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Abstract— The multi-armed bandit problem and one of its
most interesting extensions, the restless bandits problem, are
frequently encountered in various stochastic control problems.
We present a linear programming relaxation for the restless
bandits problem with discounted rewards, where only one
project can be activated at each period but with additional
costs penalizing switching between projects. The relaxation
can be efficiently computed and provides a bound on the
achievable performance. We describe several heuristic policies;
in particular, we show that a policy adapted from the primal-
dual heuristic of Bertsimas and Niño-Mora [1] for the classical
restless bandits problem is in fact equivalent to a one-step
lookahead policy; thus, the linear programming relaxation
provides a means to compute an approximation of the cost-to-
go. Moreover, the approximate cost-to-go is decomposable by
project, and this allows the one-step lookahead policy to take
the form of an index policy, which can be computed on-line
very efficiently. We present numerical experiments, for which
we assess the quality of the heuristics using the performance
bound.

I. INTRODUCTION

In the field of stochastic optimization, the multi-armed
bandit (MAB) model is of fundamental importance because
it is known to be solvable efficiently despite its generality.
In the MAB problem, we consider N projects, of which only
one can be worked on at any time period. Each project
i is characterized at (discrete) time t by its state xi(t). If
project i is worked on at time t, one receives a reward
α tr(xi(t)), where α ∈ (0,1) is a discount factor. The state
xi(t) then evolves to a new state according to given transition
probabilities. The states of all idle projects are unaffected.
We assume perfect state information and (in this paper) we
consider only a finite number of states for each project. The
goal is to find a policy which decides at each time period
which project to work on in order to maximize the expected
sum of the discounted rewards over an infinite horizon.

The MAB problem was first solved by Gittins [2], [3], who
showed that it is possible to attach to each project an index
that is a function of the project and of its state alone, and
that the optimal policy is simply characterized by operating
at each period the project with the greatest current index.
Moreover, these indices can be efficiently calculated. Whittle
[4] proposed an extension of the model, called the restless
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bandits problem (RB), in which one can activate several
projects at each time period, and the projects that remain
passive continue to evolve, possibly using different rules.
Finding an optimal policy efficiently for the RB problem
is unlikely to be possible however, since the problem was
shown to be PSPACE-hard [5], even in the case when
only one project is active at each period and deterministic
transition rules are in effect.

Another extension of the MAB model concerns the addi-
tion of costs for changing the currently active project. This
problem is of great interest to various applications where
the MAB formulation also applies, in order to model for
example set-up and tear-down costs in queuing networks [6],
or transition costs in a job search problem (see the survey in
[7]). This paper is motivated by an optimal search problem
in the context of aerial surveillance.

Compared with the classical MAB problem, relatively few
papers are devoted to RB problems and multi-armed bandit
problems with switching costs (MABSC). In the same spirit
as this paper, [1] presented relaxations providing bounds
on the achievable performance for the RB problem. [8]
and [9] study the indexability of the RB problem and the
MABSC problem respectively. However in the latter case
the switching costs must be decomposable as set-up and
tear-down costs, which is not valid in general if the costs
represent travel distances. Other contributions to the MABSC
problem include [10] and [11]. [12] solves a two-armed
bandit problem with switching costs analytically, in the case
of deteriorating rewards.

In this paper, we consider the restless bandits problem
with switching costs (RBSC), when only one project can be
set active at each time period. In Section II, we formulate
the RBSC problem in the general framework of Markov
decision processes (MDP). We also briefly review the state-
action frequency approach used here to obtain the linear
programming formulation of MDPs. In Section III, we show
that even the special case of the MABSC is NP-hard, and we
propose a first-order linear relaxation of the RBSC problem,
providing an efficiently computable bound on the achievable
performance. Section IV describes heuristics to solve the
problem in practice and finally, Section V presents numerical
experiments comparing these heuristics.



