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ABSTRACT
We investigate a state feedback Linear Quadratic Regulation
problem with a constraint on the number of actuation sig-
nals that can be updated simultaneously. Such a constraint
arises for example in networked and embedded control sys-
tems, due to limited communication and computation ca-
pabilities. Following recent results on the dual problem of
scheduling Kalman filters, we first develop a bound on the
achievable performance that can be computed efficiently by
semidefinite programming. This bound can be approached
arbitrarily closely by an analog periodic controller that can
switch between control inputs arbitrarily fast. We then dis-
cuss implementation issues on digital platforms, i.e., the dis-
cretization of the analog controller in the presence of a rel-
atively fast but finite sampling rate.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
real-time and embedded systems; G.1.10 [Mathematics
of Computing]: Numerical Analysis—Applications; F.2.2
[Analysis of algorithms and problem complexity]: Non-
numerical Algorithms and Problems—Sequencing and Schedul-
ing
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1. INTRODUCTION
Modern control systems are increasingly implemented on

networked and embedded platforms [10]. This trend raises
many interesting questions at the interface of control, com-
puting, and communications, see e.g. [2, 21]. In particu-
lar, for many control systems it is important to understand
the impact of limited computational and communication re-
sources. Taking this aspect into account as much as possible
during the control system design phase can help reduce the
overall system cost and provides more flexibility at the im-
plementation and system integration phases [3,15].

In this paper we consider a control problem for a plant
with multiple actuation channels, only one of which can be
updated at a time, see Fig. 1. Such a constraint arises for
example if the controller is implemented on a platform with
limited computational power or executing other computation-
intensive tasks. In this case, it might be desirable or nec-
essary to divide the control function into subfunctions with
shorter execution times that update only a subset of the
control signals when executed [15]. A natural question is
then to decide which input signals should be updated more
frequently. A similar situation occurs if the control signals
must be sent to the actuators via a communication network.
In this case, the restriction on the number of simultaneous
control signal updates is due to the limited communication
capacity constraint between the controller and the plant.
Here we limit our discussion to the Linear Quadratic Regu-
lation (LQR) problem [1].

Similar problems at the interface of control and scheduling
have been considered at least since Meier et al. studied the
dual problem of scheduling measurement systems [18]. More
recently much research has been done on linear quadratic
control problems and other optimal control problems for
switched systems, see e.g. [11, 16, 17, 22, 26], and on joint
control and scheduling problems, especially in the context of
Networked Control Systems (NCS), see e.g [3,20,21]. In this
paper, we consider a continuous-time infinite-horizon linear
quadratic control problem under state feedback. Lee [16]
considers a closely related but more general output feedback
infinite-horizon Linear Quadratic Gaussian (LQG) problem
in discrete time, and Zhang et al. [26] study the finite-
horizon problem, also under state feedback. The importance
of the continuous-time infinite-horizon version of the prob-
lem, which is the dual of a Kalman filter scheduling prob-
lem considered in [14], comes from the fact that it admits



Figure 1: Plant-Controller configuration with an ad-
ditional resource constraint, due to the presence of
a communication network or because the processor
can only update one control input at a time.

a simple solution that requires only solving a Linear Matrix
Inequality (LMI) whose size is of the order of the plant di-
mension. In contrast, the available solutions of discrete-time
formulations typically involve searching over the set of possi-
ble input sequences [18], whose size grows exponentially with
the length of the sequence. Moreover, there is no a priori
known bound on the size of the search space for infinite-
horizon formulations [16]. The continuous-time approach
also has the advantage of considering the inter-sample be-
havior of closed-loop sampled-data systems. The potential
drawback of this method is that the controller obtained is a
continuous-time (periodic, fast switching) controller, which
must be discretized for most applications. Hence an impor-
tant goal of this paper is to discuss in some details implemen-
tation issues of this analog controller on digital platforms for
the control of continuous-time plants.

The paper is organized as follows. Section 2 describes our
formulation of the resource-constrained LQR control prob-
lem. A solution for this problem consists in designing a
feedback control signal together with a scheduling policy
specifying which control channel to use at each time. These
two subproblems can in fact be treated independently, and
section 3 describes the optimal analog controller given a
scheduling policy, which is simply obtained from the solu-
tion of a standard LQR control problem. In section 4 we
show how to compute a bound on the performance achiev-
able by any controller and scheduling policy, by solving a
semidefinite program. If we assume that we can implement
an analog control law, this bound can be approximated ar-
bitrarily closely by certain periodic switching policies de-
scribed in section 5, with the performance gap simply con-
trolled by the rate at which the policies are allowed to switch
between inputs. The rest of the paper is devoted to the
discussion of digital implementations of these analog con-
trollers. Two possible implementations, one assuming pos-
sibly time-varying sampling rates and the other assuming
a time-triggered platform respectively, are described in sec-
tion 6, and their performance is evaluated by simulations in
section 7.

