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ABSTRACT
Despite recent advances in the field of Networked Control
Systems (NCS), the gap between the control design stage
and the implementation stage on a physical platform re-
mains significant. The simplifying assumptions made in the
analysis of NCS are often not precise enough for realistic
embedded control systems, and engineers must resort to
time-consuming simulations and multiple redesign and test-
ing phases before the performance of a system is judged ade-
quate. Moreover, simulation-based methods do not typically
provide rigorous performance or stability guarantees. We
approach the problem of certifying a digital controller im-
plementation from an input-output, robust control perspec-
tive. Following a standard method for analyzing sampled-
data systems, we view the implementation step as a per-
turbation of a nominal linear time-invariant model. Nonlin-
earities and disturbances due to implementation effects are
treated as uncertainty blocks and characterized via Integral
Quadratic Constraints (IQCs), such as gain bounds. From
our modeling discussion emerge some important types of
uncertainties. We discuss some new gain bounds for one of
them, namely an aperiodic sample-and-hold operator with
uncertain sampling times. Two important features of the ro-
bust control approach are i) this approach is modular, i.e.,
the analysis of different uncertainty blocks can be done and
refined separately, and the results combined in the study of
a complete complex system; ii) the guarantees on the sta-
bility and performance of the implemented system can be
obtained automatically via efficient computational tools.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Reliability and Robust-
ness; C.3 [Special-Purpose and Application-Based Sys-
tems]: real-time and embedded systems
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Networked and embedded system design places stringent
requirements on the utilization of the three major classes of
resources: computational resources (CPUs), communication
resources, and the sensors and actuators. The implementa-
tion of control algorithms over these systems to form Net-
worked Control Systems (NCS) poses challenging questions
at the interface of several fields, in particular control theory,
scheduling, and communications [29]. Usually the design of
an embedded control system involves first control engineers,
who model the plant and design the controller at a mathe-
matical level of abstraction. The design is then handed off
to an implementation team, who must translate it to soft-
ware code implemented on a particular platform, that is, a
hardware configuration, including communication networks
and microcontrollers together with a Real-Time Operating
System (RTOS) [2,15,16].

Control engineers use a simplified model of the implemen-
tation platform, chosen in order to facilitate the design of
the control laws. For that purpose, the easiest model to
handle assumes that the output signals of the plant are
sampled periodically with no jitter in the sampling times
and no quantization effect. Restricting the analysis to the
sampling instants, the digital controller then sees a discrete-
time time-invariant plant and discrete-time control tech-
niques can be used [3]. A second major technique for the
design of sampled-data control systems consists in starting
with a continuous-time controller design, and discretizing it
using a step-invariant or bilinear transformation for exam-
ple [3,5]. The artifacts introduced by the discretization can
then be viewed as a perturbation of the nominal continuous-
time system. The recent work on NCS essentially builds
on these techniques, introducing additional elements to ob-
tain more realistic models of the implementation platform.
Some papers following the discrete-time approach, with pos-
sibly the introduction of a continuous-time component to
study time-varying delays, include [14,29,39]. We follow the
continuous-time approach, as in [26–28,33,36] for example.

It is important to increase the realism of the implemen-
tation platform model used at the control design stage, for
several reasons:

1. Idealized models translate into hardware and schedul-
ing requirements that are hard to meet or unclear at
the implementation stage. For example, if quantiza-
tion effects are neglected, how precise should the actual
analog-to-digital converters be? Are the constraints on
perfect periodic sampling times hard constraints (im-
possible to satisfy exactly) or can they be relaxed?

2. Most real-world embedded control systems have hard



cost constraints. Implementation-aware control de-
sign [2] has a direct impact on the cost of the final
system, by allowing lower sampling frequencies and
uncertain sampling times, less precise measurements,
slower computations, lower power consumption, etc.

3. More realistic implementation models simplify the task
of the implementation team, which must balance the
control task requirements with those of other func-
tions (e.g., a user interface) running on the same plat-
form. They reduce the risk of finding the control re-
quirements impossible to satisfy at the implementation
stage, and can decrease the total time spent on system
design, simulation and testing [22].