II. EXACT FORMULATION OF THE RBSC
A. The State-Action Frequency Approach to MDPs

In this section, we first review the linear programming
approach based on occupation measures to formulate Markov
decision processes (MDP). The RBSC problem is then for-
mulated in this framework. A (discrete-time) MDP is defined
by a tuple {X,A,P,c} as follows:

• X is the finite state space.
• A is the finite set of actions. A(x) ⊂ A is the subset

of actions available at state x. K = {(x,a) : x ∈ X,a ∈
A(x)} is the set of state-action pairs.

• P are the transition probabilities. Pxay is the proba-
bility of moving from state x to state y if action a is
chosen.

• r : K → R is an immediate reward.
We define the history at time t to be the sequence of

previous states and actions, as well as the current state:
ht = (x1,a1,x2,a2, . . . ,xt−1,at−1,xt). Let Ht be the set of all
possible histories of length t. A policy u in the class of
all policies U is a sequence (u1,u2, . . .). If the history ht
is observed at time t, then the controller chooses an action
a with probability ut(a|ht). A policy is called a Markov
policy (u ∈ UM) if for any t, ut only depends on the state
at time t. A stationary policy (u ∈US) is a Markov policy
that does not depend on t. Under a stationary policy, the state
process becomes a Markov chain with transition probabilities
Pxy[u] = ∑a∈A(x) Pxay u(a|x). Finally, a stationary policy is
a deterministic policy (u ∈UD) if it selects an action with
probability one. Then u is identified with a map u : X → A.

We fix an initial distribution ν over the initial states. In
other words, the probability that we are at state x at time 1
is ν(x). If ν is concentrated on a single state z, we use
the Dirac notation ν(x) = δz(x). Kolmogorov’s extension
theorem guarantees that the initial distribution ν and any
given policy u determine a unique probability measure Pu

ν

over the space of trajectories of the states Xt and actions At .
We denote Eu

ν the corresponding expectation operation.
For any policy u and initial distribution ν , and for a

discount factor 0 < α < 1, we define

Rα(ν ,u) = (1−α)Eu
ν

∞

∑
t=1

α
t−1r(Xt ,At)

= (1−α)
∞

∑
t=1

α
t−1Eu

ν r(Xt ,At)

(the exchange of limit and expectation is valid in the case
of finitely many states and actions using the dominated
convergence theorem).

An occupation measure corresponding to a policy u is the
total expected discounted time spent in different state-action
pairs. More precisely, we define for any initial distribution
ν , any policy u and any pair x ∈ X,a ∈ A(x):

fα(ν ,u;x,a) := (1−α)
∞

∑
t=1

α
t−1Pu

ν(Xt = x,At = a).

The set { fα(ν ,u;x,a)}x,a defines a probability measure
fα(ν ,u) on the space of state-action pairs that assigns

probability fα(ν ,u;x,a) to the pair (x,a). fα(ν ,u) is called
an occupation measure and is associated to a stationary
policy w defined by:

w(a|y) =
fα(ν ,u;y,a)

∑a∈A fα(ν ,u;y,a)
,∀y ∈ X,a ∈ A(y), (1)

whenever the denominator is non-zero, in which case we can
choose w(a|y) arbitrarily. We can readily check that

Rα(ν ,u) = ∑
x∈X

∑
a∈A

fα(ν ,u;x,a)r(x,a). (2)

Let Qα(ν) to be the set of vectors ρ ∈ R|K | satisfying{
∑y∈X ∑a∈A(y) ρy,a(δx(y)−αPyax) = (1−α)ν(x),∀x ∈ X
ρy,a ≥ 0, ∀y ∈ X, a ∈ A(y).