2. PROBLEM FORMULATION
Consider a linear continuous-time plant with dynamics

dx = Axdt+Bσ(t)u(t) dt+ dw, (1)

where x ∈ R
n is the n-dimensional state vector, u ∈ R

m

is the input vector, and A ∈ R
n×n. Moreover, σ(t) ∈

{1, . . . , N} =: [N ] is an additional control parameter used to
select the matrix Bσ(t) ∈ {B1, . . . , BN}, where Bi ∈ R

n×m

for all i ∈ [N ]. The noise process w is a vector Wiener pro-
cess with zero mean and incremental covariance Wdt. We
assume that we have access to the full state x to design a
feedback controller. Also, assume for simplicity that x0 is
deterministic, so that Σ(0) = E[x(0)x(0)]T = 0. Finally,
assume that the pair (A, [B1, . . . , BN ]) is controllable.

Let us first fix a time horizon T , and consider the problem
of designing a switching signal σ(t) together with a control
input u(t) that jointly minimize the quadratic cost

JT (σ, u) =
1

T
E

{∫ T

0

xTQx+ uTRσu dt+ xT (T )Qfx(T )

}

,

(2)
where Q � 0, Qf ≻ 0, and Ri ≻ 0, for all i ∈ [N ]. We are
mostly concerned with the infinite-horizon version of this
problem, where the goal is to design a policy σ and a control
law u minimizing

J(σ, u) = lim sup
T→∞

JT (σ, u). (3)

To study this problem, we assume throughout the paper that
(A,Q1/2) is observable.

To the switching signal σ(t) we associate anN-dimensional
signal of binary variables β(t) ∈ {0, 1}N such that

βi(t) = 1 ⇔ σ(t) = i.

In other words, β is a unit vector with a one at the index
σ. The scalars βi(t) corresponding to the signal σ(t) are
therefore subject to the constraints βi(t) ∈ {0, 1} for all
i ∈ [N ] and

N
∑

i=1

βi(t) ≤ 1. (4)

Clearly there is a one-to-one correspondence between σ and
β and we employ both notations interchangeably. Note in
particular that we can rewrite the dynamics equation (1) as

dx = Axdt+

(

N
∑

i=1

βi(t)Bi

)

u(t) dt+ dw.

Example 1. Consider the situation of Fig. 1, where there
are N control channels u = [u1, . . . , uN ] available, each pos-

sibly multidimensional, with ui ∈ R
mi and

∑N
i=1 mi = m.

However, only one channel be be used at each time. The
control inputs that cannot be updated are set to zero, as in
e.g. [25]. In other words, the matrices Bi are of the form

Bi =
[

0n×m1
. . . 0n×mi−1

B̂i 0n×mi+1
. . . 0n×mN

]

where B̂i ∈ R
n×mi .

3. CONTROLLER DESIGN
Given a switching policy σ, the system (1) evolves as a lin-

ear time-varying system. Fixing T < ∞, the controller de-
sign problem is then a standard linear quadratic regulation
problem and so the optimal controller is a static feedback
controller

uσ(t) = Lσ(t;T )x, (5)



where Lσ(t;T ) = −R−1
σ(t)

BT
σ(t)Pσ(t;T ) and Pσ(t;T ) satisfies

the differential Riccati equation

Ṗσ(t;T ) =− ATPσ(t;T )− Pσ(t;T )A−Q

+ Pσ(t;T )Bσ(t)R
−1
σ BT

σ (t)Pσ(t;T ), (6)

Pσ(T ;T ) =Qf .

Note that (6) can be rewritten

Ṗσ(t;T ) =−ATPσ(t;T )− Pσ(t;T )A−Q (7)

+ Pσ(t;T )

(

N
∑

i=1

βi(t)BiR
−1
i BT

i

)

Pσ(t;T ).

Moreover, denoting Σ(t) = E[x(t)xT (t)] the correlation ma-
trix of the state vector, and using u = Lσ(t;T )x, the cost
expression (2) becomes

JT (σ) =
1

T

{

∫ T

0

Tr[(Q+ LT
σ (t)RσLσ(t;T ))Σ(t)] dt

+ Tr[QfΣ(T )]
}

.

It is useful to further transform these expressions, as fol-
lows. First, we have

ATPσ + PσA− PσBσR
−1
σ BT

σ Pσ +Q

= (A+BσLσ)
TPσ + Pσ(A+BLσ) + LT

σRLσ +Q,

which gives, in the Riccati equation (6)

Ṗσ(t;T ) = −(A+BσLσ)
TPσ −Pσ(A+BLσ)−LT

σRLσ −Q.

