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Abstract— We consider a queueing system composed of
queues distributed at fixed locations in a continuous envi-
ronment and a mobile server serving the jobs in the queues
with spatially varying rates. For a fluid model of this system,
we provide a necessary and sufficient stabilizability condition.
Then we briefly investigate the question of server trajectory
optimization for the problem of draining the initial fluid in two
queues when no further arrivals occur.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), are actively used in
various civil and military data harvesting missions. Another
application under consideration is to use UAVs as com-
munication relays, for example between spatially separated
groups on a battlefield [1]. Researchers are now developing
numerous models targeted towards these applications for
mobile sensor systems, see e.g. [2], [3], [4]. Usually the
path planning problem is simplified by considering discrete
models where data is transfered from locations in the envi-
ronment to the mobile elements only when the locations are
physically visited by these vehicles. The path of the vehicles
is then determined by solving a combinatorial optimization
problem, such as the Mobile Element Scheduling Problem
[5] or other variations of vehicle routing problems. If this
problem is approached from a queueing theory perspective,
there is an extensive literature under the rubric of polling
systems [6], which is mostly concerned with performance
evaluation of open-loop path-planning policies (the queues
are served in some fixed cyclic order). The work on polling
systems also assumes a discrete model where the service at
the queues can be performed only if the server is present at
the queue location.

In contrast we consider a continuous polling model where
a server can serve spatially separated queues with service
rates that depend on the position of the server with respect
to the queues. This could model for example the uplink of
a wireless transmission system where base stations on the
ground transmit their data to a mobile fusion center. Another
application concerns planning the trajectory of a mobile
measurement station: the quality of the measurements and
the time to acquire a bit of information typically depend on
the distance to the target. A related integrated model involv-
ing path planning and information collection was presented
recently in [7]. Our goal is to design the trajectory of the
server in order to:
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Fig. 1. Uplink from two fixed stations to a mobile receiver, with spatially
decaying service rates.

• stabilize the system, i.e., keep the number of jobs in the
different queues uniformly bounded.

• optimize a given performance measure, such as mini-
mizing the total number of jobs at all queues over a
given horizon.

Discretizing space and treating the problem as a Markov
decision process (MDP) leads to intractable computational
problems and offers little insight into the design of the
server trajectories. Instead, we rely on a deterministic fluid
approximation of the problem. Fluid models have proved
to be very useful in obtaining insight and policies with
good performance in the control of queueing networks [8],
including discrete polling systems [9], where more traditional
approaches based on MDPs are often too detailed and suffer
the curse of dimensionality.

The rest of the paper is organized as follows. Section
II describes the fluid model considered. A necessary and
sufficient condition for its stabilization, the main result of this
paper, is presented in section III. Finally in section IV, we
look at the trajectory optimization problem for an example of
a draining problem in which the goal is to collect an initial set
of packets from the queues as efficiently as possible, without
taking into account new arrivals. This model could be useful
to develop batch policies ensuring a degree of fairness in
service by periodically freezing the jobs to be served next
in the queues. A simple performance bound and numerical
simulations briefly discuss the relationship between the fluid
model and stochastic models assuming variability.

II. FLUID MODEL

Fig. 1 presents a conceptual model of the problem for two
base stations. Some information to be transmitted to a mobile
server arrives at N queues located at fixed sites, with constant
rates α = [α1, . . . ,αN ]T . We represent this information as a
continuous quantity, called fluid hereafter. The fluid present
in the queues can be drained by a server which can perform
l different on-board activities, controlled by an allocation



rate vector ζ ∈Rl
+, subject to certain constraints, potentially

dependent on the position x ∈ Rd of the server. We assume
these constraints to be linear in ζ , i.e., for a given position
x of the server, ζ belongs to the convex polyhedron

ζ ∈ U(x) = {ζ : ζ ≥ 0, C(x)ζ ≤ 1}, (1)

where C(x) is called the constituency matrix when the server
is at position x. The server is mobile and can have dynamics.
As an example, we assume in section IV that the server has
the trivial dynamics with bounded velocity

