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Abstract— We develop certain extensions of optimization-
based conflict resolution methods in air traffic control. The
problem considered concerns the scheduling of the crossing
times of a set of aircraft through a metering fix, while
maintaining aircraft separation. First, we show how to solve this
combined path planning and scheduling problem using mixed-
integer geometric programming. Second, the objective function
used to determine the aircraft ordering at the fix is not given
a priori but needs to be obtained from the airlines, which are
strategic profit maximizing agents and could lie about their true
cost. In order to realign individual and global objectives, we
study the use of the Clarke-Groves mechanism in this context,
which aims at extracting the true utility functions from the
airlines using side-payments to the FAA.

I. INTRODUCTION AND MOTIVATION

With the growth of airspace congestion, there has been
significant research activity in the past decade to develop
automated systems for air traffic conflict detection and res-
olution. Conflict resolution, i.e., the local modification of
aircraft trajectories in order to maintain mandatory safety
separation distances, is usually studied solely from the point
of view of the air traffic controller (ATC). In this setting,
numerous conflict resolution methods have been proposed,
such as predefined resolution maneuvers or optimization
based approaches [1]. In the latter case, the cost metrics
considered for optimization typically include fuel, time and
potentially ATC workload. These metrics however do not
necessarily lead to good solutions for the airlines and the
passengers. For example, a plane with passengers trying to
catch a connecting flight incurs a much greater penalty for
an additional conflict resolution delay than a plane that is
ahead of schedule. Thus depending on the circumstances, the
airlines have different valuations for the additional delays
imposed by the ATC, and might be willing to negotiate a
solution more compatible with their individual preferences.
Their valuations however are private and not available to
the ATC for optimizing the trajectories. This is an important
aspect of the problem because simply polling the airlines for
their valuations of delays lacks any incentive for them to
communicate truthfully. A more carefully designed mecha-
nism is necessary in order to prevent them from exaggerating
the importance of the penalties imposed by additional delays.

Mechanism design [2], [3] is concerned with the design
of institutions for collective decision making despite agents
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pursuing their individual interests. This topic has in recent
years been the subject of an increasing interest for design-
ing engineered systems, in particular communication and
computer networks, see e.g. [4]. It forms the foundation of
auction theory, and as such it has been used in the design of
auctions and trading mechanisms for the allocation of arrival
and departure slots at airports during Ground Delay Programs
[5], [6]. Moreover, the concept of “Collaborative Decision
Making” (CDM) [7] adopted by the Federal Aviation Ad-
ministration (FAA) emphasizes the idea that decisions which
have a potential economic impact on the airlines should be
made in collaboration with them. This paradigm leaves room
for a wide range of applications of mechanism design for air
traffic flow management, see e.g. [8].

In this paper we propose the application of mechanism
design to en route conflict resolution between multiple air-
craft. With respect to previous work on optimization-based
approaches to this problem [9]–[12], the motion planning
problem considered here is fairly simple. However we as-
sume that the airlines can lie about the cost function that
is ultimately used for optimization. Hence it is necessary to
design an additional mechanism in order to extract the true
utility function of the airlines, and for this purpose we study
the Clarke-Groves mechanism. An additional extension of
the previous work is that we consider a joint motion planning
and scheduling problem (for aircraft moving towards an
airspace fix), for which standard linear programming [9] and
mixed-integer linear programming formulations [12], or even
relaxations based on quadratically constrained quadratic pro-
grams [10] are not appropriate. Instead, we solve our problem
using a mixed-integer geometric programming formulation,
which is of independent interest.

The rest of the paper is organized as follows. Section II
presents the problem formulation, and describes the con-
straints of the optimization problem that result from the
safety conditions (aircraft separation). We also include some
background material on geometric programming. In section
III we present the Clarke-Groves mechanism and show how
it can be used to extract the cost functions of the airlines
using side payments. Section IV summarizes the solution
procedure, and section V presents simulation results. Finally,
we conclude in section VI and briefly discuss some research
directions left for future work.

II. PROBLEM FORMULATION

We consider a scenario (see Fig. 1) where N aircraft
are initially in configurations (x̂i, ŷi, ψi) ∈ R2 × S1, i =
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Fig. 1. Aircraft must merge at the airspace fix. Separation is ensured after
the fix.

