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Abstract— Emerging systems such as smart grids or
intelligent transportation systems often require end-user
applications to continuously send information to external
data aggregators performing monitoring or control tasks.
This can result in an undesirable loss of privacy for
the users in exchange of the benefits provided by the
application. Motivated by this trend, we introduce privacy
concerns in a system theoretic context, and address here the
problem of releasing filtered signals that respect the pri-
vacy of the input data stream. We rely on a formal notion of
privacy introduced in the database literature, called differ-
ential privacy, which provides strong privacy guarantees
against adversaries with arbitrary side information, and
extend this notion to dynamic systems. We then describe
methods to approximate a given filter by a differentially
private version, so that the distortion introduced by the
privacy mechanism is minimized. Two specific scenarios
are considered, where users either provide independent
input signals or contribute events to a single integer-valued
stream.

I. INTRODUCTION

A rapidly growing number of applications require
users to release private data streams to third-party ap-
plications for signal processing and decision-making
purposes. Examples include smart grids, health monitor-
ing, traffic monitoring, fuel consumption optimization,
and cloud computing for industrial control systems. For
privacy or security reasons, the participants benefiting
from the services provided by these systems generally
do not want to release more information than strictly
necessary. In a smart grid for example, a customer
could receive better rates in exchange of continuously
sending to the utility company her instantaneous power
consumption, helping to improve the demand forecast
mechanism. In doing so however, she is also informing
the utility or a potential eavesdropper about the type of
appliances she owns as well as her daily activities [1].
Hence the development of rigorous privacy preserving
mechanisms is crucial to increase the level of user
participation, which can in turn greatly improve the
efficiency of these large-scale systems.
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Precisely defining what constitutes a breach of pri-
vacy is a delicate task. A particularly successful recent
definition of privacy used in the database literature
is that of differential privacy [2], which is motivated
by the fact that any useful information provided by
a dataset about a group of people can compromise
the privacy of specific individuals due to the existence
of side information. Differentially private mechanisms
randomize their responses to dataset analysis requests
and guarantee that whether or not any individual chooses
to contribute her data only marginally changes the
distribution over the published outputs. As a result, even
an adversary cross-correlating these outputs with other
sources of information cannot infer much more about
specific individuals after publication than before [3].

Most work related to privacy is concerned with the
analysis of static databases [2], [4] whereas cyber-
physical systems clearly emphasize the need for mecha-
nisms working with dynamic, time-varying data streams.
In this context, a differentially private version of the
iterative averaging algorithm for consensus is devel-
opped in [5]. Recently, information-theoretic approaches
have also been proposed to guarantee some level of
privacy when releasing time series [6], [7]. However,
the resulting privacy guarantees only hold if the statistics
of the participants’ data streams obey the assumptions
made (typically stationarity, dependence and distribu-
tional assumptions), and require the explicit statistical
modeling of all available side information.

The main contribution of this paper is to introduce pri-
vacy concerns in the context of systems theory. Section
II provides some technical background on differential
privacy. We then formulate in Section III the problem
of releasing the output of a dynamical system while
preserving differential privacy of the driving inputs,
assumed to originate from different participants. It is
shown that accurate results can be published for sys-
tems with small incremental gains with respect to the
individual input channels. Section IV is motivated by
the recent work on “differential privacy under continual
observation” [8], [9], and considers systems processing a
single integer-valued signal describing events originating
from many individual participants. Differentially private
approximations of the systems are proposed with the



goal of minimizing the mean squared error introduced
by the privacy preserving mechanism. Proofs that are
omitted due to space constraints can be found in [10].

Notation. All signals are discrete-time signals, start
at time 0, and all systems are assumed to be causal. Let
PT be the truncation operator, i.e., (PTx)t equals xt if
t ≤ T and 0 otherwise. We denote by `mp,e the space of
sequences with values in Rm and such that x ∈ `mp,e if
and only if PTx has finite p-norm for all integers T . The
H2 norm and H∞ norm of a stable transfer function G
are denoted ‖G‖2 and ‖G‖∞ respectively.