We also have a Lyapunov equation describing the dynamics
of the covariance matrix Σ(t) under the control u = Lσx,
namely [4]

Σ̇(t) = (A+BσLσ)Σ(t) + Σ(t)(A+BσLσ)
T +W.

Therefore

Tr[(Q+ LT
σ (t)RσLσ(t))Σ(t)]

= −Tr[(Ṗσ + (A+BσLσ)
TPσ + Pσ(A+BLσ))Σ(t)]

= −Tr[ṖσΣ(t) + Pσ(Σ̇−W )]

= Tr[PσW ]− Tr

[

d

dt
(PσΣ)

]

.

Finally, we obtain the following expression for the cost func-
tion, using the optimal control law u given σ

JT (σ) =
1

T

{

∫ T

0

Tr[Pσ(t;T )W ] dt−Tr[Pσ(T ;T )Σ(T )]

Tr[Pσ(0;T )Σ(0)] + Tr[QfΣ(T )]

}

,

that is,

JT (σ) =
1

T

∫ T

0

Tr[Pσ(t;T )W ] dt (8)

since Pσ(T ;T ) = Qf and Σ(0) = 0. The remaining goal is
then to obtain a scheduling policy σ minimizing (9), or the
infinite-horizon cost

J(σ) = lim sup
T→∞

1

T

∫ T

0

Tr[Pσ(t;T )W ] dt. (9)

4. PERFORMANCE BOUND
Our approach is to first derive a bound on the performance

achievable by any switching policy σ. Let

Xσ(t;T ) = P−1
σ (t;T ).

Then in terms of this new variable, equation (7) becomes

Ẋσ(t;T ) =Xσ(t;T )A
T + AXσ(t;T ) +Xσ(t;T )QXσ(t;T )

(10)

−

(

N
∑

i=1

βi(t)BiR
−1
i BT

i

)

, (11)

Xσ(T ;T ) = Q−1
f .

Now define the time averages

X̃σ(T ) =
1

T

∫ T

0

Xσ(t;T )dt, β̃i(T ) =
1

T

∫ T

0

βi(t)dt.

Integrating equation (11) over the interval [0, T ], we get

Xσ(T ;T )−Xσ(0;T )

T
= X̃σ(T )A

T +AX̃σ(T )

−

(

N
∑

i=1

β̃i(T )BiR
−1
i BT

i

)

+
1

T

∫ T

0

Xσ(t;T )QXσ(t;T )dt.

Now by Jensen’s inequality applied to the matrix convex
function X → XQX [7, p. 110], we have

1

T

∫ T

0

Xσ(t;T )QXσ(t;T )dt

�

(

1

T

∫ T

0

Xσ(t;T )dt

)

Q

(

1

T

∫ T

0

Xσ(t;T )dt

)

.

Together with the fact that Xσ(0;T ) � 0, we get the follow-
ing convex quadratic inequality

Q−1
f

T
�X̃σ(T )A

T + AX̃σ(T ) (12)

−

(

N
∑

i=1

β̃i(T )BiR
−1
i BT

i

)

+ X̃σ(T )QX̃σ(T ).

Also, note that in the cost function

1

T

∫ T

0

Tr[Pσ(t;T )W ]dt = Tr

[(

1

T

∫ T

0

Pσ(t;T )dt

)

W

]

,

and, again by Jensen’s inequality and the matrix convexity
of X → X−1 on the positive definite matrices [7, p. 76], we
have
(

1

T

∫ T

0

Pσ(t;T )dt

)

=

(

1

T

∫ T

0

Xσ(t;T )
−1dt

)

� X̃σ(T )
−1.

Finally, we see therefore that for any T , the optimal cost is
lower bounded by the quantity

Tr[X̃σ(T )
−1W ] (13)

where X̃σ(T ) satisfies the constraint (12) and β̃i(T ) is sub-
ject to

N
∑

i=1

β̃i(T ) ≤ 1, 0 ≤ β̃i(T ), i = 1, . . . , N.



A lower bound on the achievable performance for T finite
can then be obtained by letting X̃σ(T ) = X in (13), where
X is the solution of the following program with variables
X, {bi}1≤i≤N

min
X≻0,{bi}1≤i≤N

Tr[X−1W ] (14)

s.t.
Q−1

f

T
� XAT + AX (15)

−

(

N
∑

i=1

biBiR
−1
i BT

i

)

+XQX

N
∑

i=1

bi ≤ 1, 0 ≤ bi, i = 1, . . . , N.