ẋ = u, |u| ≤V, x(0) = x0, (2)

where u is the velocity control. Models of the vehicle
dynamics much more general than (2) could be used. In
fact, the dynamics of the vehicle do not play a role to
obtain our stability condition for the fluid model, except for
the following assumption. We let X ⊂ Rd denote the set of
reachable values for the server position x. Then we assume
throughout this paper that

Assumption 1: The vehicle can stop at an arbitrary loca-
tion of its reachable space X.
The stability condition presented below would have to be
adapted to work for vehicles which are not able to stop, such
as fixed-wing UAVs, unless the size of the loitering pattern
can be neglected. Note moreover that although the vehicle’s
dynamics do not play a role in the system’s stability analysis,
they influence the delay in servicing the jobs in the queues
and hence the performance of the system.

The vector of queue sizes q ∈ RN
+ obeys the system of

differential equations

d+

dt
q(t) = α +B(x(t))ζ (t), (3)

where for all x, B(x) is an N-by-l matrix. In addition, the
state q of the queues is constrained to belong to a polyhedral
state-space Q, which includes the non-negativity constraints
and potential finite buffer constraints. In addition to (2),
there are additional implicit constraints on ζ when q hits the
boundaries of Q, to prevent the queue lengths from violating
their positivity constraints.

Example 2: Consider the two queue example of Fig. 1,
and suppose that the two base stations transmit a signal to the
mobile server (UAV) over a shared additive white Gaussian
noise channel, with power Pi, i = 1,2. The server, when at
position x, receives the signal from station i with power
pi(x) = Pi/(Ci + ‖x− xi‖)βi , where Ci and βi are constants,
and xi is the position of the ith base station. If the server
decodes the transmissions of the base stations sequentially,
it can achieve communication rates Ri(x) that are subject to
the following constraints [10]:

Ri≤ log(1+ pi(x)), i = 1,2; R1 +R2≤ log(1+ p1(x)+ p2(x)).

To put this example in our framework, we can let µi(x) =
log(1 + pi(x)) for i = 1,2, Ri = µi(x)ζi and rewrite the
constraints

0≤ ζi ≤ 1, i = 1,2, and
µ1(x)ζ1 + µ2(x)ζ2

log(1+ p1(x)+ p2(x))
≤ 1,

which are of the form (1). The matrix B in this case is a
2-by-2 diagonal matrix with Bii(x) =−µi(x), i = 1,2.

III. STABILITY OF THE FLUID MODEL

In general, it is not possible to drain all queues to zero
simultaneously using the mobile server, if the intersection of
the draining regions, which are the regions of X where the
server can drive the queue level of a particular queue towards
0, is empty. Hence we use the following weaker notion of
stability.

Definition 3: The system q is said to be stabilizable if
there exist constants K and T such that, for any initial
condition q0,

‖q(t)‖∞ ≤ K, ∀t ≥ T‖q0‖∞.

To study the possible trajectories of the vector q in (3),
we will study the velocity space for the queues, generalizing
the corresponding definitions in [8]. Let

Y =
⋃
x∈X
{{x}×U(x)} .

First we note that a trajectory (x(t),ζ (t)) defines for each
T ∈ R+ a probability measure Px,ζ

T on Y where Px,ζ
T (A) is

the proportion of time that the pair (x,ζ ) spends in set A⊂Y
in the interval [0,T ]. In other words

Px,ζ
T (A) =

1
T

∫ T

0
δx(t),ζ (t)(A)dt.

Then, integrating (3), we obtain, for all T ∈ R+,

q(T ) = q0 +αT +
∫ T

0
B(x(t))ζ (t)dt

q(T ) = q0 +αT +
∫ T

0

∫
Y

B(x)ζ δx(t),ζ (t)(dx,dζ )dt

q(T ) = q0 +αT +T
∫

Y
B(x)ζ Px,ζ

T (dx,dζ ). (4)

Define the velocity space for the queues as

V =
{

α +
∫

Y
B(x)ζ P(dx,dζ ) : P a probability measure on Y

}
Clearly V is a convex set in RN . It is the set of directions
in which we can steer the vector q, by moving the server
and controlling the allocation rates ζ , if we do not take into
account the constraints imposed on the vehicle dynamics. In
fact, we will see below that these constraints do not play a
role as far as stability is concerned.

