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ABSTRACT
New solutions proposed for the monitoring and control of
large-scale systems increasingly rely on sensitive data pro-
vided by end-users. As a result, there is a need to provide
guarantees that these systems do not unintentionally leak
private and confidential information during their operation.
Motivated by this context, this paper discusses the prob-
lem of releasing a dynamic model describing the aggregate
input-output dynamics of an ensemble of subsystems cou-
pled via a common input and output, while controlling the
amount of information that an adversary can infer about the
dynamics of the individual subsystems. Such a model can
then be used as an approximation of the true system, e.g.,
for controller design purposes. The proposed schemes rely
on the notion of differential privacy, which provides strong
and quantitative privacy guarantees that can be used by in-
dividuals to evaluate the risk/reward trade-offs involved in
releasing detailed information about their behavior.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public Policy Issues—
Privacy ; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search—Control theory ; C.3 [Special-
Purpose and Application-Based Systems]: Signal pro-
cessing systems

General Terms
Security, Algorithms

Keywords
Differential Privacy; Dynamical Systems; System Identifica-
tion

1. INTRODUCTION
Many emerging large-scale monitoring and control sys-

tems are expected to leverage vast amount of data provided
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by individual users to provide real-time services more effi-
ciently. Examples include smart grids with advanced meter-
ing capabilities [15], intelligent transportation systems ex-
ploiting users location traces [11], or real-time population
health monitoring systems [16]. The privacy concerns as-
sociated with the deployment of such pervasive monitoring
networks have often been overlooked, in view of the many
promised benefits. However, with certain recent setbacks
in the rollout of smart meter projects for example, it is be-
coming increasingly clear that not addressing these concerns
rigorously at design time puts at real risk the adoption of
these technologies.

In contrast to these real-time systems, there is extensive
work in the statistics and database literature on disclosure
limitation and privacy-preserving publication of data [5, 6].
In particular, the recently proposed notion of differential
privacy [2,6,8] has been adopted in many works as a defini-
tion of privacy offering quantitative guarantees. This notion
characterizes certain randomized algorithms that produce
answers to statistical queries according to a distribution that
is not very sensitive to the presence or absence of the data
of any single individual. As a result, people contributing
their data to a database are guaranteed that they are not
dramatically increasing the ability of an adversary to infer
private information about them, even by linking the released
answers to the queries to other available sources of informa-
tion.

Previous work on privacy for dynamic systems addressed
the problem of releasing time-series, with or without real-
time constraints, under various definitions of privacy [3, 9,
13,14,18]. In this paper however, we consider the problem of
releasing a model, rather than actual signals, capturing the
aggregate dynamic behavior of a large number of partici-
pants, while restricting the accuracy with which the dynam-
ics of any single participant can be inferred. Such models are
useful for system simulation, forecasts, or control design. For
example, consider an Independent System Operator (ISO)
in an electricity market requesting from industrial producers
and consumers a model of how fast and by how much they
would ramp down and up their production and consumption
when exposed to fluctuating spot prices, in order to imple-
ment a stable demand response scheme [17]. By observing
the actual operation of such a scheme, .e.g., through the
temporal behavior of electricity prices, it might be possible
to infer some information about these confidential models,
such as the equipment owned by specific companies or the
value they extract from consuming a certain amount of elec-
tricity.

49



After some preliminaries on differential privacy in Section
2, we formulate in Section 3 a simple aggregate model release
scenario of the type described in the previous paragraph,
involving linear scalar dynamics to describe the individual
subsystems. Three schemes preserving differential privacy
for the subsystems are then proposed, based respectively on
perturbation of the parameters of the transfer function, on
perturbation of the Markov parameters or impulse response
of a sampled version of the model, and on sampling and per-
turbing the frequency response. The ability of these schemes
to capture accurately the global input-output behavior of the
aggregate system is then discussed using simulated examples
in Section 4.

2. TOOLS FOR DIFFERENTIAL PRIVACY

2.1 Definitions
We first introduce the notion of differential privacy [7, 8],

which is a property of certain mechanisms accessing datasets
containing private information to answer queries. Let us
fix some probability space (Ω,F ,P). Let D be a space of
datasets of interest. A mechanism is just a map M : D ×
Ω → R, for some measurable output space (R,M), where
M denotes a σ-algebra, such that for any element d ∈ D,
M(d) is a random variable. A mechanism can be viewed as
a probabilistic algorithm to answer a specific query q, which
is a map q : D→ R.