II. DIFFERENTIAL PRIVACY

In this section we review the notion of differential
privacy [2] and some basic mechanisms that can be
used to achieve it. Most of the results in this section
are known, but in some cases we provide more precise
or slightly different versions of some statements made
in previous work. We refer the reader to the surveys
by Dwork, e.g., [11], for additional background on
differential privacy.

A. Definition

Let us fix some probability space (Ω,F ,P). Let D be
a space of datasets of interest (e.g., a space of databases,
or a signal space). A mechanism is just a measurable
map M : D×Ω→ R, for some measurable output space
(R,M), whereM denotes a σ-algebra. In particular, for
any element d ∈ D, M(d, ·) is a random variable, and
we typically write simply M(d). A mechanism can be
viewed as a probabilistic algorithm to answer a query q,
which is a map q : D→ R. In some cases, we index the
mechanism by the query q of interest, writing Mq .

Example 2.1: Let D = Rn, with each entry of d ∈
D corresponding to some sensitive information for an
individual contributing her data, e.g., her salary. A data
analyst would like to know the average of the entries
of d, i.e., q : D → R is defined by q(d) = 1

n

∑n
i=1 di.

As detailed in Section II-B, a typical mechanism Mq

to answer this query in a differentially private way
computes q(d) and blurs the result by adding a random
variable Y : Ω → R, so that Mq(d) = 1

n

∑n
i=1 di + Y .

Note that in the absence of perturbation Y , an adversary
who knows n and dj , j ≥ 2 can recover the remaining
entry d1 exactly if he learns q(d). This can deter people
from contributing their data, even though broad-based
participation improves the accuracy of the analysis and
can be beneficial to the population as a whole.

Next, we introduce the definition of differential pri-
vacy [2]. Intuitively, in the following definition, D is a
space of datasets of interest, and we have a symmetric
binary relation Adj on D, called adjacency, such that

Adj(d, d′) if and only if d and d′ differ by the data of
a single participant.

Definition 1: Let D be a space equipped with a
symmetric binary relation denoted Adj, and let (R,M)
be a measurable space. Let ε, δ ≥ 0. A mechanism
M : D × Ω → R is (ε, δ)-differentially private if for
all d, d′ ∈ D such that Adj(d, d′), we have

P(M(d) ∈ S) ≤ eεP(M(d′) ∈ S) + δ, ∀S ∈M. (1)

If δ = 0, the mechanism is said to be ε-differentially
private.

Intuitively, this definition says that for two adjacent
datasets, the distributions over the outputs of the mech-
anism should be close. The choice of the parameters ε, δ
is set by the privacy policy. Typically ε is taken to be a
small constant, e.g., ε ≈ 0.1 or perhaps even ln 2 or ln 3.
The parameter δ should be kept small as it controls the
probability of certain significant losses of privacy, e.g.,
when a zero probability event for input d′ becomes an
event with positive probability for input d in (1).

A fundamental property of the notion of differential
privacy is that no additional privacy loss can occur by
simply manipulating an output that is differentially pri-
vate. To state it, recall that a probability kernel between
two measurable spaces (R1,M1) and (R2,M2) is a
function k : R1 × M2 → [0, 1] such that k(·, S) is
measurable for each S ∈M2 and k(r, ·) is a probability
measure for each r ∈ R1.

Theorem 1 (Resilience to post-processing): Let M1 :
D × Ω → (R1,M1) be an (ε, δ)-differentially private
mechanism. Let M2 : D × Ω → (R2,M2) be another
mechanism, such that there exists a probability kernel
k : R1 ×M2 → [0, 1] verifying

P(M2(d) ∈ S|M1(d)) = k(M1(d), S), a.s., (2)

for all S ∈ M2 and all d ∈ D. Then M2 is (ε, δ)-
differentially private.