For (A,Q1/2) observable, this optimization problem also has
a solution for T → ∞ (see [14]), where (15) is replaced by

0 � XAT + AX −

(

m
∑

i=1

biBiR
−1
i BT

i

)

+XQX. (16)

The resulting optimal value is a bound on the performance
achievable by any switching policy for the infinite-horizon
problem.

Finally, we can compute this performance bound efficiently
by solving a semidefinite program. We consider only the
infinite-horizon problem from now on, i.e., with the con-
straint (16). Introduce the slack variable Y � X−1. By
taking Schur complements, we then see that the bound can
be obtained by solving

Z∗ = min
X,Y,{bi}1≤i≤N

Tr[YW ] (17)

s.t.

[

Y I
I X

]

≻ 0

[

XAT +AX −
(

∑N
i=1 biBiR

−1
i BT

i

)

XQ1/2

Q1/2X −I

]

� 0

N
∑

i=1

bi ≤ 1, 0 ≤ bi, i = 1, . . . , N.

5. OPTIMAL CONTINUOUS-TIME
POLICIES

In the rest of the paper, we discuss certain switching poli-
cies approaching the performance bound (17). Note first
that one can evaluate empirically the cost of any policy (say,
by simulation) and compare this cost to the performance
bound to obtain an indication of the policy performance
with respect to an optimal policy. Depending on certain im-
plementation issues, one can approach this bound more or
less closely. In this section, we start by assuming essentially
no limitation on the signals σ, u. In particular, σ is allowed
to switch arbitrarily fast, and u can be implemented as the
continuous-time function (5). In this context, there are peri-
odic continuous-time policies that approach the lower bound
on achievable performance arbitrarily closely, and hence are
essentially optimal. These policies can serve as a benchmark
to evaluate the performance of policies satisfying more real-
istic implementation constraints, such as the ones discussed
in section 6.

To design optimal continuous-time policies for the infinite-
horizon problem (3), we start by solving (17) and thus obtain

a set of optimal parameters {bi}1≤i≤N . Let b0 = 0. We then
choose a period length ǫ to execute the following policy, for
an ǫ-periodic function t → P (t) to be described next. We
divide each period in subintervals as follows

(i) Use control

u = Li(t)x = −R−1
i BT

i P (t)x (18)

for the interval

[ǫ

i−1
∑

k=0

bk, ǫ
i
∑

k=0

bk], 1 ≤ i ≤ N.

(ii) If
∑N

k=0 bk < 1, then set u(t) = 0 for the interval

[ǫ
∑N

k=0 bk, ǫ].

Hence the policy spends a proportion bi of each period in
mode i, and does not use any actuation signal for a propor-
tion 1−

∑N
i=1 bi of each period (although we typically have

∑N
i=1 bi = 1).
We define a periodic switching signal σ such that σ(t) = i

over the interval [ǫ
∑i−1

k=0 bk, ǫ
∑i

k=0 bk], and σ(t) = 0 over

the interval [ǫ
∑N

k=0 bk, ǫ] in each period, where σ = 0 signi-
fies that no input signal is sent to the plant. Define also the
formal notation B0R

−1
0 BT

0 := 0n×n. The matrix P (t) used
in (18) is the unique positive definite stabilizing ǫ-periodic
solution of the following periodic Riccati differential equa-
tion (PRE)

Ṗ (t) = −ATP (t)− P (t)A−Q+ P (t)Bσ(t)R
−1
σ(t)B

T
σ(t)P (t),

(19)
see [6, 14]. Denote by Z(ǫ) the value of the infinite-horizon
cost J(σ) for the ǫ-periodic continuous-time policy described
above, and recall that we denoted by Z∗ the value of the
performance bound (17). The following theorem says that in
the limit of arbitrarily fast switching (ǫ → 0), these policies
perform essentially optimally.

Theorem 1. We have Z(ǫ) − Z∗ = O(ǫ) as ǫ → 0. In
particular Z(ǫ) → Z∗ as ǫ → 0.

The proof of this theorem follows from the results in [14]
on scheduling continuous-time Kalman filters by duality. We
now turn to evaluating the performance impact of more re-
alistic implementation constraints.

6. DIGITAL IMPLEMENTATION
There are essentially three ways of designing digital con-

trollers for sampled-data systems [5, 8]. We can first dis-
cretize the plant dynamics and design the controller in discrete-
time, as in much of the recent literature on the optimal
control of switched systems [11, 16, 26]. This potentially ig-
nores some behaviors of the closed-loop continuous-time sys-
tem, such as hidden oscillations [5]. The second approach,
adopted here, is to design a continuous-time controller which
is then discretized in actual implementations. The last ap-
proach is the most challenging and relatively unexplored in
the switched systems literature, and consists in modeling
the digital implementation explicitly at the continuous-time
level [8] prior to control design.