1, . . . , N , and have initial velocity vectors v̂i ∈ R2 (through-
out the paper, we denote vector quantities in boldface). Hence
the orientation of v̂i with respect to a fixed horizontal axis
is ψi, and we let v̂i = �v̂i�. Also, let p̂i = (x̂i, ŷi) denote
the initial position of aircraft i. The problem considered is
two-dimensional. There is a metering fix or merging point
with known position through which all the aircraft must pass,
subject to a Minutes-In-Trail restriction MinIT. This means
that two successive aircraft passing through the point must be
separated in time by at least MinIT minutes. The mandatory
separation distance at all times between aircraft is d, and we
define the safety disc around an aircraft to be a disc centered
at the aircraft position with radius R = d/2. Hence safety
discs of different aircraft should never intersect. We initially
assume the aircraft to be separated. Moreover, we remove
an aircraft from consideration once it passes through the fix,
since typically such points are used to generate downstream
a single flow of separated aircraft with identical headings,
for example in preparation for landing at an airport. The
initial headings ψi are assumed to be directed towards the
fix and cannot be changed. The only control available to
the ATC is a single change in the magnitude of the velocity
vector for each aircraft, which is executed instantaneously at
time t = 0, a problem considered in [12]. After the change
imposed by the ATC, the speed of aircraft i becomes vi,
subject to the constraints

0 < vi,min ≤ vi ≤ vi,max (1)

imposed for passenger comfort as well as physical reasons,
such as stall and Mach buffeting [10]. The variables vi

serve as decision variables in the formulation of the opti-
mization problem. Hence the velocity vectors are fixed to
vi, i = 1, . . . , N, with �vi� = vi once the initial change in
magnitude has been executed.

A. Separation Constraints

The fact that any two aircraft must be separated by the
distance d at all times translates into constraints imposed
on the allowed velocities. Consider two aircraft i, j with
velocities vi,vj , positions pi,pj , and initial positions p̂i, p̂j

(see Fig. 2). We study the problem in the mobile frame
centered at pi. In this frame, aircraft j has relative velocity
vij = vj − vi and aircraft i is immobile. We first impose a
safety condition considered in previous work [10], [12]. No
conflict arises if the the infinite strip of width R on each
side of aircraft j and of direction vij does not intersect the
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Fig. 2. Geometric representation of the forbidden cone of velocities.

safety disc of aircraft i. Equivalently, the distance from p̂i

to the half-line p̂j + R+vij describing the trajectory of j
in the moving frame is at least 2R = d. Geometrically, this
means that the velocity vector vij lies outside of a “forbidden
convex cone” with apex at p̂j and tangent to the disc centered
at p̂i and of radius d (see Fig. 2). This constraint has been
handled in previous work in at least two ways. In [10], it
is represented by a nonconvex quadratic inequality on �vij�
in the optimization problem. In the solver, this constraint
is relaxed to obtain a semidefinite program, the solution of
which serves to design a feasible solution using randomized
rounding. We follow an alternative approach, as in [12],
which consists in representing the forbidden cone as the
intersection of two half-spaces defined by two normal vectors
n1

ij and n2
ij such that the admissible relative velocities satisfy

�
�vj − vi,n1

ij� ≥ 0
�

∨
�
�vj − vi,n2

ij� ≥ 0
�
, (2)

where ∨ denotes the logical “or” operator (see Fig. 2). This
separation constraint can be formulated as a disjunction of
linear constraints on the decision variables vi, vj (see [12]
and subsection II-C).

Condition (2) guarantees safety over an infinite horizon in
the case where the velocities are never changed after t = 0.
In particular, it does not allow an aircraft following another
aircraft and moving in the same direction to catch up with the
preceding aircraft, because eventually a conflict would arise.
This condition is too conservative for our finite-horizon prob-
lem. In the metering application considered here, separation
between two aircraft must be ensured only until one them
reaches the fix, since we assume that safety is guaranteed
beyond it, typically by a new set of ATC commands. Hence
we wish to allow for two aircraft following each other
to reduce their separation, potentially up to the minimum
imposed by the MinIT restriction. We consider a sufficient
condition ensuring that separation is maintained until one of
the aircraft reaches the position of the airspace fix. Let di be
the initial distance (i.e., at t = 0) from p̂i to the position of
the fix. The time ti it takes to aircraft i to reach the fix is

Fig. 1. Left: aircraft must merge at the airspace fix. Separation is ensured
after the fix. Right: geometric representation of the forbidden cone of
velocities.