(3)
Qα(ν) is a closed polyhedron. Note that by summing the
first constraints over x we obtain ∑y,a ρy,a = 1, so ρ satisfying
the above constraints defines a probability measure. It also
follows that Qα(ν) is bounded, i.e., is a closed polytope.
One can check that the occupation measures fα(ν ,u) belong
to this polytope. In fact Qα(ν) describes exactly the set of
occupation measures achievable by all policies (See [13] for a
proof): the extreme points of the polytope Qα(ν) correspond
to deterministic policies, and each policy can be obtained
as a randomization over these deterministic policies. Thus,
one can obtain a (deterministic) optimal occupation measure
corresponding to the maximization of (2) as the solution of
a linear program over the polytope Qα(ν).

B. Exact Formulation of the RBSC Problem

In the RBSC problem, N projects are distributed in space
at N sites, and one server can be allocated to a chosen project
at each time period t = 1,2, . . .. In the following, we use the
terms project and site interchangeably. At each time period,
the server must occupy one site. We say that a site is active at
time t if it is visited by the server, and is passive otherwise.
If the server travels from site k to site l, we incur a cost ckl .
Each site can be in one of a finite number of states xn ∈ Sn,
for n = 1, . . . ,N, and we denote the Cartesian product of the
individual state spaces S = S1 × . . .× SN . If site n in state
xn is visited, a reward r1

n(xn) is earned, and its state changes
to yn according to the transition probability p1

xnyn . If the site
is not visited, then a reward (potentially negative) r0

n(xn) is
earned for that site and its state changes according to the
transition probabilities p0

xnyn . We assume that all sites change
their states independently of each other. Note that if the
transition costs are all 0, we recover the initial formulation
of the RB problem [4] for one server. If additionally the
passive rewards are 0 and the passive transition matrix is the
identity matrix, we obtain the MAB problem. If we just add
the switching costs to the basic MAB problem, we call the
resulting model MABSC.

The RBSC problem can be cast into the MDP framework.
We denote the set {1, . . . ,N} by [N]. The state of the system
at time t is given by the state of each site and the position
s ∈ [N] of the server. We denote the complete state by



(x1, . . . ,xN ;s) := (x;s). We can choose which site is to be
visited next; i.e., the action a belongs to the set [N]. Once the
next site to be visited is chosen, there is a cost csa for moving
to the new site, including possibly a nonzero cost for staying
at the same site. The reward earned is r1

a(xa)+∑ j 6=a r0
j (x j).

We are given a distribution ν on the initial state of the
system, for example ν(x1, . . . ,xN ;s) = ν1(x1) . . .νN(xN)δ1(s)
if the initial states of the sites are independent and the
server leaves initially from site 1. We also define the notation
∑x∈S = ∑x1∈S1

. . .∑xN∈SN . Then the linear program for the
resulting MDP can be written:

maximize
N

∑
s=1

∑
x∈S

N

∑
a=1

(r1
a(xa)+ ∑

j 6=a
r0

j (x j)− csa)ρ(x1,...,xN ;s),a (4)

subject to
N

∑
a=1

ρ(x;s),a−α

N

∑
s′=1

∑
x′∈S

N

∑
a=1

ρ(x′;s′),aP(x′;s′)a(x;s) =

(1−α)ν(x;s), ∀(x,s) ∈S × [N]

ρ(x;s),a ≥ 0, ∀((x;s),a) ∈S × [N]2,

with the decision variables ρ(x;s),a corresponding to the
occupation measures.

In our case, a non-zero transition probability occurs only
if the target site is the same as our selected action because
we assume that the movement of the server is deterministic.
Using the independence assumption, we obtain the following
equality constraints on the variables:

N

∑
a=1

ρ(x;s),a−α

N

∑
s′=1

∑
x′∈S

ρ(x′;s′),s p0
x′1,x1

. . . p1
x′sxs

. . . p0
x′N ,xN

= (1−α)ν(x,s), ∀(x,s) ∈S × [N] (5)

In this formulation, our decision variables are ρ(x1,...,xN ;s),a.
Thus, there are |S1|× . . .×|SN |×N2 variables, i.e., a number
exponential in the size of the input data. For example, if we
consider a problem with N = 10 sites and 5 states for each
site, we obtain a linear program with more than 976× 106

variables, and therefore real world instances of the problem
cannot be solved by feeding this formulation directly into an
LP solver.