The policies described in the previous section are continuous-
time control laws, i.e., they require a continuous update of
the control signal u. The function t → P (t) in (i) can be



computed a priori, but this requires a numerical integra-
tion method to obtain the stabilizing periodic solution of
the Riccati equation (19). Moreover, in practice most dig-
ital control implementations use piecewise constant input
signals. Another issue with the result of theorem 1 is that
in actual implementations the period ǫ is a finite positive
constant governed by the rate at which the physical system
can switch between modes or sample the state. Hence the
purpose of this section is to discuss more practical digital
implementation schemes.

6.1 Restrictions on the Switching Times: Time-
Triggered Policies

Fixing ǫ a priori imposes that the system following (i),
(ii) is able to switch mode at times b1ǫ, (b1 + b2)ǫ, (b1 + b2 +
b3)ǫ, . . . In fact, the result of theorem 1 remains valid for
any continuous-time policy σ that spends a proportion bi of
its period in mode i, not necessarily in a single interval as
in (i), which gives additional flexibility to the schedule. Let
us call a policy or schedule σ where ǫ can be fixed a priori
and the system can guarantee a time biǫ per period in mode
i a policy of type (U) (unrestricted). Typical technological
limitations impose a bound of the form

min
1≤i≤N

{biǫ} ≥ ∆,

where ∆ is here the minimum dwell-time, i.e., the minimum
time that the system must remain in any mode, e.g. due to
limited sampling rates or to the implementation overhead of
the mode switching mechanism.

In some cases, it can be easier in an embedded control sys-
tem implementation to further restrict the times at which
the mode can change to an a priori fixed set of regularly
spaced times k∆, k ≥ 0. This is the case for example if
a time-triggered protocol is used for scheduling tasks on an
embedded processor [12], which can simplify system integra-
tion and verification, see e.g. [20,24]. Let us call a policy σ
satisfying this constraint of fixed computing slots of size ∆
a policy of type (TT ) (time-triggered). Policies of type (U)
and type (TT ) give somewhat different discretized models,
as discussed in the next subsection. We now turn to the
problem of approximating a schedule of type (U) by a more
restricted policy of type (TT ).

For policies of type (TT ), we use the following periodic
schedules. First, we approximate the parameters {bi}1≤i≤N

optimal for (17) by

bi ≈
li
l
, li, l ∈ N, (20)

where l is an admissible length for the period of the overall
schedule. For example, if l is of the form 2p, p ∈ N, then
(20) represents a partial binary expansion of the number bi.
In general, increasing l provides a better approximation of
the optimal parameters bi1≤i≤N but increases the memory
requirements of the implementation. The rounding proce-
dure (20) might have to be adjusted slightly in general, to

make sure that the constraint
∑N

i=1 li ≤ l is always enforced,

corresponding to
∑N

i=1 bi ≤ 1. We then design a cycle of l
slots of length ∆, such that in each cycle, mode i is used in
li time slots. For resource constrained applications as de-
scribed in example 1, it is best to spread the slots dedicated
to each mode as much as possible within each cycle, to avoid
channels operating in an open-loop manner for too long. In

contrast, in order to minimize the number of mode switches,
one can schedule the slots for each given mode consecutively.
In the simulations presented in section 7 we choose the li po-
sitions of the slots for each mode randomly among the l slots
of a cycle. Note that the length l∆ of the period of a sched-
ule (TT) can be much longer than the length ǫ of a period
of a schedule (U), which must only satisfy ǫ ≥ ∆

min1≤i≤N bi
.

In general for schedules of type (TT ), there is a trade-off
between reducing the length of the schedule and obtaining
a good approximation of the parameters {bi}1≤i≤N .

6.2 Controller Discretization
Let us now fix the parameter ∆, representing dwell-time

for schedules (U) and time-slot length for schedules (TT ).
Let us also assume that the continuous-time control law
(18) must be implemented on a digital controller, which can
therefore only update the control signal u at discrete times
(we ignore quantization effects in this paper). We assume
that the controller also samples the state at these times and
we neglect the computation interval between the sampling
time and the control update time. We assume however that
for both types of policies ∆ is a lower bound on the inter-
sampling times. Note that these conventions simply fix a
possible choice of implementation constraints for the rest of
the discussion, and other scenarios could be considered, e.g.
where the inter-sampling times can be shorter than ∆. Fi-
nally, a zero-order hold is assumed to be present between
the digital controller and the plant, so that the plant sees a
piecewise-constant control signal.