Differential privacy is defined with respect to a choice of
symmetric binary relation Adj on D, called adjacency, de-
fined so that Adj(d, d′) if and only if d and d′ differ by the
data of a single participant. A differentially private mecha-
nism produces randomized outputs, with a distribution that
does not change much for two adjacent datasets. As a result,
an individual choosing to contribute its data is guaranteed
that this choice won’t dramatically increase the ability of an
adversary to infer additional private information about him.

Definition 1. Let D be a space equipped with a symmetric
binary relation denoted Adj, and let (R,M) be a measurable
space. Let ε, δ ≥ 0. A mechanism M : D × Ω → R is (ε, δ)-
differentially private if for all d, d′ ∈ D such that Adj(d, d′),
we have

P(M(d) ∈ S) ≤ eεP(M(d′) ∈ S) + δ, ∀S ∈M. (1)

If δ = 0, the mechanism is said to be ε-differentially private.

In this paper, the input data of the participants belongs
to a vector space. We now introduce two adjacency relations
that are useful for this situation. They bound the variations
allowed in the individual input data for which the condition
(1) can be guaranteed. Let the space of datasets of interest
for n participants be a product vector space D = D1 × . . .×
Dn, where Di is equipped with a norm ‖ · ‖i. Let x, x′ ∈ D
and ρ ∈ Rn>0. The first binary relation controls the absolute
variation

Adjρa(x, x′) iff for some i,‖xi − x′i‖i ≤ ρi, (2)

and xj = x′j , ∀j 6= i.

Many algorithms, notably in numerical analysis, have a sen-
sitivity that is typically measured by relative variations rather
than absolute variations, see, e.g., [19]. To capture these sit-
uations, we also introduce the following binary relation, for

η ∈ Rn>0,

Adjηr (x, x′) iff for some i,
‖xi − x′i‖i

min{‖xi‖i, ‖x′i‖i}
≤ ηi, (3)

and xj = x′j , ∀j 6= i.

The relation is undefined is min{‖xi‖i, ‖x′i‖i} = 0 in (3).
Note that a differentially private mechanism for this adja-
cency relation produces similar outputs if a single partici-
pants changes its data from xi to any x′i = xi(1 + η̃i), with
|η̃i| ≤ ηi.

A fundamental property of the notion of differential pri-
vacy is that no additional privacy loss can occur by simply
manipulating an output that is differentially private with-
out looking back at the original data. This result is similar
in spirit to the data processing inequality from information
theory [4]. To state it, recall that a probability kernel be-
tween two measurable spaces (R1,M1) and (R2,M2) is a
function k : R1 ×M2 → [0, 1] such that k(·, S) is measur-
able for each S ∈ M2 and k(r, ·) is a probability measure
for each r ∈ R1.

Theorem 1 (Resilience to post-processing). Let
M1 : D × Ω → (R1,M1) be an (ε, δ)-differentially private
mechanism. Let M2 : D × Ω → (R2,M2) be another mech-
anism, such that there exists a probability kernel k : R1 ×
M2 → [0, 1] verifying

P(M2(d) ∈ S|M1(d)) = k(M1(d), S), a.s., (4)

for all S ∈M2 and all d ∈ D. Then M2 is (ε, δ)-differentially
private.

A proof of this theorem can be found in [13]. Note that
in (4), the kernel k is not allowed to depend on the dataset
d. In other words, this condition says that once M1(d) is
known, the distribution of M2(d) does not further depend
on d. The theorem shows that a mechanism M2 accessing
a dataset only indirectly via the output of a differentially
private mechanism M1 cannot weaken the privacy guaran-
tee. Hence post-processing can be used freely to improve
the accuracy of an output, without having to worry about a
possible loss of privacy.

2.2 Basic Mechanisms for Numerical Queries
Two basic mechanisms [7, 8], introduced in the next the-

orem, achieve differential privacy by additively perturbing
the answers to numerical queries. They involve the follow-
ing notion of sensitivity of a query.