Now the following is useful for approximating the set
V. Note that by definition of the Lebesgue integral, we
can approximate the vector α +

∫
Y B(x)ζ dP(x,ζ ) arbitrarily

closely by the “Lebesgue sums”

α +
n

∑
k=1

B(xk)ζ k pk, (5)

where ∑
n
k=1 pk = 1 (since P(Y) = 1), xk ∈ X, and ζ k ∈

U(xk), i = 1, . . . ,n. Such a sum correspond to a point in V
with associated measure ∑

n
k=1 pk δxk,ζ k . Let

V̂(x) = {α +B(x)ζ : ζ ∈ U(x)}.



For each position x of the server, V̂(x) is a convex polyhe-
dron. Note that all these polyhedrons contain the point α ,
since 0 ∈ U(x) for all x. Then we define

V̂ = conv

{⋃
x∈X

V̂(x)

}
.

Clearly V̂ is the set of points of the form (5), and so V̂ is
dense in V. Since V̂ and V are convex, this implies

int(V̂) = int(V). (6)

Let Cε be the l∞ ball

Cε = {v ∈ RN :−ε < vi ≤ 0, i = 1, . . . ,N}.

Then the following theorem provides a necessary and suffi-
cient stabilizability condition for the fluid model.

Theorem 4: The following conditions are equivalent
1) The fluid model (3) is stabilizable.
2) Cε ⊂ V, for some ε .
3) Cε ⊂ V̂, for some ε .

The proof of theorem 4 can be found in the appendix.
The most useful part of the theorem is the equivalence
between conditions 1 and 3. We present here a simple low-
dimensional example to clarify the geometric picture.

Example 5: Consider a scheduling problem where the
server can move on the real line and serve two queues placed
at position 0 and d with service rates µ1(x)ζ1 and µ2(x)ζ2
respectively, subject only to the constraints 0 ≤ ζ1,ζ2 ≤ 1.
Clearly in this case we should always let ζi = 1, i = 1,2. The
arrival rates are α1 and α2 respectively. The queue dynamics
are then[

q̇1
q̇2

]
=
[

α1
α2

]
+
[
−µ1(x) 0

0 −µ2(x)

][
ζ1
ζ2

]
, (7)

U(x) = U =
{

ζ = [ζ1 ζ2]T : 0≤ ζ1,ζ2 ≤ 1
}
∀x,

and in addition, we have the positivity constraints q1,q2 ≥ 0.
Fig. 2 shows the velocity set V̂ for an instance of the problem
where

α1 = 1, α2 = 3, µ1(x) =
3

1+ |x|
, µ2(x) =

4
1+ |x−4|

.

Let us define the draining region of queue i as

Di := {x ∈ R
∣∣αi−µi(x) < 0}, i ∈ {1,2},

and assume that D1 ∩ D2 = /0. This corresponds to the
situation of fig. 2, since the curve {(α1−µ1(x),α2−µ2(x)) :
x ∈ R} does not intersect the set int(R2

−). The geometric
condition for stability of theorem 4 can then be translated
into an algebraic condition. Indeed we see from the theorem
and the figure that the system is stable if and only if there
exist two points x1 ∈ D1 and x2 ∈ D2 and a parameter
0 < θ < 1 such that

θ

(
α1−µ1(x1)
α2−µ2(x1)

)
+(1−θ)

(
α1−µ1(x2)
α2−µ2(x2)

)
<

(
0
0

)
.
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Fig. 2. Velocity set V̂ (filled polygon) for the two-dimensional example 5.
The curve is the set of points {(α1− µ1(x),α2− µ2(x)) : x ∈ R}. We also
show a rectangle which is the set V(x) for some value of x. From the figure
and theorem 4, we see immediately that the system is stabilizable since (0,0)
is an interior point of the velocity set. Moreover, we can approximately steer
the vector q in the directions contained in R2

− using policies that switch
between the points x1 and x2 only. The proportion of time spent at each
point determines a convex combination of the velocity vectors at x1 and x2.