Denoting the sampling and computation times tk, k ≥ 0,
we have tk = k∆ for policies of type (TT ). For policies of
type (U), Let us assume for simplicity of notation that b1 =
min1≤i≤N bi. We then make the choice ǫ = ∆

min1≤i≤N bi
=

∆/b1, so that only one sample per period is used in the
mode with shortest length. For i ≥ 2, we divide the length
biǫ = bi∆/b1 of mode i into λi = ⌊bi/b1⌋ blocks of equal
length δi, and sample and compute the control input for
mode i at times (b1+ . . .+bi+kδi)ǫ, 0 ≤ k ≤ λi, within each
period. Note that the time interval between two successive
samples in mode i is

δi =
biǫ
⌊

bi
b1

⌋ ≥ b1ǫ = ∆,

hence the constraint on inter-sampling times is satisfied.
The sampling times over the whole period for schedules of
types (U) are not exactly periodic, which allows us ignore
the approximation issue in (20) but could be more compli-
cated to implement. On the other hand, this device allows
us to obtain schedules of type (U) of shorter length.

Next, we discuss the time-discretization of the continuous-
time function Lσ(t) in (18). For simplicity of notation, we
discuss this process only for the policies of type (TT ). The
discretization process for policies of type (U) is similar, ex-
cept for the slightly different sampling periods in different
modes. Hence let us denote by xk = x(k∆), k ≥ 0, the sam-
ple sequence measured by the controller following a schedule
(TT ). We construct l gain matrices Lk,∆, k = 0, . . . , l − 1,
which are stored in the controller memory to compute the
discrete-time periodic control sequence uk, k ≥ 0. With the
zero-order hold assumption, the signal u(t) at the input of
the plant is piecewise constant equal to uk on the interval
[k∆, (k+1)∆). We use the notation σ(k) := σ(tk) = σ(k∆)



to represent the mode used at time k by the schedule σ.
Because of the l-periodicity of the schedule, we have σ(k) =
σ(k mod l).

Rather that performing say a simple first-order Euler in-
tegration scheme for the continuous-time Riccati equation
(6), we use the discrete-time Riccati equation describing the
optimal solution for the discrete-time LQR problem. Since
we emphasize the connection between continuous-time and
discrete-time models here, it is best to use incremental mod-
els of discrete-time systems [9,19]. Incremental models also
offer improved numerical properties for a small sampling pe-
riod ∆ [23], which is the our focus in this paper.

Hence define

A∆ =
eA∆ − I

∆
, Bi,∆ =

1

∆

∫ ∆

0

eAτdτBi, 1 ≤ i ≤ N.

Note that A∆ → A and Bi,∆ → Bi as ∆ →0. Moreover, the
continuous-time cost (2) for the infinite-horizon problem is
approximated by the Riemann sum

J(σ, u) ≈ lim
T→∞

1

T
E





⌈T/∆⌉
∑

k=0

xT
k (∆Q)xk + uT

k (∆Rσ(k))uk



 .

(21)
Then consider the Difference Periodic Riccati Equation (DPRE)
in incremental form (see e.g. [23]), associated to the discrete-
time LQR problem (21)

Pk − Pk+1

∆
= AT

∆Pk+1 + Pk+1A∆ − Pk+1Bσ(k),∆×

(∆BT
σ(k),∆Pk+1Bσ(k),∆ +Rσ(k))

−1BT
σ(k),∆Pk+1

+ γ(σ(k),∆), (22)

where

γ(σ(k),∆) = ∆
{

AT
∆Pk+1A∆ − AT

∆Pk+1Bσ(k),∆

× (∆BT
σ(k),∆Pk+1Bσ(k),∆ +Rσ(k))

−1BT
σ(k),∆Pk+1

− Pk+1Bσ(k),∆(∆BT
σ(k),∆Pk+1Bσ(k),∆ +Rσ(k))

−1

×BT
σ(k),∆Pk+1A∆

−∆AT
∆Pk+1Bσ(k),∆(∆BT

σ(k),∆Pk+1Bσ(k),∆ +Rσ(k))
−1

×BT
σ(k),∆Pk+1A∆

}

.

Note in particular that γ(σ(k),∆) = O(∆), so that (22) can
be seen as an approximation of the continuous-time dynam-
ics (19) as ∆ → 0.