III. LINEAR PROGRAMMING RELAXATION OF THE RBSC

A. Complexity of the RBSC and MABSC problems.

It could well be that the problem appears difficult to
solve only because of our own inability to formulate it
in an efficient manner. In the most general formulation
above, we know however that the problem is likely to be
intractable, since the RB problem is already PSPACE-hard
[5], even for the case of deterministic transition rules and
one server. Here we show that the special case MABSC is
also difficult. In this Section, we also denote (with a slight
abuse of notation) MABSC as the recognition version of the
optimization problem considered before; that is, given an
instance of the MABSC problem and a real number L, is
there a policy that achieves a total expected reward greater

than or equal to L? This problem is obviously easier than the
full version of the optimization problem. The fact that it is
NP-hard is deduced from the same result for the HAMILTON
CIRCUIT problem.

Theorem 1: MABSC is NP-hard.

Proof: Recall that in the HAMILTON CIRCUIT prob-
lem, we are given a graph G = (V,E), and we want to
know if there is a circuit in G visiting all nodes exactly
once. HAMILTON CIRCUIT was actually one of the first
combinatorial problems proven to be NP-complete [14].
HAMILTON CIRCUIT is a special case of MABSC. Indeed,
given any graph G = (V,E), we construct an instance of
MABSC with N = |V | sites, travel costs ci j = 1 if {i, j} ∈ E,
and ci j = 2 otherwise. We choose arbitrarily one of the sites
to be the site where the server is initially present. This site
has only one state, and the reward for having the server
present at this site at any period is 0. To each of the (N−1)
other sites, we associate a Markov chain with two states. To
the first state is associated a reward of 2 (discounted by α at
each time period), and after a visit to a site in this state, the
site moves with probability 1 to the second state, associated
with a reward of (−1) (discounted by α at each time period).
Once in this state, the chain remains there with probability
1.

Now since α > 0, it is clear that a policy can achieve a
reward of 1 + α + . . . + αN−2 −αN−1 if and only if there
exists a Hamilton circuit in G. The only possible policy
actually just moves the server along the Hamilton circuit
without stopping, except when the server is back at the initial
site.

Note that this easy result is in strong opposition to the case
without switching costs, where a greedy policy based on the
Gittins indices for each site (computable in polynomial time)
is known to be optimal. However, the result is not completely
satisfying. It captures the complexity of the combinatorial
problem present in MABSC (which looks like a traveling
salesman problem) but not the complexity of the whole
scheduling problem. Indeed, even in the case of two sites, the
problem remains in general difficult (see for example [11]).

B. A Relaxation for the RBSC

The discussion in the previous paragraph serves as a
justification for the introduction of a relaxed formulation
of the RBSC and MABSC problems. The MAB framework
naturally leads to a Markov decision process for each site.
This observation was already used by Whittle [4] in the case
of restless bandits, together with a relaxation of the con-
straints tying the projects together. This relaxation allowed
him to decompose the formulation by project ([15] uses the
same idea). Here we essentially extend the method to RBSC.
References for our work include, in particular, the paper by
Bertsimas and Niño-Mora on restless bandits [1].

Consider a policy u and a distribution ν on the initial
states of the sites; the initial states are assumed independent
(i.e. ν(x1, . . . ,xN ;s) = ν1(x1) . . .νN(xN)δ1(s)). These generate



an occupation measure for each site f i
α(ν ,u;(xi;s),a), i =

1, . . . ,N, where

f i
α(ν ,u;(xi;s),a) = (1−α) Eu

ν

∞

∑
t=1

α
t−11{X i

t =xi,St=s,At=a}.

These occupation measures can be thought of as projections
of the measure for the complete problem [16], or in terms
of probabilities as marginals. Indeed, we have

f i
α(ν ,u;(xi;s),a) =

∑
x1∈S1

. . . ∑
xi−1∈Si−1

∑
xi+1∈Si+1

. . . ∑
xN∈SN

fα(ν ,u;(x1, . . . ,xN ;s),a).