We rewrite these conditions as{
α1−µ1(x2) < θ(µ1(x1)−µ1(x2))
α2−µ2(x1) < (1−θ)(µ2(x2)−µ2(x1))

to obtain: ∃θ ∈ (0,1) s.t.


α1−µ1(x2)

µ1(x1)−µ1(x2) < θ

α2−µ2(x1)
µ2(x2)−µ2(x1) < 1−θ .

These last condition is equivalent to the following condition:
there exists (x1,x2) ∈ D1×D2 such that

α1−µ1(x2)
µ1(x1)−µ1(x2)

+
α2−µ2(x1)

µ2(x2)−µ2(x1)
< 1,

which, after expansion and simplifications, can also be
rewritten:

∃x1 ∈ D1, x2 ∈ D2, s.t.
(α1−µ1(x2))(α2−µ2(x1))
(µ1(x1)−α1)(µ2(x2)−α2)

< 1.

(8)
Example 6: Let α1 = 0.5, α2 = 0.55, µ1(x) =
1

1+0.1x2 , µ2(x) = 1
1+0.1 |x−8|3 . One can then verify that

D1 ∩D2 = /0. Condition (8) for x1 = 0 and x2 = 8 gives
0.86 < 1 hence the system is stable. Looking only at the
condition α1/µ1(0) + α2/µ2(8) = 1.05, we see that the
system is easier to stabilize than the traditional discrete
two-queue setup, for which µ1(x2) = µ2(x1) = 0.

IV. TRAJECTORY OPTIMIZATION FOR A DRAINING
PROBLEM

We consider now a server trajectory optimization problem
for the configuration of example 5, with the queue dynamics
given by (7). In this case we can set ζ1 = ζ2 = 1. We study the
problem of draining optimally the fluid present initially in the
system, when no new arrival occurs (i.e., α1 = α2 = 0) and we
incur a running linear cost c(q(t)) := c1q1(t)+c2q2(t), with



c1,c2 positive constants. We wish to minimize the infinite-
horizon cost

J(q0;u(·)) =
∫

∞

0
c1q1(t)+ c2q2(t)dt, (9)

for a server with the simple dynamics (2) and bounded
velocity. The case of infinite velocity and its solution using
a modification of the well known “cµ rule” is presented in
[11].

A. Necessary Conditions for Optimality

Using the minimum principle, we can derive necessary
conditions satisfied by optimal trajectories. For each subset
S of {1,2}, define the Hamiltonian

HS(q,x,u, p) = ∑
i∈S

ciqi−∑
i∈S

piµi(x)+ p0u, (10)

which is the Hamiltonian for the system where S represents
the set of non-empty queues, and p = [p0, p1, p2] are the
adjoint variables. In contrast to standard optimal control
problems for fluid models, where the draining rate is assumed
to be under direct control, we cannot enforce the positivity
constraint on the fluid levels by a simple state dependent
constraint on the control. We must take into account the
discontinuity in the dynamics of the system when a queue
level reaches zero.

Suppose that both queues are non-empty, that the server
is in the draining region Di of queue i, and that queue i
becomes empty at some time τi. Suppose that there is only
one queue becoming empty at time τi. From the results in
[12, sections 3.5 and 3.6], at the boundary qi = 0, we have
the following relations

pi(τ−i ) = pi(τ+
i )+πi, p j(τ−i ) = p j(τ+

i ), j 6= i

H{1,2}(τ−i ) = H{ j}(τ+
i ), j 6= i (11)

where πi is a (constant) Lagrange multiplier. Now using the
continuity of the state variables q,x and of the Hamiltonian
(11), we get pi(τ−i )µi(x(τ−i )) = 0, and since the server must
be in the draining region Di (where µi(x(τ−i )) > 0) when
queue i becomes empty, this implies

pi(τ−i ) = 0.

Hence, the adjoint variable corresponding to queue i vanishes
at the time when the queue becomes empty. The optimal
control is of the bang-bang type

u(t) =−sign(p0(t))V.