Under our controllability and observability assumptions,
the DPRE has a unique stabilizing l-periodic solution [6,14],
which is then used to approximate the continuous-time so-
lution t → P (t) in (18) at the sampling times. We precom-
pute the matrices P0, . . . Pl−1 defining this periodic solution.
Then we define the gain matrices as

Lk,∆ =− (∆Bσ(k),∆Pk+1Bσ(k),∆ +Rσ(k))
−1

×BT
σ(k),∆Pk+1(I +∆A∆), k = 0, . . . , l − 1,

with Pl = P0. Note again that Li,∆ → Li as ∆ → 0, where
Li was defined in (18). Then at period k ≥ 0, the controller
computes

uk = ∆L(k mod l),∆xk,

recalling that we neglect the time it takes to compute the
matrix-vector product L(k mod l)xk. The dynamics of the

closed-loop system at the sampling times are then

xk+1 − xk = (A∆ + Lσ(kmod l),∆)xk∆+ wk, (23)

approximating the continuous-time closed loop dynamics,
with {wk}k≥0 a zero-mean Gaussian white noise with co-
variance

E[wiw
T
j ] =

∫ ∆

0

eAτWeA
T τdτ.

Note that the discretization process for policies of types
(U) produces a discrete-time system with (periodic) time-
varying dynamics instead of the time invariant system (23),
due to the unequal sampling period in different modes.

7. SIMULATION RESULTS
In this section, we present simulation results illustrating

the performance of the discretized versions of the optimal
continuous-time policies. First, we consider the impact of in-
creasing the dwell time or time-slot length ∆, which is desir-
able to reduce implementation costs. In particular, we eval-
uate the region of values ∆ where the performance bound
(17) is close to the performance achieved by the discrete
periodic controllers. Consider the following matrices

A1 =









−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1









, B =











0 0 0
0 0 0
1 0 0
0 1 0
0 0 1











A2 =









1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1









, W = 0.1 I5.

Here and throughout this section, Q and Ri, 1 ≤ i ≤ N ,
are taken to be identity matrices. We study the behavior of
the policies for the controllable stable system (A1, B) and
unstable system (A2, B), assuming a scenario as described
in example 1, where each control channel selects one of the
three columns of B.

Solving the semidefinite program (17) provides the opti-
mal parameters b1 ≈ 0.54, b2 ≈ 0.44, b3 ≈ 0.02 for (A1, B)
and b1 ≈ 0.74, b2 ≈ 0.12, b3 ≈ 0.14 for the unstable system
(A2, B). This results in a schedule of type (U) for the stable
system where 27 equidistant samples are taken in the first
mode, 22 in the second mode, one in the third mode, be-
fore repeating the cycle. For the unstable system, we take 6
samples in the first mode, one sample in mode 2, one sam-
ple in mode 3 and repeat the cycle (recall that for schedules
(U) the sampling periods in different modes can be differ-
ent). For both systems, we approximate the optimal val-
ues b1, b2, b3 to 2 digits of precision in the (TT ) schedules,
i.e., the length of the schedule is set to l = 100. Hence we
obtain l1 = 54, l2 = 44, l3 = 2 for the stable system and
l1 = 74, l2 = 12, l3 = 14 for the unstable system. The posi-
tions of the slots for each mode are chosen randomly. The
performance curves are shown on Fig. 2 for (A1, B) and Fig.
3 for (A2, B). The achieved average performance for each
value of ∆ is evaluated via Monte-Carlo simulations, with
the cost averaged over 105 samples. We also show the per-
formance of the unconstrained controller obtained by first
discretizing the dynamics and then designing the optimal
discrete-time LQR controller.



Figure 2: Performance degradation as ∆ increases
and comparison with the continuous-time perfor-
mance bound for a stable open-loop system. Note
the logarithmic scale on the x-axis (∆ varies from
1ms to 10s). There is no significant performance dif-
ference observed between schedules of type (U) and
(TT ), and only the cost of the later one is shown.

We can see for these systems that for reasonably small
values of ∆ (approximately ∆ ≤ 100 ms for (A1, B) and
∆ ≤ 10 ms for (A2, B)), the performance of the digital con-
trollers of section 6.2 matches the performance bound (17)
(up to the noise in the simulation results), hence these con-
trollers and schedules perform essentially optimally. We ob-
serve in general that the bound is tight for an interesting
range of values of ∆, and typically quite informative for
much of the interval of sampling times that is of practical
interest given the system dynamics. There is no significant
different between the performance of the schedules of type
(U) and (TT ) for small values of ∆. Increasing ∆ further,
we then observe a relatively rapid performance degradation.
Nonetheless, the schedules of type (U) show a much bet-
ter performance than the long schedules of types (TT ) in
this range for unstable systems (see Fig. 3). Naturally, the
value of ∆ for which the performance degradation starts to
become noticeable depends, among other things, on the de-
gree of stability of the open-loop system (the location of the
eigenvalue of A with maximum real part).