By partial summation over the constraints in (5), one can
see that these measures belong to (and now in general the
inclusion is strict) the polytopes Qα

i (νi) defined as follows:

Qα
i (νi) =



ρ i
(xi;s),a

∈ R|Si|×N2

+ :
∑

N
a=1 ρ i

(xi;i),a
−α ∑x′i∈Si ∑

N
s′=1 ρ i

(x′i;s
′),i p

1
x′ixi

=
(1−α)νi(xi)δ1(i) ∀xi ∈ Si

∑
N
a=1 ρ i

(xi;s),a
−α ∑x′i∈Si ∑

N
s′=1 ρ i

(x′i;s
′),s p0

x′ixi
=

(1−α)νi(xi)δ1(s) ∀xi ∈ Si, s 6= i


(6)

For all N sites, we have now a total of O(N3×maxi(|Si|))
variables and constraints, i.e., a number polynomial in the
size of the input, and therefore from the discussion in
paragraph III-A it is unlikely that these variables will suffice
to formulate the RBSC problem exactly. However, we can
try to reduce the size of the feasible region spanned by the
new decision vectors, by finding additional constraints not
present in (6). Indeed, the occupation measures for each site
are projections of the same original vector and therefore are
tied together.

We can use the intuitive idea of enforcing constraints on
average to relax a hard problem. At a given time t, the server
is switching from one site to exactly one other site, and all
marginal occupation measures should reflect the same change
on the information about the server position. That is, at each
time period t, we have:

∑
xi∈Si

1{X i
t =xi,St=s,At=a} = ∑

x1∈S1

1{X1
t =x1,St=s,At=a}, ∀i,s,a∈ [N].

We relax these constraints to enforce them only on average,
which implies for the occupation measures

∑
xi∈Si

ρ
i
(xi;s),a = ∑

x1∈S1

ρ
1
(x1;s),a, ∀i,s,a ∈ [N]. (7)

Now note that, in fact, this intuitive interpretation leads
to an equation that is clearly true by simply summing the
original occupation measure over all states of all sites, but
not over s and a. The idea of relaxing a constraint enforced
at each time step into a constraint enforced on average was
central in the original work of Whittle [4]. We see here
that the state-action frequency approach allows us to derive
additional constraints between projects automatically.

Our final linear programming relaxation for RBSC is:

maximize
N

∑
s=1

N

∑
a=1

[
∑

xa∈Sa

(r1
a(xa)− csa)ρa

(xa;s),a + ∑
j 6=a

∑
x j∈S j

r0
j (x j)ρ

j
(x j ;s),a

]
(8)

subject to

ρ
i := {ρ

i
(xi;s),a}{xi,s,a} ∈ Qα

i (νi), ∀i ∈ [N]

∑
xi∈Si

ρ
i
(xi;s),a = ∑

x1∈S1

ρ
1
(x1;s),a, ∀i,s,a ∈ [N].

As noted earlier, the number of variables and constraints
in this program is polynomial in the size of the input.
Computing the optimal value of this linear program can
therefore be done in polynomial time, and provides an upper
bound on the performance achievable by any policy for the
original problem.

A few remarks can be made about this formulation. First,
we could obtain tighter relaxations by considering marginals
involving several sites at the same time. In the limit case, we
obtain the exact formulation when all sites are considered si-
multaneously. This idea is followed in [1]. Let’s also mention
that in the original work on restless bandits, Whittle used
Bellman’s equation of optimality to formulate the problem.
Additional constraints tying the projects together can then
be handled using the theory of Lagrange multipliers. If
the state-frequency approach is often preferred to deal with
constrained MDPs, the dynamic programming and Lagrange
multipliers approach has sometimes been used as well (eg.
in [15]), since it allows the use of the various algorithms
developed for dynamic programming problems. If the linear
programming method is used to solve the dynamic program,
the corresponding linear program is the dual of the one
obtained using occupation measures. We can of course obtain
the dual of (8) directly:

minimize (1−α)
N

∑
i=1

N

∑
s=1

∑
xi∈Si

νi(xi)δ1(s)λ i
xi,s (9)

subject to

λ
1
x1 ,s −α ∑

x′1∈S1

p1
x1x′1

λ
1
x′1 ,1 +

N

∑
i=2

µ
i
s,1 ≥ r1

1(x1)− cs1, s ∈ [N],x1 ∈ S1

λ
1
x1 ,s −α ∑

x′1∈S1

p0
x1x′1

λ
1
x′1 ,a +

N

∑
i=2

µ
i
s,a ≥ r0

1(x1), s ∈ [N],x1 ∈ S1,a 6= 1

λ
j

x j ,s
−α ∑

x′j∈S j

p1
x j x′j

λ
j

x′j , j
−µ

j
s, j ≥ r1

j (x j)− cs j , j ≥ 2,s ∈ [N],x j ∈ S j

λ
j

x j ,s
−α ∑

x′j∈S j

p0
x j x′j

λ
j

x′j ,a
−µ

j
s,a ≥ r0

j (x j), j ≥ 2,s ∈ [N],x j ∈ S j ,a 6= j.

IV. HEURISTICS FOR THE RBSC PROBLEM

We now present algorithms to solve the RBSC problem in
practice. On specific examples, when the optimal solution is
too costly to compute, the relaxation presented in section III
provides an upper bound on the achievable performance.
Based on ideas developed in [1], we present a primal-dual
heuristic obtained from the linear programming relaxation.
We then show that this heuristic can be viewed as a one-
step lookahead policy [17]. Experimentally, this heuristic
performed well over a wide range of problems.



A. A Simple Greedy Algorithm

Perhaps the simplest policy for the RBSC problem is
the following greedy policy: in state (x1, . . . ,xN ;s), send the
server to the site that maximizes the marginal instantaneous
reward, i.e., agreedy ∈ argmaxa{r1

a(xa)− r0
a(xa)− csa}. This

policy is optimal in the case of the MAB problem, with
no transition costs, and deteriorating rewards (i.e., projects
become less profitable as they are worked on)[3]. It is also
a one-step lookahead policy where we approximate the cost-
to-go by 0 (see (12)).

B. Reconstructing the Original Occupation Measures

Solving the linear program (8) provides values for the
marginals of the original occupation measures. Moreover,
each sum in (7) can be interpreted as the probability for the
server to be at site s and switch to site a. Then, one can try
to reconstruct occupation measures for the original problem,
for example by defining

ρ̃(x1,...,xN ;s),a =
1

(P(s,a))N−1

[
ρ

1
(x1;s),a . . .ρN

(xN ;s),a

]
(10)

with P(s,a) = ∑x1∈S1
ρ(x1;s),a. Then from (7), we immediately

have ∑ j 6=i ∑x j∈S j ρ̃(x1,...,xN ;s),a = ρ i
(xi;s),a

. Now the algorithm
simply chooses, in state (x1, . . . ,xN ;s), action ã with prob-
ability ρ̃(x1,...,xN ;s),ã/∑

N
a=1 ρ̃(x1,...,xN ;s),a if the denominator is

non zero, or leaves the server at its current position other-
wise. Of course, these new variables ρ̃ do not satisfy (4)
in general, and it is difficult to justify this construction
theoretically.