Note that in (2), the kernel k is not allowed to depend
on the dataset d. In other words, this condition says
that once M1(d) is known, the distribution of M2(d)
does not further depend on d. The theorem shows that
a mechanism M2 accessing a dataset only indirectly
via the output of a differentially private mechanism
M1 cannot weaken the privacy guarantee. Hence post-
processing can be used freely to improve the accuracy
of an output, as in Section IV for example, without
sacrificing privacy.

B. Basic Differentially Private Mechanisms

A mechanism that throws away all the information
in a dataset is obviously private, but not useful, and in
general one has to trade off privacy for utility when



answering specific queries. We recall below two basic
mechanisms that can be used to answer queries in a
differentially private way. We are only concerned in this
section with queries that return numerical answers, i.e.,
here a query is a map q : D → R, where the output
space R equals Rk for some 1 ≤ k < ∞, is equipped
with a norm denoted ‖ · ‖R, and the σ-algebra M on
R is taken to be the standard Borel σ-algebra, denoted
Rk. The following quantity plays an important role in
the design of differentially private mechanisms [2].

Definition 2: Let D be a space equipped with an adja-
cency relation Adj. The sensitivity of a query q : D→ R
is defined as ∆Rq := maxd,d′:Adj(d,d′) ‖q(d) − q(d′)‖R.
In particular, for R = Rk equipped with the p-norm

‖x‖p =
(∑k

i=1 |xi|p
)1/p

for p ∈ [1,∞], we denote the
`p sensitivity by ∆pq.

1) The Laplace Mechanism: This mechanism, pro-
posed in [2], modifies an answer to a numerical query by
adding i.i.d. zero-mean noise distributed according to a
Laplace distribution. Recall that the Laplace distribution
with mean zero and scale parameter b, denoted Lap(b),
has density p(x; b) = 1

2b exp
(
− |x|b

)
and variance

2b2. Moreover, for w ∈ Rk with wi iid and wi ∼
Lap(b), denoted w ∼ Lap(b)k, we have p(w; b) =

( 1
2b )

k exp
(
−‖w‖1b

)
and E[‖w‖1] = b.

Theorem 2: Let q : D → Rk be a query. Then the
Laplace mechanism Mq : D × Ω → Rk defined by
Mq(d) = q(d) + w, with w ∼ Lap (b)

k and b ≥ ∆1q
ε is

ε-differentially private.
Note that the mechanism requires each coordinate of

w to have standard deviation proportional to ∆1q, as
well as inversely proportional to the privacy parameter
ε (here δ = 0). For example, if q simply consists
of k repetitions of the same scalar query, then ∆1q
increases linearly with k, and the quadratically growing
variance of the noise added to each coordinate prevents
an adversary from averaging out the noise.

2) The Gaussian Mechanism: This mechanism, pro-
posed in [4], is similar to the Laplace mechanism but
adds i.i.d. Gaussian noise to obtain (ε, δ)-differential
privacy, with δ > 0 but typically a smaller ε for the same
utility. Recall the definition of the Q-function Q(x) :=

1√
2π

∫∞
x
e−

u2

2 du. The following theorem tightens the
analysis from [4].

Theorem 3: Let q : D → Rk be a query. Then the
Gaussian mechanism Mq : D × Ω → Rk defined by
Mq(d) = q(d) + w, with w ∼ N

(
0, σ2Ik

)
, where

σ ≥ ∆2q
2ε (K +

√
K2 + 2ε) and K = Q−1(δ), is (ε, δ)-

differentially private.

For the rest of the paper, we define κ(δ, ε) = 1
2ε (K+√

K2 + 2ε), so that the standard deviation σ in Theorem
3 can be written σ(δ, ε) = κ(ε, δ)∆2q. It can be shown
that κ(δ, ε) can be bounded by O(ln(1/δ))1/2/ε.