Definition 2. Let D be a space equipped with an adja-
cency relation Adj, and R be a normed vector space with
norm ‖ · ‖R. The sensitivity of a query q : D→ R is defined
as ∆q := maxd,d′:Adj(d,d′) ‖q(d) − q(d′)‖R. In particular, for

R = Rk equipped with the p-norm ‖x‖p =
(∑k

i=1 |xi|
p
)1/p

for p ∈ [1,∞], we denote the `p sensitivity by ∆pq.

Next, recall that the Laplace distribution with mean zero
and scale parameter b, denoted Lap(b), has density p(x; b) =
1
2b

exp
(
− |x|

b

)
and variance 2b2. Moreover, for w ∈ Rk with

wi iid and wi ∼ Lap(b), denoted w ∼ Lap(b)k, we have

p(w; b) = ( 1
2b

)k exp
(
− ‖w‖1

b

)
, E[‖w‖1] = b, and P(‖w‖1 ≥

tb) = e−t. The multidimensional normal distribution with
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mean µ and covariance matrix Σ is denoted N (µ,Σ). Fi-
nally, the Q-function is defined as

Q(x) :=
1√
2π

∫ ∞
x

e−
u2

2 du.

Theorem 2. Let q : D → Rk be a query. Then the
Laplace mechanism Mq : D × Ω → Rk defined by Mq(d) =

q(d) + w, with w ∼ Lap (b)k and b ≥ ∆1q
ε

is ε-differentially

private. the Gaussian mechanism Mq : D×Ω→ Rk defined
by Mq(d) = q(d) + w, with w ∼ N

(
0, σ2Ik

)
, where σ ≥

∆2q
2ε

(K+
√
K2 + 2ε) and K = Q−1(δ), is (ε, δ)-differentially

private.

For the rest of the paper, we define κ(δ, ε) = 1
2ε

(K+
√
K2 + 2ε).

Note that it can be shown that κ(δ, ε) can be bounded by

2
√

2 ln(2/δ)/ε.

2.2.1 A Sign-Preserving Mechanism Adapted to Rel-
ative Variations

To conclude this section, we introduce a multiplicative
perturbation mechanism, which can be useful to handle rel-
ative variations as in (3), and also to maintain sign consis-
tency between an original real-valued query and the result
provided by the mechanism. This last feature in particular
is used in Section 3.1 to maintain the stability of a dynamic
model while perturbing its poles.

Consider a query q : D→ R>0. We would like to design a
differentially private mechanism that preserves the positivity
of the output. We have, for two datasets d, d′

| ln q(d′)− ln q(d)| =
∣∣∣∣ln(q(d′)q(d)

)∣∣∣∣
≤ |q(d

′)− q(d)|
|q(d)|

≤ |q(d′)− q(d)|
min{|q(d)|, |q(d′)|} ,

using the fact that lnx ≤ x− 1 for all x > 0. Suppose now
that there exists γ such that for all d, d′ ∈ D,

|q(d′)− q(d)|
min{|q(d)|, |q(d′)|} ≤ γ

‖d′ − d‖
min{‖d‖, ‖d′‖} . (5)

In particular, for d, d′ such that Adjηr (d, d′), we have ‖d′ −
d‖ = ‖di−d′i‖i for some i, and moreover ‖d‖ ≥ ‖di‖i. Hence
finally

| ln q(d′)− ln q(d)| ≤ γ max
1≤i≤n

ηi =: Γ.

From Theorem 2, the mechanism M1(q) = ln q(d) + Y ,
with Y ∼ Lap

(
Γ
ε

)
, is ε-differentially private, and is (ε, δ)-

differentially private if Y ∼ N (0, κ(δ, ε)2Γ2). Taking expo-
nentials and using Theorem 1, we obtain the following result,
where λ = exp(Y ).

Theorem 3. Let q : D → R>0 be a query satisfying (5).
Then the mechanism M(d) = λq(d) is ε-differentially private
for (3) if λ ∼ ln-Lap(Γ/ε) is a log-Laplace random variable,
and is (ε, δ)-differentially private if λ ∼ ln-N (0, κ(δ, ε)2Γ2)
is a log-normal random variable.