When the queues in the set S are non-empty, the adjoint
equations are,

ṗi =−ci, i ∈ S; ṗ0 = ∑
i∈S

pi
dµi

dx
(x(t)),

where the derivative with respect to x can be taken to mean
a subgradient in the case of nonsmooth rate functions. From
the first set of equations and the preceding argument, we
deduce

pi(t) = ci(τi− t), i ∈ {1,2},

R < 1 τ1,r ≤ τ2,r u = +V
τ1,r > τ2,r ∧ τ2,l > Rτ1,l u = +V
τ1,r > τ2,r ∧ τ2,l ≤ Rτ1,l u =−V

R > 1 τ2,l ≤ τ1,l u =−V
τ2,l > τ1,l ∧ τ2,r < Rτ1,r u =−V
τ2,l > τ1,l ∧ τ2,r ≥ Rτ1,r u = +V

TABLE I
OPTIMAL FEEDBACK CONTROL LAW.

where τi is the time when queue i empties. Finally, since
the dynamics and cost function are independent of time
and this is a free terminal time problem, we know that the
Hamiltonian is constant and equal to zero along optimal
trajectories.

B. Draining Problem with Two Distant Sites and Linear Rate
Functions

We can apply the necessary optimality conditions to obtain
a feedback control law for the server. We assume that the
server starts initially on the line segment between two base
stations located at positions 0 and d. We also assume for
simplicity that the stations are sufficiently far from the initial
position of the server, so that the queue at each base station
would become empty before the server can reach it, if it were
to always move towards that base station. The objective is
to drain the queues while minimizing the infinite-horizon
cost function (9). We assume that the draining region of
each queue covers the whole segment [0,d], so that even
an immobile server is draining the queues in finite time. In
particular, in the region [0,d] of interest, we have

µ1(x) = µ10− s1x, µ2(x) = µ20− s2(d− x), x ∈ [0,d],

where s1 and s2 are constants.
Calling the terminal time t f , we have t f = τ1 or t f = τ2

and also

H(t f ) =−V |p0(t f )|= 0⇒ p0(t f ) = 0. (12)

We can then determine the optimal trajectories by consid-
ering different cases based on which queue becomes empty
first. The detailed calculations are provided in [11], and we
present here only the resulting control law for the server.
Define R :=

√
c1s1
c2s2

. We consider only the case R 6= 1. Also,
let

τ1,l(x,q) = (s1x−µ10)+
√

(s1x−µ10)2+2s1V q1
s1V ,

τ2,l(x,q) = −(s2(d−x)−µ20)−
√

(s2(d−x)−µ20)2−2s2V q2
s2V ,

τ1,r(x,q) = (µ10−s1x)−
√

(s1x−µ10)2−2s1V q1
s1V ,

τ2,r(x,q) = (s2(d−x)−µ20)+
√

(s2(d−x)−µ20)2+2s2V q2
s2V .

Then Table I summarizes the optimal feedback control law
for the draining problem of this section.



0 2 4 6 8 10 12 14 16 18
0

10

20

30
Queue Sizes - Fluid Model

t

q1

q1 +q2

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30
Queue Sizes - Stochastic Dynamics

t

q1

q1 +q2

Fig. 3. Examples of trajectories of the queues for the stochastic draining
problem with Bernoulli service variables, and for its deterministic fluid
approximation (top). The optimal feedback policy of the fluid model was
used in both cases to control the server.

C. Simulation

Suppose that when we sample the system dynamics with
sampling period Ts, we obtain in fact the following discrete
time stochastic evolution

Qi((k +1)Ts) := Qi(k +1) = Qi(k)+Ai(k +1)−Bi(k +1;X(k)),

X((k +1)Ts) := X(k +1) = X(k)+U(k)Ts, |U(k)| ≤V,

where the queue lengths Qi are also subject to the nonneg-
ativity constraints. Assume that the arrival process {A(k)}
is i.i.d. with E[Ai(k + 1)] = αiTs, and the variables Bi(k +
1,x(k)) are independent, with distribution depending on
the position x(k) of the server, and E[Bi(k + 1;X(k))] =
µi(X(k))Ts. Then, modifying slightly the proof in [8, section
4.4], we can prove, if µ(x) is sufficiently smooth, the
following lower bound on the achievable performance for
the stochastic system, for each fixed T ∈ TsZ:

infE

[
T/Ts

∑
k=0

Tsc(Q(k))

]
≥ inf

∫ T

0
c(q(t))dt +o(1),

where the infimum is over all admissible control policies,
Q(0) = q(0) = q0, and limTs→0 o(1) = 0.