III. DIFFERENTIALLY PRIVATE DYNAMIC SYSTEMS

We now consider situations in which private partici-
pants contribute input signals driving a dynamic system
and the queries consist of output signals of this system.
First, in this section, we assume that the input of a
system consists of n signals, one for each participant.
An input signal is denoted u = (u1, . . . , un), with
ui ∈ `mi

ri,e for some mi ∈ N and ri ∈ [1,∞]. A simple
example is that of a dynamic system releasing at each
period the average over the past l periods of the sum
of the input values of the participants, i.e., with output
1
l

∑t
k=t−l+1

∑n
i=1 ui,k at time t. For r = (r1, . . . , rn)

and m = (m1, . . . ,mn), an adjacency relation can be
defined on lmr,e = `m1

r1,e × . . . × `mn
rn,e for example by

Adj(u, u′) if and only if u and u′ differ by exactly
one component signal, and moreover this deviation is
bounded. That is, let us fix a set of nonnegative numbers
b = (b1, . . . , bn), bi ≥ 0, and define

Adjb(u, u′) iff for some i, ‖ui − u′i‖ri ≤ bi, (3)
and uj = u′j for all j 6= i.

A. Finite-Time Criterion for Differential Privacy

To approximate dynamic systems by versions respect-
ing the differential privacy of the individual participants,
we consider mechanisms of the form M : `mr,e × Ω →
`m

′

s,e, i.e., producing for any input signal u ∈ `mr,e a
stochastic process Mu with sample paths in `m

′

s,e. As in
the previous section, this requires that we first specify
the measurable sets of `m

′

s,e. We start by defining in
a standard way the measurable sets of (Rm′

)N, the
space of sequences with values in Rm′

, to be the σ-
algebra denoted Mm′

generated by the so-called finite-
dimensional cylinder sets of the form {y ∈ (Rm′

)N :
y0:T ∈ HT }, for T ≥ 0 and HT ∈ R(T+1)m′

, where
y0:T denotes the vector [yT0 , . . . , y

T
T ]T (see, e.g., [12,

chapter 2]). The measurable sets considered for the
output of M are then obtained by intersection of `m

′

s,e

with the sets ofMm′
. The resulting σ-algebra is denoted

Mm′

s,e and is generated by the sets of the form H̃T =

{y ∈ `m′

s,e : y0:T ∈ HT }, for T ≥ 0, HT ∈ R(T+1)m′
.

The following technical lemma is useful to show that
a mechanism on signal spaces is (ε, δ)-differentially
private by considering only finite dimensional problems.

Lemma 4: Consider an adjacency relation Adj on
`mr,e. For a mechanism M : `mr,e×Ω→ `m

′

s,e, the following
are equivalent



(a) M is (ε, δ)-differentially private.
(b) For all u, u′ in `mr,e such that Adj(u, u′), we have

P((Mu)0:T ∈ A) ≤ eε P((Mu′)0:T ∈ A) + δ, (4)

for all T ≥ 0 and all A ∈ R(T+1)m′
.

B. Basic Dynamic Mechanisms

Recall (see, e.g., [13]) that for a system G with inputs
in `mr,e and output in `m

′

s,e, its `r-to-`s incremental gain
γincr,s (G) is defined as the smallest number γ such that

‖PTGu−PTGu′‖s ≤ γ‖PTu−PTu′‖r,∀u, u′ ∈ `mr,e,∀T.

Now consider, for r = (r1, . . . , rn) and m =
(m1, . . . ,mn), a system G : lmr,e → `m

′

s,e defined by

G(u1, . . . , un) =

n∑
i=1

Giui, (5)

where Gi : `mi
ri,e → `m

′

s,e, for all 1 ≤ i ≤ n. The
next theorem generalizes the Laplace and Gaussian
mechanisms of Theorems 2 and 3 to causal dynamic
systems.