Bounds of the form (5) are frequent in numerical analysis
[19]. In the following however, we use this mechanism in its
most simple form, with D = R>0 and q = id. Theorem 3

shows in particular that if the data of user i consists of a
single positive number xi, letting each user release λixi with
λi ∼ ln-Lap(ηi/ε) or λi ∼ ln-N (0, κ(δ, ε)2η2

i ) guarantees ε-
or (ε, δ)-differential privacy for (3) respectively.

3. DYNAMIC MODEL PUBLICATION
In the rest of this paper, we consider the following sce-

nario. A group of n users responds to a common scalar
input signal u : R+ → R, according to their own dynamics
described by a stable scalar first order differential equation

ẋi = −aixi + biu, xi(0) = x0,i ∈ R, ai > 0, ∀i ∈ [n],

where [n] := {1, . . . , n}. The group produces a measured
aggregate scalar output signal y : R+ → R, which is a linear
combination of the n individual states

y = cTx,

where c ∈ Rn is a known vector. For example, u could cor-
respond to a price signal, the individual states to deviations
with respect to a nominal consumption level (with bi ≤ 0),
which react to price changes with some inertia, and we could
measure the total consumption, i.e., c = 1n.

Each individual user is willing to provide his parameters
ai, bi to a data aggregator, which then publishes a version
Ĝ of the single input single output (SISO) system G(s) =
cT (sI−A)−1b, describing the relationship between the com-
mon input and the aggregate output. Once released, this
model can then be used by anyone to predict how the global
system responds to a given input u. In particular, an adver-
sary with access to the published model Ĝ is allowed to use
any test input u and read the corresponding output y to try
to estimate the parameters ai, bi of any specific participant.
This adversary could have access to arbitrary side informa-
tion for this purpose, e.g., he could know the parameters
aj , bj of all the participants except i.

In order to encourage participants to provide their param-
eters to the data aggregator, we wish to make the mechanism
releasing the global system model (ε, δ)-differentially private,
for the following adjacency relation on D = Rn>0 × Rn

Adjη,ρ((a, b), (â, b̂)) iff Adjηr (a, â) and Adjρa(b, b̂), (6)

where η, ρ ∈ Rn>0 and Adjηr and Adjρa are defined in (3) and
(2) respectively. Note that we protect relative variations for
the location of the individual poles, which is more meaning-
ful than absolute variations, e.g., due to the strong influence
of the distance of the poles to the imaginary axis on the dy-
namics of the system.

The transfer function of the overall system is

G(s) =

n∑
i=1

cibi
s+ ai

. (7)

Its order is bounded by n, the number of participants, which
is assumed to be large. The data for the participants such
that ci = 0 can immediately be discarded, so without loss
of generality, we can assume ci 6= 0, ∀i. Up to a linear state
transformation by 1

n
diag(c−1

1 , . . . , c−1
n ), we can moreover as-

sume from now on that ci = 1/n, ∀i, which will simplify
the notation. Here the normalization factor 1/n is chosen to
study the performance of the mechanisms more conveniently
as n grows.
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3.1 Parameter Perturbation
The first mechanism (generally called an input pertur-

bation mechanism in the literature on differential privacy),
consists in letting each participant perturb its own data to
satisfy the differential privacy property directly, without re-
lying on a central server. A mechanism releasing the scalars

âi = λiai, b̂i = bi + µi, 1 ≤ i ≤ n,

with µi, λi chosen as in Theorems 2 and 3, is 2ε- or (2ε, 2δ)-
differentially private respectively, depending if Laplace or
Gaussian random variables are used. According to Theorem
1, we can then publish the model

Ĝ(s) =
1

n

n∑
i=1

b̂i
s+ âi

(8)

to achieve 2ε- or (2ε, 2δ)-differentially privacy.
This approach however can add an excessive amount of

noise in some common situations. As an illustration, sup-
pose that all users have the same transfer function 1/(s+1).
Then G(s) = 1/(s + 1). Now, even if only the parameters
bi were to be protected, thus allowing us to leave âi = 1 for
all i in (8), we would get

G(s)− Ĝ(s) =
1

s+ 1

∑n
i=1 µi

n
,

i.e., the mean squared error (MSE) of this mechanism scales
as 1/n at low frequencies, whereas one can reasonably hope
to have schemes with an MSE approaching an 1/n2 scaling
in this case. Another issue in this case is that despite the
fact that the original system G is really of order 1, the model
with perturbed parameters âi remains of large order n = 100
with probability 1.