Moreover, as the size of the jumps A(k),B(k) becomes
small, while keeping the same rates αi,µi(x), we expect the
stochastic system behavior to approach the behavior of the
fluid system (see, e.g., [13]). Fig. 3 gives an example of
queue trajectories obtained for a stochastic system of the
form (7) and for its fluid approximation, using in both cases
the optimal feedback policy computed for the fluid model in
the previous section.

V. CONCLUSION

We have presented a trajectory optimization problem for
a server serving remotely the jobs arriving at spatially dis-
tributed queues. Various research directions and extensions

are possible, such as studying the trajectory optimization
problem for the average and discounted cost criteria when
arrivals occur and for more complicated service rate profiles,
geometries, and vehicle dynamics, developing approximate
solutions based on dynamic programming techniques, etc.
There is a growing literature on the subject of dynamic task
assignment for automated vehicle systems [4]. We believe
that fluid models such as the one presented here offer a
flexible modeling tool to obtain insight into more complex
versions of these problems, much as they are proving to be
a useful tool for network control.
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VII. APPENDIX: PROOF OF THEOREM 4

1⇒ 2. By (4), we have qi(t) = qi(0)+vt
i t, i = 1, . . . ,N for

some vt ∈ V. Hence qi(t)−qi(0)
t ∈ V, for all t > 0. Recall the

definition of the constants K,T in definition 3. Let δ ∈ RN
+

with ‖δ‖∞ = 1/T , and let qn(t) be a stable trajectory with
qn(0) = nδ ,n ∈ N. Then for all t ≥ T n‖δ‖∞ = n, we have
‖qn(t)‖∞ ≤ K. In particular we deduce that for all n ∈ N,

qn(n)
n
−δ ∈V, (13)

and so since the sequence qn(n) is bounded by K, we
see that −δ ∈ cl(V). Moreover if in (13) we take δ =
1
T ei, with ei the ith standard basis vector, we obtain a
sequence {(εn

1 , . . . ,− 1
T + εn

i , . . . ,εn
N)}n of points of V with

εn
j ≥ 0, ∀ j,n. Hence by convexity the points

(
− 1

T +η
)

ei

also belong to V, for any η > 0. Finally recalling that α ∈V
(with α ∈ RN

+) and again by convexity of V, we obtain that
Cε ⊂ V for ε = 1/T .

2⇒ 3. Suppose Cε ⊂ V, for some ε . If Cε \{0} ⊂ int(V),
then Cε ⊂ V̂ using (6), α ∈ V̂ and the convexity of V̂. The
rest of the argument concerns the technical point which arises
when facets of Cε are on the boundary of V. We prove that
in this case, these facets are also in V̂. So assume that there
is a point v0 ∈Cε \{0} which is on the boundary of V. We
call P the set of probability measures on Y. We also define,
for P ∈P ,

v(P) = α +
∫

Y
B(x)ζ P(dx,dζ ).

Then let P0 ∈P be such that v(P0) = v0.
Since V is convex, there is a supporting hyperplane

H ⊂ RN of V passing through v0. By a transformation of
coordinates, we can assume that H is the plane xN = 0, and
that for all P ∈ P , we have the coordinate [v(P)]N ≤ 0.
Considering Dirac measures, we have that for all (x,ζ ) ∈ Y,
(α + B(x)ζ )N ≤ 0. In particular, taking ζ = 0 implies that
αN = 0, and so

∀(x,ζ ) ∈ Y, (B(x)ζ )N ≤ 0. (14)



Now we have

v0
N =

∫
Y
(B(x)ζ )N P0(dx,dζ ) = 0,

which implies by (14) that, except possibly for a set of Y
of P0-measure 0, we have (B(x)ζ )N = 0. Hence we can
restrict the problem of approximating the integral defining
v0 by using points B(xk)ζ k which are on the hyperplane
H. Repeating the same argument for an intersection of
hyperplanes if there is a lower dimensional facet of Cε (such
as an edge) on the boundary of V, we see that we can always
restrict the approximation problem for points v of the facet
by using points B(xk)ζ k that are on that facet. Hence the facet
also belongs to V̂ (by convexity of V̂ again). So Cε ⊂ V̂.