Theorem 5: Let G be defined as in (5) and con-
sider the adjacency relation (3). Then the mechanism
Mu = Gu + w, where w is a white noise with
wt ∼ Lap(B/ε)m

′
and B ≥ max1≤i≤n{γincri,1(Gi) bi},

is ε-differentially private. The mechanism is (ε, δ)-
differentially private if wt ∼ N (0, σ2Im′), with σ ≥
κ(δ, ε) max1≤i≤n{γincri,2(Gi) bi}.

Proof: Consider two adjacent signals u, u′, differ-
ing say in their ith component. Then, for α ∈ {1, 2}, we
have

‖PTGu− PTGu′‖α = ‖PTGiui − PTGiu′i‖α
≤ γri,α‖PTui − PTu′i‖ri
≤ γri,α‖ui − u′i‖ri
≤ γri,αbi.

This leads to a bound on the `1 and `2 sensitivity of
PTG, valid for all T . The result is then an application
of Theorems 2 and 3 and Lemma 4, since (4) is satisfied
for all T .

Corollary 1: Let G be defined as in (5) with each
system Gi linear, and ri = 2 for all 1 ≤ i ≤ n.
Then the mechanism Mu = Gu + w, where w is a
white Gaussian noise with wt ∼ N (0, σ2Im′) and σ ≥
κ(δ, ε) max1≤i≤n{‖Gi‖∞ bi}, is (ε, δ)-differentially pri-
vate for (3).

C. Filter Approximation Set-ups for Differential Privacy

Let ri = 2 for all i and G be linear as in the
Corollary 1, and assume for simplicity the same bound
b21 = . . . = b2n = B for the allowed variations in
energy of each input signal. We have then two simple
mechanisms producing a differentially private version of
G. The first one directly perturbs each input signal ui
by adding to it a white Gaussian noise wi with wi,t ∼
N (0, σ2Imi

) and σ2 = κ(δ, ε)2B. These perturbations
on each input channel are then passed through G, leading
to a mean squared error (MSE) for the output equal to
κ(δ, ε)2B‖G‖22 = κ(δ, ε)2B

∑n
i=1 ‖Gi‖22. Alternatively,

we can add a single source of noise at the output of
G according to Corollary 1, in which case the MSE
is κ(δ, ε)2Bmax1≤i≤n{‖Gi‖2∞}. Both of these schemes
should be evaluated depending on the system G and the
number n of participants, as none of the error bound is
better than the other in all circumstances.

Example 3.1: Consider again the problem of releas-
ing the average over the past l periods of the sum of
the input signals, i.e., G =

∑n
i=1 Gi with (Giui)t =

1
l

∑t
k=t−l+1 ui,k, for all i. Then ‖Gi‖22 = 1/l, whereas

‖Gi‖∞ = 1, for all i. The MSE for the scheme with the
noise at the input is then κ(δ, ε)2Bn/l. With the noise at
the output, the MSE is κ(δ, ε)2B, which is better exactly
when n > l, i.e., the number of users is larger than the
averaging window.

IV. FILTERING EVENT STREAMS

This section considers an application scenario moti-
vated by the work of [8], [9] Assume now that an input
signal is integer valued, i.e., ut ∈ Z for all t ≥ 0.
Such a signal can record the occurrences of events of
interest over time, e.g., the number of transactions on
a commercial website, or the number of people newly
infected with a virus. As in [8], [9], two signals u and
u′ are adjacent if and only if they differ by one at a
single time, or equivalently

Adj(u, u′) iff ‖u− u′‖1 = 1. (6)

The motivation for this adjacency relation is that a
given individual contributes a single event to the stream,
and we want to preserve event-level privacy [8], that
is, hide to some extent the presence or absence of an
event at a particular time. Even though individual events
should be hidden, we are still interested in producing
approximate filtered versions of the original signal,
e.g., a privacy-preserving moving average of the input
tracking the frequency of events. The papers [8], [9]
consider specifically the design of a private counter or
accumulator, i.e., a system producing an output signal



G2G1

G

eu

y

-

w

ŷz

Fig. 1. Differentially private filter approximation set-up.

y with yt = yt−1 + ut, where u is binary valued.
Note that this system is unstable. A number of other
filters with slowly and monotonically decreasing impulse
responses are considered in [14], using a technique
similar to [9] based on binary trees. Here we show
certain approximations of a general linear stable filter
G that preserve event-level privacy. We first make the
following remark.