Despite recent advances, NCS models still tend to be sig-
nificantly simplified versions of real-world embedded control
systems, where multiple interacting control loops can in-
volve shared sensors and actuators working at different up-
date rates, and computations possibly performed on several
Electronic Control Units (ECUs) according to a complicated
schedule that must also accommodate tasks outside of the
control functions. Available techniques tend to focus on one
particular aspect of the implementation problem, which is
unavoidable due to the variety of the possible issues. For ex-
ample, the papers [28, 36] study the artifacts introduced by
the scheduling delays of different sensor measurements over a
shared communication network, but assume no computation
delay at the controller, no propagation delay, and perfectly
predictable sampling times. Propagation delays and uncer-
tain sampling times are studied in [10, 24, 26], but there all
the plant outputs are sampled at the same time and sent as
one packet over the network, which can again be overly con-
straining from an implementation point of view. In general,
there is no clear way to combine the various results avail-
able in order to study increasingly realistic models. Stability
guarantees based on the construction of Lyapunov functions
“by hand” for every possible communication protocol [28] is
hard to generalize to the complicated and for all practical
purpose non-deterministic schedules resulting from the uti-
lization of modern RTOS and network protocols. Perhaps
more importantly, the precise behavior of the scheduler is
often not known at the control design stage, and constrain-
ing it too soon increases system integration issues. Finally,
the importance of the notion of maximal allowable trans-
mission interval (MATI), i.e., the time separating any two
measurements received by the controller from any two sen-
sors [36, 39], in systems involving sensors working at vastly
different rates (e.g. a GPS at 20 Hz and an IMU at 1000
Hz) is not clear. In contrast, various software tools such as
Ptolemy and Giotto are already available for the develop-
ment of embedded control systems [16,22] at a much greater
level of detail than supported by the current theory of NCS.
However, these tools are mostly used for simulation based
approaches that cannot produce rigorous certificates of per-
formance or stability. In [22] it is shown how uncertainties
due to the RTOS behavior can result in loss of stability in a
closed-loop system, even in the absence of a communication
network.

In this paper we emphasize an input-output robust control
approach to study the effects of a digital implementation on
a continuous-time controller design. That is, we use a lin-
ear time-invariant (LTI) system as the nominal closed-loop
model, and implementation artifacts and other nonlineari-

ties can be included as uncertainty blocks and characterized
using integral quadratic constraints (IQCs) [23], such as gain
bounds. While this approach is potentially more restricted
in the amount of nonlinearity it can handle in the final model
compared to using a fully nonlinear nominal model [26–28],
and potentially more conservative than analyzing directly a
complete detailed model of the system, its has the following
major advantages for our purpose:

• The stability conditions can be checked automatically
with computational tools involving Linear Matrix In-
equalities (LMI), via the Kalman-Yakubovich-Popov
lemma.

• Most importantly, this approach is typically modular,
and promising for the development of automated ver-
ification tools [19]. Adding disturbances and nonlin-
earities can be done by simply adding perturbation
blocks to the nominal model. The analysis of different
implementation disturbances can be done and refined
separately, and combined to obtain a precise model of
the chosen platform.

IQCs essentially motivated by sampled-data systems have
been proposed before, see e.g. [13,18,20]. However, a signif-
icant part of this paper is spent on modeling aspects, and on
isolating some important types of uncertainty blocks neces-
sary for analyzing networked and embedded control systems.
In addition, we provide new gain bounds complementing the
result of of Mirkin [24] for aperiodic sample-and-hold blocks
with bounds on the inter-sampling times.

2. MODELING
We consider the following resource utilization constraints:

1. Communication constraints. In typical embedded con-
trol applications, the signals exchanged between the
plant and the computational devices (CPUs) must be
transmitted via a shared communication medium, of-
ten a serial communication bus. A network protocol,
such as the Controller Area Network (CAN) frequently
used in automotive applications [6], is necessary to or-
ganize the access to the communication medium. This
protocol is usually chosen based on all function require-
ments and the technology available, not just control
loop constraints (indeed, the event triggered CAN with
its time-varying delays is probably a bad idea from a
control performance perspective).