1, . . . , N , and have initial velocity vectors v̂i ∈ R2 (through-
out the paper, we denote vector quantities in boldface). Hence
the orientation of v̂i with respect to a fixed horizontal axis
is ψi, and we let v̂i = ‖v̂i‖. Also, let p̂i = (x̂i, ŷi) denote
the initial position of aircraft i. The problem considered is
two-dimensional. There is a metering fix or merging point
with known position through which all the aircraft must pass,
subject to a Minutes-In-Trail restriction MinIT. This means
that two successive aircraft passing through the point must be
separated in time by at least MinIT minutes. The mandatory
separation distance at all times between aircraft is d. We
initially assume the aircraft to be separated. Moreover, we
remove an aircraft from consideration once it passes through
the fix, since typically such points are used to generate
downstream a single flow of separated aircraft with identical
headings, for example in preparation for landing at an airport.
The initial headings ψi are assumed to be directed towards
the fix and cannot be changed. The only control available to
the ATC is a single change in the magnitude of the velocity
vector for each aircraft, which is executed instantaneously at
time t = 0, a problem considered in [12]. After the change
imposed by the ATC, the speed of aircraft i becomes vi,
subject to the constraints

0 < vi,min ≤ vi ≤ vi,max (1)

imposed for passenger comfort as well as physical reasons,
such as stall and Mach buffeting [10]. The variables vi
serve as decision variables in the formulation of the opti-
mization problem. Hence the velocity vectors are fixed to
vi, i = 1, . . . , N, with ‖vi‖ = vi once the initial change in
magnitude has been executed.

A. Separation Constraints

The fact that any two aircraft must be separated by the
distance d at all times translates into constraints imposed
on the allowed velocities. Consider two aircraft i, j with
velocities vi,vj , positions pi,pj , and initial positions p̂i, p̂j
(see Fig. 1). We study the problem in the mobile frame
centered at pi. In this frame, aircraft j has relative velocity
vij = vj − vi and aircraft i is immobile. We first impose
a safety condition considered in previous work [10], [12].
No conflict arises if the distance from p̂i to the half-line
p̂j + R+vij describing the trajectory of j in the moving

frame is at least d. Geometrically, this means that the velocity
vector vij lies outside of a “forbidden convex cone” with
apex at p̂j and tangent to the disc centered at p̂i and of radius
d (see Fig. 1). This constraint has been handled in previous
work in at least two ways. In [10], it is represented by a
nonconvex quadratic inequality on ‖vij‖ in the optimization
problem. In the solver, this constraint is relaxed to obtain
a semidefinite program, the solution of which serves to
design a feasible solution using randomized rounding. We
follow an alternative approach, as in [12], which consists in
representing the forbidden cone as the intersection of two
half-spaces defined by two normal vectors n1

ij and n2
ij such

that the admissible relative velocities satisfy
[
〈vj − vi,n1

ij〉 ≥ 0
]
∨

[
〈vj − vi,n2

ij〉 ≥ 0
]
, (2)

where ∨ denotes the logical “or” operator (see Fig. 1). This
separation constraint can be formulated as a disjunction of
linear constraints on the decision variables vi, vj (see [12]
and subsection II-C).

Condition (2) guarantees safety over an infinite horizon in
the case where the velocities are never changed after t = 0.
In particular, it does not allow an aircraft following another
aircraft and moving in the same direction to catch up with
the preceding aircraft, because eventually a conflict would
arise. This condition is too conservative in our metering
application, where separation between two aircraft must
be ensured only until one them reaches the fix, since we
assume that safety is guaranteed beyond it by a new set of
ATC commands. Hence we wish to allow for two aircraft
following each other to reduce their separation, potentially
up to the minimum imposed by the MinIT restriction. We
consider a sufficient condition ensuring that separation is
maintained until one of the aircraft reaches the position of
the airspace fix. Let di be the initial distance (i.e., at t = 0)
from p̂i to the position of the fix. The time ti it takes to
aircraft i to reach the fix is ti = di/vi. Referring to Fig.
1, safety is maintained if aircraft i reaches the fix position
before j enters the circle around i, or if j reaches the fix
position before i enters the similar circle around j. Let us
consider the first case, and note on Fig. 1 the dashed line
perpendicular to p̂ij = p̂j − p̂i tangent to the circle around
aircraft i, which separates the plane into two half-planes,
each containing one aircraft. The sufficient condition that
we consider consists in allowing cases where vij belongs
to the forbidden cone, i.e., condition (2) is not satisfied,
as long as aircraft j remains on the side of the plane that
does not contain i until time ti. It is only a sufficient safety
guarantee because it ignores the fact that safety could also be
maintained even if j were going past this line into the side
regions of the forbidden cone around the circle. This safety
condition can be written 〈p̂ij , p̂ij + di

