.
The transition structure of the chain is shown in Fig. 3.

We use the CE-MPC in the linear programming form
described in section IV-B. The period T is set to 4 min,
simulations are run for an 8hr-duration, i.e., 120 periods.
The horizon K for MPC is set to 32min, since no
significant performance improvement was obtained with
a larger horizon. At each step, solving the linear program
takes about 2s on a standard laptop with a generic
Matlab implementation (we used CVX [29], without
trying to improve the computational performance). The
rest of the period would be left to the ATC to implement
the directives. The simulation results, obtained from
100 simulations, are shown on Fig. 4. The MPC policy
performs better than the MaxWeight policy, for example
due to its better ability to manage busy intersections such
as the one East of SFO.
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Fig. 3. Portion of the network model for TFM in the simulated
system. Thick gray lines correspond to control variables coupled via
linear constraints. All queues start initially empty. We also show the
automaton describing the probabilistic weather evolution as well as
a sample trajectory of a queue in the system (number of aircraft on
the y-axis vs. time). The red dashed line shows the evolution of the
weather state for that sample (namely S −M − L−H −M − T ).

V. CONCLUSION

This paper discusses an improved Eulerian model that
can be used to develop closed-loop control policies for
the NAS and takes into account all air traffic resources,



1 1.5 2 2.5 3 3.5
x 104

0

5

10

15

20

25
mean: 21123

FCFS

Raw Number of Aircraft

F
re

qu
en

cy

300 350 400 450 500 550 600 650 700 750
0

5

10

15

20

25
mean: 504

FCFS

Throughput

F
re

qu
en

cy

1 1.5 2 2.5 3 3.5
x 104

0

5

10

15

20

25
mean: 23910

MaxWeight

Raw Number of Aircraft

F
re

qu
en

cy

300 350 400 450 500 550 600 650 700 750
0

5

10

15

20

25
mean: 486

MaxWeight

Throughput

F
re

qu
en

cy

1 1.5 2 2.5 3 3.5
x 104

0

5

10

15

20

25
mean: 20059

CE−MPC: 32 min horizon

Raw Number of Aircraft

F
re

qu
en

cy

300 350 400 450 500 550 600 650 700 750
0

5

10

15

20

25
mean: 557

CE−MPC: 32 min horizon

Throughput

F
re

qu
en

cy

Fig. 4. Histogram of the Simulation Results over 100 simulations.
The cost on the left is the cumulative number of aircraft in the system
during the 8 hour period of the simulation (an aircraft is counted once
per period where it is present in the system). The throughput on the
right is the total number of aircraft that landed during the simulation.

including airport capacity envelopes. The model is very
flexible and provides decision support to the ATC to
control traffic flow rates at the control boundaries of
their choice. We believe that the proposed model is par-
ticularly useful in developing planning strategies during
extreme weather events.
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