3⇒ 1. The idea is intuitively the following. For T large
enough, − q0

T belongs to V̂, so we can write

0 = q0 +αT +T
n

∑
k=1

B(xk)ζ k pk.

Then a policy which moves the server successively through
the points xk,k = 1, . . . ,n, uses at these points the allocation
rates ζ k, and spends time pkT at point xk drives the system
approximately to 0 if T is much greater than the time spent
traveling between the points xk. Moreover, this policy is
approximately time optimal, since on average it drives the
vector of queues towards 0 along the direction −q0. Of
course, this reasoning is valid only for the case where q0,i
is large for all i, for which the positivity constraints and the
travel times can indeed be neglected. The argument is also
complicated by the fact that the choice of the configurations
(xk,ζ k), which determines the total travel time and the
impact of the positivity constraints, depends on the travel
direction −q0/T and it becomes problematic to obtain an
upper bound K on the steady-state sizes of the queues which
is independent of q0 .

Hence we will show stability by driving the queues toward
0 using a single direction (the diagonal), sacrificing time
optimality in the process. Let q0 = (q0,1, . . . ,q0,N) be the
initial queue sizes. We start by bringing the queue size vector
close to the diagonal D := {q ∈ RN : q1 = q2 = . . . = qN},
as follows. For each j ∈ {1, . . . ,N}, there is a configuration
(x j,ζ j) ∈ Y such that v j = B(x j)ζ j ∈ V̂ verifies

v j
j < 0, and v j

i ≥ 0, i = 1, . . . ,N. (15)

This is easily seen from the facts that Cε ⊂ V̂ and V̂ is con-
vex. Moreover, we can choose these N vectors in such a way
that Cε is contained in the convex cone that they generate.
Then there exist nonnegative constants t j, j = 1, . . . ,N, such
that q0 + ∑

N
j=1 t jv j =: q1 ∈ D, and moreover, if the server

is spending time t j in configuration v j, j = 1, . . . ,N, the
positivity constraints on q never become active. Now if we
call T1 the time necessary for switching from v1 to v2, then
to v3, etc., until vN , we can fix ζ = 0 while the server
travels, and the policy above in fact brings the vector q to
the value q1 + αT1 on the line αT1 +D, using a trajectory
that never hits the boundaries of RN

+. This first phase can be

accomplished in a time upper bounded by αT1 + T2‖q0‖∞,
where T2 is a constant independent of ‖q0‖∞ (this is because
the distance from q0 to D is proportional to ‖q0‖∞, and the
coefficients t j are of the same order).

Once the vector q is at q1 +αT1, i.e., close to the diagonal,
we drive it toward 0. More precisely, there is a constant
T3 > 0 such that

−q1

T3
∈ V̂, so −q1 = αT3 +T3

n

∑
k=1

B(xk)ζ k pk,

for some configurations (xk,ζ k),k = 1, . . . ,n that are inde-
pendent of q1. Then by adapting the usual the policy that
puts the server in the successive configurations (xk,ζ k),k =
1, . . . ,n, we can move the queue size vectors by −q1 +δ +
αT4. Here δ is a nonnegative fixed quantity which takes into
account the effect of the positivity constraints, and T4 is the
sum of the switching times between configurations. So at
the end of the second step, the vector q is at the point δ +
α(T1 +T4). The duration of the second phase is proportional
to ‖q1‖∞, which can be bounded by a constant multiple
of ‖q0‖∞. So the total time can be written T̃‖q0‖∞ + αT1.
Using the ideas above, one can see that there are constants
K and K1, with K ≥ K1 ≥ ‖δ + α(T1 + T4)‖, such that if
‖q(t0)‖∞≤K1 for some t, we can insure ‖q(t)‖∞ ≤K, ∀t ≥ t0
(we can use the velocity vectors v j of (15) for this purpose).
Hence we are done by choosing T = T̃ + α

K1
T1 in the case

‖q0‖∞ ≥ K1.
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