vi
vij〉 ≥ d‖p̂ij‖. The

symmetric constraint with the roles of i and j are inverted
can be written 〈p̂ij , p̂ij + dj

vj
vij〉 ≥ d‖p̂ij‖. If either of

these conditions is verified, then safety is maintained. Indeed
suppose the first condition is satisfied but not the second.
Then, because we have 〈p̂ij ,vij〉 < 0 when vij belongs
to the forbidden cone, this implies ti < tj . Hence safety



is ensured because i crosses the fix first. These constraints
can be again transformed into linear constraints on the
variables vi, vj , but we will not use this fact. Finally, our
separation constraints can be summarized with the following
disjunctions, one for each unordered pair i 6= j

[
〈vj − vi,n1

ij〉 ≥ 0
]
∨

[
〈vj − vi,n2

ij〉 ≥ 0
]

∨
[
〈p̂ij , p̂ij +

di
vi

(vj − vi)〉 ≥ d‖p̂ij‖
]

∨
[
〈p̂ij , p̂ij +

dj
vj

(vj − vi)〉 ≥ d‖p̂ij‖
]
. (3)

B. Scheduling Constraints due to Minutes-in-Trail Restric-
tions

Besides the separation constraints, we have constraints
originating from the minutes-in-trail restriction, which we
call scheduling constraints. We have, for each pair i 6= j:

[
di
vi
− dj
vj
≥ MinIT

]
∨
[
dj
vj
− di
vi
≥ MinIT

]
. (4)

The first constraint must be satisfied if aircraft j passes
through the fix before aircraft i, and the second constraint
if the order is reversed. Unfortunately, the constraints inside
the logical operator are not linear in the decision variables
{vi}1≤i≤N , hence cannot be handled, at least directly, by a
linear programming solver as in [12]. As we discuss next,
they can be handled by a geometric programming solver
however, which is almost as efficient.

C. Geometric Programming

The basic property that we rely on for solving reasonably
fast optimization problems subject to mixed continuous and
logical constraints is that we have a solver able to solve
optimization problems for an arbitrary conjunction of the
atomic constraints appearing in the disjunctions. This solver
is used in any method proposed to solve the global optimiza-
tion problem, for example to obtain the required bounds in
a branch-and-bound method. In the MILP approach used in
[12], this solver is a linear programming solver. Due to the
nonlinearity of our scheduling constraints (4), we replace it
here by a geometric programming (GP) solver. This requires
that we convert all disjuncts appearing in the constraints to
constraints which can be handled by this GP solver. First,
we review the basic terminology of geometric programs, see
e.g. [13]. A monomial is a function f : Rn>0 → R of the
form f(x) = cxa1

1 x
a2
2 · · ·xan

n , where c > 0 and ai ∈ R,
for 1 ≤ i ≤ n. A function f which is the sum of one
or more monomials f(x) =

∑K
k=1 ckx

a1k
1 xa2k

2 · · ·xank
n , is

called a posynomial. Optimization problems involving the
minimization of a posynomial function subject to constraints
of the form g(x) ≤ 1 with g a posynomial as well as h(x) =
1 with h a monomial, are called geometric programs (GP),
and can be solved almost as efficiently as linear programs by
interior-point methods [13]. Next, a generalized posynomial
is a function that can be formed from posynomials using
the operations of addition, multiplication, positive fractional
power, and maximum. Replacing posynomials by generalized

posynomials in the definition of a geometric program, we
obtain a generalized geometric program, which can be solved
efficiently as well by converting it to a GP.