3.2 Impulse Response Perturbation
The next two schemes try to reduce of amount of privacy-

preserving noise by taking advantage of the fact that a single
term in (7) changes between two vectors of parameters ad-
jacent according to (6). In this subsection, we produce a
differentially private version of the impulse response of the
system, and use it to rebuild a differentially private version
of G, using again Theorem 1. First, we sample the systems
with period h (using a zero-order hold), to obtain the differ-
ence equation

xi,k+1 = αixi,k + βiuk,

with αi = e−aih, βi =

∫ h

0

e−aiτdτ bi =
1− e−aih

ai
bi.

We then aim at releasing the impulse response or Markov
parameters for the discrete-time system

v0 = 0, vk =
1

n

n∑
i=1

βiα
k−1
i , k ≥ 1.

Suppose that we wish to publish the first N non-trivial pa-
rameters v = [v1, . . . , vN ]T . The Laplace mechanism asks
that we add to each component vk a random variable Yk
distributed according to Lap(∆1/ε), where ∆1 is the `1 sen-
sitivity

∆1 = max
Adjη,ρ((a,b),(â,b̂))

‖v − v̂‖1.

To compute this sensitivity, consider two adjacent parameter
vectors (a, b) and (â, b̂), differing say by the data of the ith

participant. Then

‖v − v̂‖1 =
1

n

N−1∑
k=0

|βiαki − β̂iα̂ki |. (9)

Since this quantity scales as 1/n (for N fixed), the MSE be-
tween the original impulse response and the perturbed one
scales as 1/n2, which is an improvement over the scaling in
Section 3.1. However, we still need to reconstruct a sys-
tem approximation from the perturbed Markov parameters,
which can be very sensitive to the presence of noise and
therefore can cancel the benefits of the scaling. To pursue
the computation of the sensitivity, we now make the follow-
ing additional assumption on the location of the parameters
of the system.

Assumption 1. There are publicly known scalars κa, κb >
0 such that ai ≥ κa and |bi| ≤ κb, for all i ∈ [n].

The following proposition, whose proof can be found in the
Appendix, bounds the `1 sensitivity. For the parameters
η, ρ appearing in the (3), we define ηm = maxi∈[n] ηi, ρm =
maxi∈[n] ρi.

Proposition 1. Under Assumption 1, we have

∆1 ≤
h

n

(
(0.3 ηmκb + ρm)(1− e−Nκah)

1− e−κah (10)

+
(0.37 ηm κb)(1 + (N − 1)e−Nκah −Ne−(N−1)κah)

(1− e−κah)2

)
.

Let ∆̄1 denote the right-hand side of (10). Algorithm
1 summarizes our mechanism for publishing a differentially
private version of the global dynamical system. From a per-
turbed sequence of N Markov parameters, we reconstruct
an approximate version of G, using the MATLAB function
imp2ss, which implements a model realization algorithm us-
ing an impulse response, proposed initially by Kung [12]. A
discrete-time model is constructed first, and the sampling
period h is then used to reconstruct a continuous-time sys-
tem using the inverse Tustin transform [1]. Note finally that
the mechanism is ε-differentially private, but the computa-
tions in the Appendix can be used to obtain the `2 sensitivity
and design an (ε, δ)-differentially private mechanism.

Algorithm 1 Dynamic Model Publication via Approximate
Realization
Require: h, sampling period; N , number of Markov pa-

rameters
Generate νi ∼ Lap(∆̄1/ε), i ∈ [n]
yi ← vi + νi, i ∈ [n]

Ĝ← imp2ss(y, h)

3.3 Frequency Response Perturbation
Instead of releasing the impulse response, it is perhaps

more intuitive to release a set of N samples of the transfer
function G, measured at a set of a priori fixed frequencies
ω1, . . . , ωN , which can moreover be chosen in the frequency
range over which we wish to better approximate G. Let

f = [G(jω1), . . . G(jωN )]
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be the vector in CN to be released. Equivalently, we want to
release the real and imaginary parts of f = [fR, fI ], where

fR = [Re(G(jω1)), . . .Re(G(jωN ))],

fI = [Im(G(jω1)), . . . Im(G(jωN ))].