Lemma 6: Let G be a single-input single-output linear
system with impulse response g. Then for the adjacency
relation (6) on integer-valued input signals, the `p sen-
sitivity of G is ∆pG = ‖g‖p. In particular for p = 2, we
have ∆2G = ‖G‖2, the H2 norm of G.

Proof: For two adjacent binary-valued signals
u, u′, we have that u−u′ is a positive or negative impulse
signal δ, and hence ‖Gu − Gu′‖p = ‖G(u − u′)‖p =
‖Gδ‖p = ‖g ∗ δ‖p = ‖g‖p.

We measure the utility of specific schemes throughout
this section by the MSE between the published and
desired outputs. Similarly to our discussion in Section
III-C, there are two straightforward mechanisms that
provide differential privacy. One can add white noise
w directly to the input signal, with wt ∼ Lap(1/ε)
for the Laplace mechanism and wt ∼ N (0, κ(δ, ε)) for
the Gaussian mechanism. Or one can add noise at the
output of the filter G, with wt ∼ Lap(‖g‖1/ε) for the
Laplace mechanism and wt ∼ N (0, ‖g‖2κ(δ, ε)) for the
Gaussian mechanism. For the Gaussian mechanism, one
obtains in both cases an MSE equal to ‖G‖22 κ(δ, ε)2.
For the Laplace mechanism, it is always better to add
the noise at the input. Indeed, we obtain in this case an
MSE of 2‖g‖22/ε2 instead of the greater 2‖g‖21/ε2 if the
noise is added at the output.

We now generalize these mechanisms to the approx-
imation set-up shown on Fig. 1. The previous mech-
anisms are recovered when G1 or G2 is the identity
operator. To show that one can improve the utility of
the mechanism with this set-up, consider the following
choice of filters G1 and G2. Let G1 be a stable, minimum
phase filter (hence invertible). Let G2 = GG−1

1 . We call
this particular choice the zero forcing equalization (ZFE)
mechanism. To guarantee (ε, δ)-differential privacy, the
noise w is chosen to be white Gaussian with σ =

κ(δ, ε)‖G1‖2. The MSE for the ZFE mechanism is

eZFEmse := lim
T→∞

1

T

∞∑
t=0

E[‖(Gu)t − (Gu+ GG−1
1 w)t‖22]

= κ(ε, δ)2‖G1‖22‖GG−1
1 ‖22.

Hence we are led to consider the following problem

min
G1

1

4π2

∫ π

−π
|G1(ejω)|2dω

∫ π

−π

∣∣∣∣ G(ejω)

G1(ejω)

∣∣∣∣2 dω,
where the minimization is over the stable, minimum
phase transfer functions G1.

Theorem 7: We have, for any stable, minimum phase

system G1, eZFEmse ≥ κ(ε, δ)2
(

1
2π

∫ π
−π |G(ejω)|dω

)2

.

This lower bound on the mean-squared error of the ZFE
mechanism is attained by letting |G1(ejω)|2 = λ|G(ejω)|
for all ω ∈ [−π, π), where λ is some arbitrary positive
number. It can be approached arbitrarily closely by
stable, rational, minimum phase transfer functions G1.