Note that the scheduling constraint di

vi
− dj

vj
≥ MinIT can

be rewritten MinIT
di

vi + dj

di
vi v
−1
j ≤ 1, hence is of the form

g(vi, vj) ≤ 1, where g is a posynomial. For the separation
constraints, we will use the following lemma.

Lemma 1: Any linear constraint of the form

αx+ βy ≥ 0, with x > 0, y > 0 (5)

is either trivial (if α, β ≥ 0), infeasible (if α, β ≤ 0 and
α + β 6= 0), or can be rewritten as g(x, y) ≤ 1, where g is
a posynomial.

Proof: The last case is when α and β have opposite
signs and are both non-zero. If α > 0, β < 0, then we can
rewrite the inequality as |β|α

y
x ≤ 1. If α < 0, β > 0, we

rewrite the constraint as |α|β
x
y ≤ 1.

We see that by a simple preprocessing of the linear inequal-
ities of the form (5), we can handle such inequalities by
geometric programming. Since the constraints will appear
in a disjunction of constraints, the preprocessing consists in
removing the infeasible constraints (α ≤ 0, β ≤ 0, α+β 6= 0)
from the disjunction, and removing the disjunction altogether
if a trivial constraint is found (α ≥ 0, β ≥ 0), since in the
latter case the disjunction is a tautology.

We now write the separation constraints (3) in coordinates.
Let αij = arcsin(d/‖p̂ij‖) (then αij ∈ (0, π/2]), and define
with respect to the global coordinate system ωij = arg(p̂ij),
βij = ωij + αij and γij = ωij − αij (see Fig. 1). Then
in coordinates we have n1

ij = [sinβij ,− cosβij ]T and
n2
ij = [− sin γij , cos γij ]T . Hence the first constraint in the

disjunction becomes

vi(sinψi cosβij − cosψi sinβij)
+ vj(cosψj sinβij − sinψj cosβij) ≥ 0.

For the second constraint in (3), we get similarly

vi(cosψi sin γij − sinψi cos γij)
+vj(sinψj cos γij − cosψj sin γij) ≥ 0.

The third inequality is

vi‖p̂ij‖(‖p̂ij‖ − d− di cosωij cosψi − di sinωij sinψi)
+ vj‖p̂ij‖di(cosωij cosψj + sinωij sinψj) ≥ 0.

Finally, the last inequality is

vj‖p̂ij‖(‖p̂ij‖ − d+ dj cosωij cosψj + dj sinωij sinψj)
− vi‖p̂ij‖dj(cosωij cosψi + sinωij sinψi) ≥ 0.

All of these four inequalities are of the form (5), so feasible
and non-trivial disjuncts can be handled by a GP solver.

In conclusion, each of the literals in (3), (4) is a geometric
programming constraint. In the previous work [12] which
included disjunctions of linear constraints only, the resulting
mixed logical continuous optimization problem was solved
using a mixed integer linear programming (MILP) solver and
the “big-M” method to model the disjunction, see section IV.



MILP cannot handle the scheduling constraints, but we will
see how to solve an optimization problem with mixed logical
and geometric constraints using mixed-integer geometric
programming in section IV. Interestingly, the standard big-
M method used for MILP must be modified to work with a
geometric programming solver.

III. EXTRACTING USER PREFERENCES

A. Parameterization of the Cost Functions

Previous work on optimization-based methods for conflict
resolution in air traffic control has assumed the objective
function to be given or defined by the optimizer (i.e., the
ATC), see e.g. [9], [10], [12], [14], [15]. However, ultimately
the goal of the system once aircraft separation is ensured
by the ATC is to optimize the preferences of the airlines,
since this has a more direct impact on the travelers. At
any given time if a conflict occurs, different planes might
have different tolerances to additional delays. Whereas some
might be trying to make a connection, others might be willing
to accept a larger deviation from their nominal path against,
say, a monetary reward. However in a strategic environment it
is not possible to simply ask the airlines to communicate their
cost functions in the absence of any incentive for them to do
so truthfully. In this section, we describe a mechanism that
can be implemented by the ATC in order to extract the cost
functions from the aircraft. The sum of these cost functions
is then minimized (as an aggregate of the preferences of the
aircraft involved in the conflict), subject to the safety and
scheduling constraints described in section II.