C. A Primal-Dual Index Heuristic

1) Construction from the LP relaxation: For the linear
programs (8) and (9), we can obtain optimal primal and
dual solutions {ρ̄ i

(xi;s),a
} and {λ̄ i

xi,s, µ̄ i
s,a}. We call {γ̄ i

(xi;s),a
}

the corresponding reduced costs, which are given by the
difference between the left and right hand side in the
constraints of (9). These reduced costs are nonnegative,
there is one such coefficient corresponding to each variable
of the primal ρ̄ i

(xi;s),a
, and additionally by complementary

slackness γ̄ i
(xi;s),a

= 0 if ρ̄ i
(xi;s),a

> 0. Bertsimas and Niño-
Mora motivated their heuristic for the RB problem using the
following interpretation of the reduced costs: starting from
an optimal solution, γ̄ i

(xi;s),a
is the rate of decrease in the

objective value of the primal linear program (8) per unit
increase in the value of the variable ρ i

(xi;s),a
.

We use this interpretation and the intuitive idea that taking
action a when project i is in state xi and the server at s implies
in some sense increasing the value of ρ i

(xi;s),a
. In particular,

we would like to keep the quantities ρ̄ i
(xi;s),a

found to be 0 in
the relaxation as close to 0 as possible in the final solution.
Since for these variables we can have γ̄ i

(xi;s),a
> 0, when the

system is in state (x1, . . . ,xN ;s), we associate to each action
a an index of undesirability

I((x1, . . . ,xN ;s),a) =
N

∑
i=1

γ̄
i
(xi;s),a,

that is, we sum the reduced costs for the N different projects.
Then we select action apd that minimizes these indices:

apd(x1, . . . ,xN ;s) ∈ argmina{I((x1, . . . ,xN ;s),a)}. (11)

Note that this procedure always provides a deterministic
policy.

2) Interpretation as a One-Step Lookahead Policy: There
is an interesting alternate way of viewing the primal-
dual heuristic from a dynamic programming point of view.
For state (x1, . . . ,xN ;s), we form an approximation of the
(infinite-horizon) cost to go as: J̃(x1, . . . ,xN ;s) = ∑

N
i=1 λ̄ i

xi,s.
By summing over the constraints in (9), one can readily
see that the vector J̃ is a feasible vector for the linear
program obtained from Bellman’s equation for the original
problem, or alternatively as the dual of (4). That is, J̃ is a
superharmonic vector, and we recall that the exact optimal
cost is the smallest superharmonic vector [18]. By obtaining
a tight relaxation, including the additional constraints on the
marginals, we can obtain a vector J̃ which is closer to the
optimal cost-to-go vector. Now the one-step lookahead policy
is obtained by maximizing

max
a∈[N]

{
(r1

a(xa)+ ∑
j 6=a

r0
j (x j)− csa)+α ∑

x′∈S

p0
x1x′1

. . . p1
xax′a

. . . p0
xN x′N

J̃(x′1, . . . ,x
′
N ;a)

}

= max
a∈[N]

(r1
a(xa)+ ∑

j 6=a
r0

j (x j)− csa)+α(∑
i6=a

∑
x′i∈Si

p0
xix′i

λ̄
i
x′i ,a

+ ∑
x′a∈Sa

p1
xax′a

λ̄
a
x′a ,a)


It is a straightforward calculation, using the definition of

the reduced costs given above, to verify that this maximiza-
tion is equivalent to the minimization in (11).

3) Computational Aspects and Approximate Indices: The
one-step lookahead policy above can be computed in real-
time in practice. Note that we can rewrite ∑ j 6=a r0

j (x j) as
−r0

a(xa) + ∑
N
j=1 r0

j (x j) and the sum does not depend on a.
Therefore the one-step lookahead heuristic is implemented
on-line by choosing in state (x1, . . . ,xN ;s) the action that
maximizes the approximate indices

apd ∈ argmaxa{mx,s(a)}, (12)

mx,s(a) = r1
a(xa)− r0

a(xa)− csa +α

∑
i 6=a

∑
x′i∈Si

p0
xix′i

λ̄
i
x′i ,a

+ ∑
x′a∈Sa

p1
xax′a

λ̄
a
x′a ,a

 .