Proof: By the Cauchy-Schwarz inequality, we have(∫ π

−π
|G(ejω)|dω

)2

=

(∫ π

−π
|G1(ejω)|

∣∣∣∣ G(ejω)

G1(ejω)

∣∣∣∣ dω)2

≤
∫ π

−π
|G1(ejω)|2dω

∫ π

−π

∣∣∣∣ G(ejω)

G1(ejω)

∣∣∣∣2 dω,
hence the bound. Moreover, equality is attained if and
only if there exists λ ∈ R such that |G1(ejω)| =

λ
∣∣∣ G(ejω)
G1(ejω)

∣∣∣, i.e., |G1(ejω)|2 = λ|G(ejω)|, ∀ω ∈ R.
To see that the bound can be approached using finite-
dimensional filters, by Weierstrass theorem we can first
approximate |G(ejω)| arbitrarily closely by a rational
positive function Ĝ. We then set G1 to be the minimum-
phase spectral factor of Ĝ.

The MSE obtained for the best ZFE mechanism in
Theorem 7 cannot be worse than the MSE for the
scheme adding noise at the input, and is generally strictly
smaller, since by Jensen’s inequality we have(∫ π

−π
|G(ejω)|dω

2π

)2

≤
∫ π

−π
|G(ejω)|2 dω

2π
= ‖G‖22.

In addition, the MSE of the ZFE mechanism is in-
dependent of the input signal u. However, a smaller
error could be obtained with other schemes, in particular
schemes that exploit some knowledge about the input
signal. Note that once G1 is chosen, designing G2 is a
standard equalization problem [15]. The name of the
ZFE mechanism is motivated by the choice of trying
to cancel the effect of G1 by using its inverse (zero
forcing equalizer). Nonlinear components can be very
useful as well. In particular if we add the hypothesis



that the input signal is binary valued, as in [8], [9], we
can modify the simple scheme adding noise at the input
by including a detector H in front of the system G,
namely, for ût = ut + wt, Hût = 1 if ût ≥ 1/2 and 0
if ût < 1/2. This exploits the knowledge that the input
signal is binary valued, preserves differential privacy by
Theorem 1, and sometimes significantly improves the
MSE, depending on other characteristics of the signal.

A. Exploiting Additional Public Knowledge

To further illustrate the idea of exploiting potentially
available additional knowledge about the input signal,
assume now that it is publicly known that u is wide-
sense stationary with known mean and autocorrelation.
Then one should design a minimum mean squared error
(MMSE) estimator for G2 rather than employing GG−1

1 ,
since the latter can significantly amplify the noise at
frequencies where G1 is small [15]. We could still choose
G1 according to Theorem 7, although now this choice
is not optimal any more if G2 is not GG−1

1 . According
to Theorem 1, differential privacy is preserved since the
filter G2 only processes the already differentially private
signal z. Even if the statistical assumptions turn out not
to be satisfied by u, the privacy guarantee still holds and
only performance is impacted.

B. Related Work

Some papers closely related to the event filtering
problem considered in this section are [8], [9], [14], [16].
As previously mentioned, [8], [9] consider an unstable
filter, the accumulator. The techniques employed there
are quite different, relying essentially on binary trees
to keep track of intermediate calculations and reduce
the amount of noise introduced by the privacy mech-
anism. Bolot et al. [14] extend this technique to the
differentially private approximation of certain filters with
monotonic, slowly decaying impulse response. In fact,
this technique can be extended to general linear systems
by using a state-space realization and keeping track of
the system state at carefully chosen times in a binary
tree. However, the usefulness of this approach seems to
be limited for most practical stable filters, the resulting
MSE being typically too large and the implementation of
the scheme significantly more complex than for a simple
recursive filter.

V. CONCLUSION

We have discussed mechanisms for preserving the
differential privacy of individual users transmitting time-
varying signals to a trusted central server releasing
sanitized filtered outputs based on these inputs. Decen-
tralized versions of the mechanism of Section III can

in fact be implemented in the absence of trusted server
by means of cryptographic techniques [16]. We believe
that research on privacy issues is critical to encourage
the development of future cyber-physical systems, which
typically rely on the participants data to improve their
efficiency. Numerous directions of study are open for
dynamical systems, including designing better filtering
mechanisms, and understanding design trade-offs be-
tween privacy or security and performance in large-scale
control systems.
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