We assume that the preference of each aircraft involved
in the conflict (as determined by the individual airlines) is
expressed in monetary units by a cost function of vi belong-
ing to a family of generalized posynomials (see section II-C)
with a finite dimensional parameterization by a set Θi. For
example, we will assume in the simulations of this paper that
this cost function is a posynomial function of vi of the form:

f(vi; θi) = c0,i + c1,i v
ai,1
i + . . .+ cK,i v

aK,i

i ,

where ci,j ≥ 0 and ai,j ∈ R for all i = 1, . . . , N, j =
1, . . . ,K (so here Θi = RK+1

+ × RK). Here the maximum
number of terms K is fixed and the same for all aircraft. We
define the parameter θi = [c0,i, c1,i, . . . , cK,i, a1,i, . . . , aK,i],
called the type of aircraft i. For our application, a typical
shape of the cost function might include a minimum cost
at a preferred velocity, for example at v̂i, and increasing
cost for large velocities due to fuel consumption and for low
velocities due to additional delays ( [13] described techniques
that can be used by the airlines to approximate their real
cost function by a generalized posynomial). The parameter
θi controlling the shape of the cost function of an airline is
not known to the ATC, and airline would not communicate
their type truthfully without proper incentive.

B. Mechanism Design

We now describe a system which aims at correcting this
problem, based on principles developed in the mechanism
design literature [2], [3]. As before, the ATC asks the aircraft

to send their parameters {θi}1≤i≤N . We assume for sim-
plicity that these aircraft do not share their type information
with each other, for instance because they belong to different
airlines. Aircraft i sends a value θ̂i to the ATC, which might
a priori differ from its true type θi. The ATC then simply
optimizes the sum of the cost functions

∑N
i=1 f(vi; θ̂i)

subject to the scheduling and separation constraints of section
II. We add, however, an additional mechanism to ensure
that the aircraft announce a correct parameter, essentially
by using side-payments for penalizing the announcement
of “larger” cost functions. Denote by Θ =

∏N
i=1 Θi the

cartesian product of all type sets. Let V ⊂ RN+ be the feasible
set of velocities satisfying the constraints described in section
II. Redefine the cost function f of aircraft i defined earlier
as a function fi : V×Θi → R, i.e. fi(v, θi) ≡ f(vi; θi). The
action of the ATC, deciding a new speed for each aircraft
based on the announced preferences, can then be described
by a decision rule d : Θ→ V. Such a rule is called efficient
if it minimizes the total cost

N∑

i=1

fi(d(θ), θi) ≤
N∑

i=1

fi(d′, θi), ∀θ, ∀d′ ∈ V. (6)

To align the objectives of the various airlines, it is necessary
to use transfers (say monetary) among them or between
them and the ATC, prescribed by a transfer function t :
Θ → RN . Here ti(θ̂) represents a payment that aircraft i
makes (or receives if it is negative) to the ATC based on the
announcement of the types θ̂ by all aircraft.

The pair of functions (d, t) is referred to as a social
choice function [3]1, because it implements a social choice by
aggregating individual preferences. The total cost for aircraft
i, if θ̂ is the vector of announced types, i’s true type is θi,
and the social choice function is (d, t), is

f̃i(θ̂, θi, d, t) = fi(d(θ̂), θi) + ti(θ̂).

A transfer function t is said to be feasible if
∑N
i=1 ti(θ) ≥ 0

for all θ, i.e., no transfer is made into the system from an
outside source. Note that the ATC does not take into account
the transfer function t when computing an efficient decision
d according to (6). Hence if

∑
i ti > 0, then there is some

net loss in utility to the players as a whole relative to an
efficient decision with no transfer. In this case, we have a
surplus that cannot be returned to the airlines, otherwise the
transfer function and incentives would be modified.

The data of the parameter space Θ and the social choice
function (d, t), which are communicated in advance and
thus known to the aircraft, constitutes what is called a
(direct) mechanism [3]. With the specification of the family
of cost functions as above, a mechanism induces a game
between the players, whose strategies consist in selecting
which parameter θ̂i they should announce to the ATC (hence
the strategy space of aircraft i is simply Θi). One objective
of mechanism design, among others, is to design the social

1In the economics literature, one usually maximizes a utility function
instead of minimizing a cost, and the transfer function t is usually taken to
be positive if a payment is received



choice function in order to ensure that the players announce
their true type θi, so that the ATC performs the optimization
with the correct cost function. Even with the addition of the
transfer payments t to the ATC, this scheme might still result
in a cost for the aircraft that is better in general than a scheme
assuming a priori an objective function which does not take
into account the individual preferences of the airlines (see
the simulations in section V).