This expression motivates the definition of the simple greedy
policy given previously. We can store the O(N2 maxi(|Si|))
optimal dual variables λ̄ i

xi,s and compute these indices in time
O(N2 maxi(|Si|)). Equivalently, as we have seen above, we
can store the O(N3 maxi(|Si|)) optimal reduced costs and
compute the indices appearing in (11) in time O(N2).

V. NUMERICAL EXPERIMENTS

We now consider problems whose characteristics differ-
ently affect the performance of the heuristics presented in
section IV. We also compute the optimal performance as the
solution of the linear program (4) when allowed by the size
of the state space, and an upper bound on this performance
using the relaxation (8) in any case. Linear programs are
implemented in AMPL and solved using CPLEX. Due to
the size of the state space, the expected discounted reward



TABLE I
NUMERICAL EXPERIMENTS

Problem α Z∗ Z1 Zgreedy Z̃ Zpd
Problem 1 0.9 96.4 109.4 96 94 70
Problem 2 0.9 - 281.7 246 186 213
Problem 3 0.9 - 195.3 82 96 107
Problem 4 0.9 - 1799.4 1680 1450 1713
Problem 5 0.9 - 1121.5 985 648 943

of the various heuristics is computed using Monte-Carlo
simulations. The computation of each trajectory is terminated
after a sufficiently large, but finite horizon: in our case,
when α t times the maximal absolute value of any immediate
reward becomes less than 10−6. The server is assumed to
start from site 1. To reduce the amount of computation in
the evaluation of the policies, we assume that the distribution
of the initial states is deterministic.

We adopt the following nomenclature:
• Z∗: Optimal value of the problem (when available).
• Z1: Optimal value of the relaxation.
• Zgreedy: Estimated expected value of the greedy heuris-

tic.
• Z̃: Estimated expected value of the heuristic reconstruct-

ing occupation measures from (10).
• Zpd : Estimated expected value of the primal-dual index

heuristic (i.e., one-step lookahead).
Problem 1 is a 2-armed bandit (i.e., passive projects are

frozen, passive rewards are 0, and there are no switching
costs), with 10 states for each project and deteriorating
rewards. Therefore the greedy heuristic performs optimally.
Problem 2 is an MAB problem with 8 projects, 10 states per
project and deteriorating rewards. Z∗ was not computed but
can be obtained from the simulation of the greedy policy,
since we know that it is optimal. Problem 3 is a MABSC
problem, with 5 projects, 10 states per project and deteriorat-
ing rewards. One of the projects has a high immediate reward
at the beginning, but is relatively remote, so we expected
the greedy policy to perform poorly. Problems 4 and 5 were
RBSC problems with randomly generated data.

The results of the numerical experiments on the different
problems are given in table I. Over the range of problems, the
primal-dual index heuristic performs reasonably well. Note
that since we do not assume the distances to be symmetric,
it is very easy to design a problem where the greedy policy
performs badly by associating to a site a high immediate
reward at the beginning, but also a high switching cost to
leave this site. The gap between the original optimal value
and the relaxation is seen to be less than 15% in all examples,
except possibly in problem 3 where none of the policies
approaches the bound. It is not clear at this point which
factors make the primal-dual index heuristic underperform.

VI. CONCLUSIONS

In the spirit of existing work on the restless bandits prob-
lem, we have presented a linear programming relaxation for
the restless bandits with switching costs problem. This set-up

is quite powerful to model a wide range of dynamic resource
allocation problems. Since the problem is computationally
intractable and an optimal solution can in general not be
directly computed, the relaxation is useful in providing a
bound on the achievable performance. We also presented
several heuristics to solve the problem in practice, as well
as their performances on specific examples. An interesting
part of the analysis showed the link between the linear
programming relaxation and a standard suboptimal control
method. We also showed that the relaxation can be obtained
automatically by first formulating the original problem as a
Markov decision process on the whole state space and then
considering specific marginals of the occupation measure.
Future work will focus on trying to design, for special
cases, approximation algorithms with a guaranteed worst-
case performance.
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