To compute the `2 sensitivity, consider the variation of the
parameters of say participant i. We then compute the change
in 2-norm

∆2
2,i =

N∑
k=1

[Re(G(jωk)− Ĝ(jωk))]2 + [Im(G(jωk)− Ĝ(jωk))]2

=

N∑
k=1

|G(jωk)− Ĝ(jωk)|2

=
1

n2

N∑
k=1

∣∣∣∣∣ bi
jωk + ai

− b̂i
jωk + âi

∣∣∣∣∣
2

. (11)

We now analyze the terms of the sum (11).∣∣∣∣∣ bi
jωk + ai

− b̂i
jωk + âi

∣∣∣∣∣
2

=
(biâi − b̂iai)2 + ω2

k(bi − b̂i)2

(a2
i + ω2

k)(â2
i + ω2

k)

=
(bi(âi − ai) + (bi − b̂i)ai)2 + ω2

k(bi − b̂i)2

(a2
i + ω2

k)(â2
i + ω2

k)

≤ 2κ2
b(âi − ai)2 + 2ρ2

i a
2
i + ω2

kρ
2
i

(a2
i + ω2

k)(â2
i + ω2

k)

≤ 2a2
i (κ

2
bη

2
i + ρ2

i ) + ω2
kρ

2
i

(a2
i + ω2

k)(â2
i + ω2

k)
.

Now, using
a2i

a2i+ω2
k
≤ 1, we get the bound

∆2
2 ≤

1

n2

N∑
k=1

2(κ2
bη

2
m + ρ2

m)

κ2
a + ω2

k

+
ω2
kρ

2
m

(κ2
a + ω2

k)(κ2
a + ω2

k)
, (12)

under Assumption 1. Note in particular that sampling at
high frequencies contributes less to the sensitivity bound,
or equivalently, it is harder to publish information about
low frequencies than about high frequencies while achieving
differential privacy.

Algorithm 2 summarizes our mechanism based on fre-
quency response perturbation. Let ∆̄2

2 denote the right-hand
side of (12). We first perturb the coordinates of the vector
(fR, fI) using additive Gaussian noise with variance propor-
tional to ∆̄2

2 to achieve (ε, δ)-differential privacy. We then

estimate a transfer function Ĝ based on this frequency re-
sponse data, using the MATLAB function tfest [10]. This
function requires the user to specify the order np of the
model to produce, which should not be chosen too large
to avoid overfitting the perturbed values of the frequency
response. Note that this order should be chosen a priori
without taking the form of G into account, otherwise Theo-
rem 1 would not apply.

4. SIMULATIONS
In this section, we discuss in more details the performance

of two of the mechanisms previously presented, namely, the
parameter perturbation scheme of Subsection 3.1 and the
frequency response perturbation scheme of Subsection 3.3.
We fix a priori np = 5 in Algorithm 2, and a vector ω of
20 sampled frequencies logarithmically spaced between 0.1

Algorithm 2 Dynamic Model Publication via Frequency
Response Estimation

Require: ω, vector of frequencies to sample; np, number of
poles desired in the released model
Generate νR,i ∼ N (0, κ(δ, ε)2∆̄2

2), i ∈ [n]
Generate νI,i ∼ N (0, κ(δ, ε)2∆̄2

2), i ∈ [n]

f̂R,i ← fR,i + νR,i, i ∈ [n]

f̂I,i ← fI,i + νI,i, i ∈ [n]

Ĝ← tfest(f̂R + if̂I , ω, np)
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Figure 1: Examples of results produced by the
mechanisms based on parameter perturbation and
on reconstruction from noisy samples of the fre-
quency response. The samples produced and used
by tfest in Algorithm 2 are denoted with circles.

rad/s and 100 rad/s. We let n = 100, ε = ln 3, δ = 0.05, ηi =
0.2, ρi = 0.5, ∀i ∈ [n].

The first example is similar to the case described in Sub-
section 3.1, with each user associated to the same transfer
function 1/(s+0.5), which is also equal to G. Sample models
produced by the parameter perturbation and frequency re-
sponse perturbation are shown on Fig. 2. For these particu-
lar outputs, the errors measured by the H∞-norm of the dif-
ference between the produced and original models are 1.397
for the parameter perturbation scheme and 0.043 for Algo-
rithm 2. In this case the parameter perturbation method
produced a model with a large error at low frequencies.