For a vector θ = (θ1, . . . , θn), we define θ−i =
(θ1, . . . , , θi−1, θi+1, . . . , θn). In order to predict how the
players interacting through the mechanism behave, we con-
sider the following notion

Definition 2: A strategy θ̂i ∈ Θi is a dominant strategy at
θi ∈ Θi if

f̃((θ̂i, θ̂−i), θi, d, t) ≤ f̃((θ̃i, θ̂−i), θi, d, t)

for all θ̂−i and θ̃i.
Hence a dominant strategy for player i is optimal (taking
into account the payment) no matter what the other players
do under the announced mechanism, and is therefore a good
candidate for the expected behavior of the players if it exists.
A direct mechanism (d, t) is dominant strategy incentive
compatible if θi is a dominant strategy at θi for each i and
θi ∈ Θi. That is, under such a mechanism, it is always a
dominant strategy for a player to announce his true type. In
this paper, we will consider only a simple mechanism that
has nice properties, and was described initially in the work
of Clarke [16] and Groves [17].

Definition 3: The pivotal mechanism for the conflict res-
olution problem consists in
• an efficient decision rule (6), i.e., the ATC minimizes the

total cost based on the types announced by the aircraft.
• a transfer function consisting in a payment

ti(θ̂) =
∑

j 6=i

fj(d(θ̂), θ̂j)−


min
v∈V

∑

j 6=i

fj(v, θ̂j)


 (7)

for each aircraft i ∈ {1, . . . , N} (the payment amounts
(7) are computed by the ATC).

Note that the transfer is always non-negative and hence is
feasible. Note also that it has the nice property that if the
presence of i makes no difference in the minimizing decision
v for the other aircraft, then ti(θ̂) = 0. Hence a player
always has the possibility of announcing a cost function
of 0 showing indifference to any delay in order to avoid
any payment. However, this choice would not be optimal in
general, because of the following result.

Theorem 4 (see e.g. [3]): The pivotal mechanism is dom-
inant strategy incentive compatible.

Hence under this mechanism, the players should announce
their true type. From (7), we can see that the payment of
aircraft i represents the penalty incurred by the other aircraft
due to the change in decision that results from i’s presence.

IV. SOLVING THE OPTIMIZATION PROBLEM

Using the pivotal mechanism, we can now assume that the
ATC has a cost function at his disposal in order to make a

decision v = (v1, . . . , vN ) ∈ V. Recall that after receiving
the parameter values θ̂1, . . . , θ̂N from each aircraft, the ATC
needs to minimize the objective

∑N
i=1 fi(v, θ̂i) over v ∈ V,

subject to the velocity bounds (1), the separation constraints
(3) and the scheduling constraints (4). In the following
we discuss how this optimization problem can be solved
as a mixed-integer geometric program (MIGP), e.g. using
YALMIP [18]. Recall the standard “big-M” formulation used
to model a disjunction of linear constraint aT1 x ≤ b1∨aT2 x ≤
b2, by introducing an integer variable. Assuming we have
bounds on the variables x, we can rewrite the disjunction
above as the conjunction

aT1 x ≤ b1 + cM, aT2 x ≤ b2 + (1− c)M, c ∈ {0, 1},
for some sufficiently large M . A mixed-integer linear pro-
gramming (MILP) solver using branch-and-bound obtains
lower bounds by relaxing the binary constraint to 0 ≤ c ≤ 1.
This formulation does not work directly with geometric
programming however, because the equivalent of the first
constraint would be f(x) ≤ 1 + cM , with f a posynomial,
which is not a geometric programming constraint when c is
relaxed to 0 ≤ c ≤ 1 (since f(x)−cM is not a posynomial).
We can use instead the following modification of the method.
Consider the conjunction

f(x) + 2M/c ≤ 1 + 2M, g(x) + cM ≤ 1 + 2M, c ∈ {1, 2},
for M sufficiently large (assuming we have bounds 0 < b <
x < b, as in our problem). Then for c = 1, the first constraint
is enforced, and for c = 2, the second constraint is enforced.
When the constraint on c is relaxed to 1 ≤ c ≤ 2, we have
a standard geometric program.