Note that the scheduling sequences obtained from the con-
tinuous time analysis are not necessarily optimal in general
for the problem with large sampling periods ∆, where other
effects becomes significant and allow us to distinguish be-
tween the performance of schedules (U) and (TT ) for ex-
ample. This can be seen by looking at the unstable system
(A2, B), and comparing the schedule (TT ) to the simple
Round-Robin policy with l = 3, l1 = l2 = l3 = 1, see Fig.
3. For ∆ > 100 ms, the Round-Robin policy starts to show
a better performance, and diverges at a much smaller rate
than for the (TT ) schedule (but not the (U) schedule) as ∆
continues to increase.

Let us investigate in more details the relationship between
the range of values ∆ where the performance of the digital
implementation matches the continuous-time bound and the
degree of stability of the open-loop system, measured here

Figure 3: Performance degradation as ∆ increases
and comparison with the continuous-time perfor-
mance bound for an unstable open-loop system. The
Round-Robin policy simply cycles between the 3
modes by spending one slot in each mode in each
cycle.

by the maximum real part of the eigenvalues of A. For this
purpose, we fix the matrix B to be the 3× 2 matrix

B =





0 0
1 0
0 1



 ,

and generate 3 × 3 matrices A randomly with entries gen-
erated according to a standard normal distribution. For
each such matrix, we evaluate empirically the threshold ∆
at which the cost becomes greater than 1.2 times the per-
formance bound. Let us denote ∆th this threshold. Define,
for a matrix A

s(A) := max{Re(λ)|λ eigenvalue of A}.

Fig. 4 shows the variation of ∆th with s(A) for a num-
ber of such randomly generated systems, for schedules of
type (TT ). The thresholds were approximately determined
using Monte-Carlo simulations and a Robbins-Monro proce-
dure [13]. As in the previous example, we see that the re-
gion where the performance of the digital controller approx-
imately matches the performance bound (17), here within a
tolerance of 20%, extends to fairly large values of slot length,
with ∆ in the tens of milliseconds allowed even for fairly un-
stable open-loop dynamics. Better results could in fact be
expected with schedules of type (U).

Finally, Fig. 5 shows an example of regulation result,
using the discretized periodic controller and a schedule of
type (TT ). The system dynamics is described by a random
10 × 10 matrix A and a random 10 × 7 matrix B, and as
in example 1 each column of B is associated to a different
control channel (i.e. mi = 1, i = 1, . . . , 7). The regulation
responses are compared to a design based on implementing
the optimal discrete-time linear-quadratic regulator for the
system (A,B), i.e., assuming all input channels can be used
simultaneously. As expected, in the presence of the control
constraint the response is found to be more sluggish and the



Figure 4: Variation of the threshold value ∆th asso-
ciated with 20% performance decrease with respect
to the performance bound (17) for random linear
systems with a three-dimensional state space. On
the x-axis we represent the degree of stability of the
open loop dynamics, measured by the maximum real
part of the eigenvalues of A.

noise perturbing the dynamics cannot be filtered as well as
with the standard LQR controller.

8. CONCLUSION
We have discussed a linear quadratic control problem un-

der scheduling constraints. It is found that working directly
with the continuous-time formulation of the problem allows
us to obtain a simple performance bound, which is opti-
mal assuming an analog controller and in the limit of in-
finitely fast switching rates. Relaxing these assumptions,
the bound remains relevant for the characterization of the
performance of digital versions of the analog controller un-
der realistic sampling rates. It is interesting to note that
for control problems concerning sampled-data systems sub-
ject to resource utilization constraints, it seems to be of-
ten easier to work directly in continuous-time rather than
discretize the dynamics first. This is related to the well-
known possibility to “convexify” the set of control inputs
in continuous-time optimal control by fast switching. More
generally however, continuous-time modeling is also often a
richer modeling framework. For example, from the discus-
sion of the schedules of type (U) in section 6, it emerges that
time-varying sampling rates can be useful, a fact that would
not be noticed by using discrete-time techniques assuming
from the start a fixed sampling rate.

The problem considered here is the dual of the Kalman
filtering problem with scheduling constraints studied in [14].
Future work will consider the LQG problem under output
feedback and constraints on the measurement and control
signals.

Figure 5: Sample trajectories (plotted at the sam-
ple points k∆, k ≥ 0) for a random system with 10
states and 7 inputs, for the digital implementation
with schedule (TT ) and ∆ = 10 ms. One of the 7
inputs can be used in each slot. We also show the
response obtained with the standard discrete-time
LQR controller (i.e., LQR design after discretizing
the dynamics).
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[4] K. J. Åström. Introduction to Stochastic Control
Theory. Dover, 2006. Republication of the 1970
edition.
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