2. Computational constraints. A CPU is not dedicated
to the computation of a single control law, but instead
is shared by an increasing number of tasks of various
criticality levels. An example of this architecture is
the Integrated Modular Avionics concept for real-time
embedded airborne software [37]. This trend will con-
tinue, driven in part by economic factors that give pref-
erence to using a smaller number of general purpose
CPUs instead of a large number of specially manufac-
tured microcontrollers. Note that it is also beneficial
to the load on the communication network.

These constraints on communication and computational re-
sources are of a similar nature. They impose additional de-
lays to the transmission of various signals through the sys-
tem. The communication protocol must schedule the trans-
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Figure 1: Mathematical model of a digital imple-
mentation of a controller on a single microcontroller.
The blocks Si represent sampling operations, the
blocks Hi hold the latest received value to pro-
duce a continuous-time piecewise constant output.
Discrete-time signals are represented by dashed ar-
rows, continuous-time signals by continuous arrows.

missions of different samplers, and in addition the transmit-
ted values also incur a potentially non-negligible propaga-
tion delay. Control input updates incur a delay due to the
CPU utilization by other tasks and are scheduled by the
RTOS. An important aspect of all these delays is that they
are usually uncertain. Uncertainty could be due to tran-
sient perturbations on the communication network, sudden
increase in communication and computational resource uti-
lization by other non periodic tasks, etc. Even if we restrict
ourselves to scheduling techniques that attempt to guaran-
tee more precise timing properties, using for example time-
triggered protocols [21], it is useful at the control design
stage to give more freedom to the implementation team and
guarantee that any choice of resource time-slots used in the
final implementation and that satisfies certain conditions is
guaranteed to be correct. At the control design level, such
schedules on a time-triggered architecture could be repre-
sented by a non-deterministic automaton [38], and enlarging
the set of allowed schedule greatly simplifies the integration
of different subsystems using the same resources as well as
their later updates. Time triggered protocols with relaxed
clock synchronization requirements [4] are also motivated by
cost reductions while introducing timing uncertainty.

2.1 Computational Resources
Our approach to the mathematical modeling of implemen-

tation disturbances can be illustrated by Fig. 1, where a
continuous-time process has 3 measured outputs and 2 con-
trolled inputs

y = [y1, y2, y3]T , u = [u1, u2]T ,

and the control algorithm is implemented on a single micro-
controller. All hold blocks in this paper represent zero-order
holds. We view the implementation effects as perturbations
of a nominal continuous-time Linear Time-Invariant (LTI)
controller design u = Ky (which can be dynamic). In this
example, we have the (convolution) operator K of the form

K =

»
k11 k12 0
0 k22 k23

–
, K1 := [k11 k12],K2 := [k22 k23].

K
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Figure 2: Mathematical model of a digital controller
implementation. The times at which the signals are
updated are written next to the sample and hold
blocks.

For clarity of exposition, we start by assuming the absence of
a shared communication network to transmit these signals
between the plant and controller locations, as well as the
absence of acquisition and conversion delays at the analog-
to-digital and digital-to-analog converters (ADC and DAC).
Moreover throughout the paper we neglect errors due to sig-
nal quantization. If all sample and hold blocks on the figure
were operating synchronously and periodically, the resulting
discrete-time controller would be the one obtained by the
standard step-invariant transformation [5]. Here however,
the different blocks are allowed to operate asynchronously,
for example different signals can be sampled at different
rates. Moreover there are resource constraints on the simul-
taneous operations of the different blocks, which are resolved
by the RTOS scheduler on the microcontroller CPU.

With a fixed wiring structure, we can concentrate on the
implementation of a single controller block, whose continuous-
time nominal design is denoted again K in the following (for
example K = K1 on Fig. 1). The nominal controller K is
an LTI controller of the form

ẋc = Acxc +Bcy (1)

u = Ccxc +Dcy, (2)

where y = [y1, . . . , ym]T , xc ∈ Rn and u = [u1, . . . , up]
T .

The mathematical model of its digital implementation is
represented on Fig. 2. We denote by {tik} the sequence
of times at which signal yi is sampled, and by {tm+i

k } the
sequence of times at which the output signal ui is updated.
These times are the actual physical times when these events
happen. Different implementation choices translate to vari-
ous sources of uncertainty in the realization of the sequences
{tik}, {tm+i

k }. We assume in general however that the times
{tik} at which the sampling events happen can be recorded
in variables ti, transmitted to the CPU, where the value is
stored in variables that we call again ti. Such time-stamped
samples are provided by recent standards, e.g. in the form
of the “sampling ports” of the ARINC 653 specification for
avionics application software [1]. In the following, we neglect
the possible difference, which could be due to the acquisi-
tion time at the ADC, between the actual time tik at which
a physical signal changes value and the time recorded in ti.