More generally, for a disjunction of n posynomial con-
straints f1(x) ≤ 1 ∨ . . . ∨ fn(x) ≤ 1 we can introduce
n integer variables b1, . . . , bn ∈ {1, 2} and consider the
conjunction of constraints fi(x) + biM ≤ 1 + 2M, and in
addition the posynomial constraint 2/(b1 . . . bn) ≤ 1, which
forces at least one of the b′is to be 2, and the corresponding
constraint in the disjunction to be enforced. Modeling the
disjunctions in the separation and scheduling constraints this
way, we obtain a mixed integer geometric program.

V. SIMULATIONS

In this section we illustrate the distribution of payments
according to the pivotal mechanism in a particular scenario.
Between 2 and 4 aircraft are generated with random positions
in a 100 × 100 nm square, which must all pass through an
airspace fix situated 400 nm away as depicted on Fig. 1. The
velocity of each aircraft is bounded between 350 and 450 kn.
The initial conditions correspond to the time at which the
conflict is detected and the new velocities are then assigned
by the ATC. A Minutes-In-Trail restriction of 2 minutes
between successive aircraft is enforced at the fix. The aircraft
cost functions are shown on Fig. 2. The same functions are
used in all experiments, only the initial positions of the
aircraft change. In experiments with i aircraft, we use the
cost functions 1, . . . , i, for i = 2, 3, 4. There are cases where
the optimization problem is infeasible, i.e., the ATC cannot



TABLE I
FINAL RELATIVE PAYMENTS.

Scenario 1 Scenario 2 Scenario 3
Mean 0.03% 0.35% 2.64%

Std Dev. 0.29 2.09 5.83
Max 3.49% 15.5% 34.1%

% cases with payments 3 9 26

separate the aircraft using only velocity changes. These cases
were excluded from the simulation results presented.

Fig. 2. Left: cost functions of the individual aircraft. Right: final relative
payments ti/fi(vi) of the aircraft under ATC assigned velocities v. For each
scenario (with 2, 3 and 4 aircraft), averages are taken over 100 simulations.

We performed 100 simulations in each of 3 scenarios,
involving 2, 3 and 4 aircraft respectively. The final aver-
age relative aircraft payments ti/fi(v) under the velocities
assigned by the ATC are shown on Fig. 2. The relatively low
mean payments are due to the fact that in a large number of
cases, the solver could separate the aircraft while assigning
them their preferred velocities, resulting in no payments.
There are however large variations in payment amounts in the
cases where a conflict arises which requires deviations from
preferred velocities, see Table I. In Scenario 2 with 3 aircraft,
in some cases aircraft 2 could pay up to an additional 15%
of the cost it already incurs at the assigned velocity, whereas
in Scenario 3 with 4 aircraft, this number climbed up to 34%
for aircraft 1. The higher average payments of aircraft 1 and
2 are probably due to the fact that is is more difficult to
accommodate their preference for a lower speed, since with
our limited controls this requires slowing down the aircraft
situated behind them as well.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed to apply some mechanism design
principles in order to resolve conflicts in air traffic control
at the tactical level. The mechanism can allow airlines to
express their sensitivities to additional delays. Future work
will investigate the extensions to situations with more ATC
actuation capabilities, such as heading change, vector for
spacing, etc. At the same time, it is important to understand
the impact of the payments on the airline costs and willing-
ness to participate in such a scheme. The simple scenarios
presented in this paper suggest that on average the payments
can be kept quite low, with wide fluctuations when aircraft

separation requires large trajectory deviations. There are also
other mechanisms of interest, in particular if one removes the
requirement of dominant strategy incentive compatibility [3].
Such schemes in some settings can for example overcome
the balance difficulties exhibited by the pivotal mechanism
(i.e., the fact that

∑
i ti > 0).

Finally, the particular scenario studied in this paper is a
joint scheduling and path planning problem, extending pre-
vious works that only consider the path planning component.
Geometric programming proved to be useful in this context,
and we have shown how to model disjunctions with a MIGP
solver. We are currently working on a more efficient solver
for such mixed logic convex programs.
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