The second example consists of a randomly generated
model, where the parameters ai and bi are generated in-
dependently across users according to uniform distributions
on the intervals [0.5, 5], and [0, 5] respectively. Sample out-
puts of the two mechanisms are reproduced on Fig. 2. In
this specific output, we see that the approximation quality
of the frequency response perturbation mechanism remains
good at low frequencies, but much worse than the parame-
ters perturbation scheme at high frequencies. This is mainly
due to the fact that we use additive perturbations in Algo-
rithm 2, which means that the noise tends to dominate the
magnitude of the transfer function when the latter is small.
Since in this case however the errors occur when the attenu-
ation is already significant, the H∞-norm of the model error
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Figure 2: Examples of results produced by the
mechanisms for a randomly generated model. We
have ‖G − Ĝ1‖∞ = 1.53 and ‖G − Ĝ2‖∞ = 0.28, where
G1 is the model produced using parameter pertur-
bation, and G2 is the model produced via perturbed
frequency response data.

for the frequency response perturbation mechanism still re-
mains much smaller than for the parameter perturbation
mechanism. The average H∞ error obtained over 1000 ran-
domly generated systems was found to be 0.97 for the pa-
rameter perturbation mechanism and 0.29 for the frequency
response perturbation mechanism.

5. CONCLUSION
We have presented several privacy-preserving mechanisms

that can be used to release a model describing the dynamics
of a large group of users responding to a common input
signal and producing an aggregate output signal. We expect
the techniques described here to extend to more complex
systems, with multiple inputs and outputs and potentially
more coupled process dynamics. Future work will focus on
analytically quantifying the approximation error achieved by
the proposed mechanisms and will explore lower bounds on
the model error achievable by differentially private release
mechanisms.

Appendix: Proof of Proposition 1
As in (9), let us assume for concreteness that the data of
the first participant is perturbed. From the Taylor-Lagrange
formula, we have that for all k ≥ 0,

|β̂1α̂
k
1 − β1α

k
1 | ≤ kα̃k−1

1 |β̃1||α̂1 − α1|+ α̃k1 |β̂1 − β1|,

where α̃1 = α1 + θ(α̂1 − α1), β̃1 = β1 + θ(β̂1 − β1), for some
θ ∈ (0, 1). In particular,

α̃1 ≤ e−κah, |β̃1| ≤ κbh, (13)

where the second inequality comes from the fact that

0 <
1− e−x

x
≤ 1, ∀x > 0.

We now bound the variations in the parameters α1, β1. Again,
from the Taylor-Lagrange formula,

|α̂1 − α1| = |e−â1h − e−a1h| ≤ ã1he
−ã1h |â1 − a1|

ã1

≤ 0.37 ηm,

where ã1 = a1 + θ(â1 − a1) for some θ ∈ (0, 1), and we used
the fact that 0 < xe−x < 0.37, for all x > 0. Finally,

|β̂1 − β1| =
∣∣∣∣1− e−â1hâ1h

b̂1h−
1− e−a1h

a1h
b1h

∣∣∣∣
≤
∣∣∣∣−1 + e−ã1h + ã1he

−ã1h

ã2
1h

2

∣∣∣∣ |b̃1|h |â1h− a1h|

+
1− e−ã1h

ã1h
h|b̂1 − b1|

≤ 0.3 ηm κb h+ ρmh,

where α̃1 = α1 + θ(α̂1 − α1), β̃1 = β1 + θ(β̂1 − β1), for some
θ ∈ (0, 1), and we used the fact that |(−1+e−x+xe−x)/x| <
0.3, for all x > 0.

Hence overall we get the bounds, for all k ≥ 0,

|β̂1α̂
k
1 − β1α

k
1 | ≤ h(0.37 k α̃k−1

1 κb ηm + α̃k1(0.3 ηm κb + ρm)),

and the result of the proposition follows from the formulas

N−1∑
k=0

kαk−1 =
1 + (N − 1)αN −NαN−1

(1− α)2
,

N−1∑
k=0

αk =
1− αN

1− α .

as well as (13).
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