We now discuss a possible digital implementation of the
mathematical model of Fig. 2. The goal is to be able to
reproduce the outputs uj(t

m+j
k ) of the mathematical model

given the samples yi(t
i
k), in order to justify the use of the



mathematical model to analyze the behavior of the system.
The current value of the controller state is stored in a global
variable xd, initialized with xd = 0, and we keep track of the
last time at which xd was updated using a global variable
tx. Similarly the last sampled value for the input signal
yi is stored in a variable yd,i, its sampling time tik in the
variable ti, and we can initialize yd,i to 0 for example be-
fore the first measurement becomes available. We denote
yd = [yd,1, . . . , yd,m]

T . The function processing samples for
the signal yi can be implemented as shown in Algorithm
1. That function has also the option to update a subset
O ⊂ {1, . . . , p} of the output signals, where the choice O = ∅
is possible. If O 6= ∅, then line 1 of the function must be
executed at time tik, i.e., the sampling times for signal yi
must coincide with the times at which the execution of the
function starts. This can be accomplished using interrupts
or by polling if the function directly activates the ADC. If
O = ∅, this requirement is not necessary, and the function of
Algorithm 1 could process delayed but time-stamped sam-
ples. The notation [M ]i, [M ]j denotes row i and column j
of a matrix M , respectively. Note that the function first
integrates the controller dynamics up to time tik, and this
state value update must occur before changing the value of
the input signal stored in yd,i. Due to the fact that inter-
sampling times may vary, the integration of the dynamics
(1) requires the computation of matrix exponentials every-
time a signal is sampled1. To compute the matrix Bd on line
3 of the algorithm, we also use matrix exponentials and the
following lemma, see e.g. [5].

Lemma 1. Let A11 and A22 be square matrices and define»
F11(t) F12(t)

0 F22(t)

–
:= exp


t

»
A11 A12

0 A22

–ff
.

Then F11(t) = etA11 , F22(t) = etA22 , and

F12(t) =

Z t

0

e(t−τ)A11A12e
τA22dτ.

In other words, the term
R ti−tx
0

eAcτdτ can be obtained as
F12 with

F = exp


(ti − tx)

»
0 I
0 Ac

–ff
,

and moreover this computation also provides Ad = F22.
Some trivial modifications are possible. For example, we

can use a single call to Algorithm 1 to process the samples
of several input signals.

2.1.1 Additional Output Updates and Constraints on
Valid Schedules

We also provide the option to update some controller out-
puts ud,i without sampling inputs first, as described in Al-
gorithm 2. An additional integration step is performed in
order to be consistent with the model of Fig. 2. Note that
the sequence of values of the global variable tx should be
monotonically increasing, which places some constraints on
the order of the calls of the various functions by the RTOS

1This is a form of jitter compensation. Although there are
efficient methods for computing such exponentials, a com-
putationally cheaper but more conservative method would
be to use fixed matrices Ad, Bd, and model the error in the
mathematical model using additional time-varying delays on
the intersampling times.

Algorithm 1 Function processing sample yi(t
i
k)

Require: time-stamped samples
1: (tmp, ti)← read input i()

2: Ad ← eAc(t
i−tx)

3: Bd ←
“R ti−tx

0
eAcsds

”
Bc

4: xd ← Adxd + [Bd]
iyd,i

5: yd,i ← tmp

6: ud,i ← [Cc]ixd + [Dc]iyd, i ∈ O {O can be ∅}
7: update output i(ui,d), i ∈ O {O can be ∅}
8: tx ← ti

Algorithm 2 Function updating output ui at tm+i
k

1: tm+i ← request time()

2: Ad ← eAc(t
m+i−tx)

3: Bd ←
“R tm+i−tx

0
eAcsds

”
Bc

4: xd ← Adxd + [Bd]
iyd,i

5: ud,i ← [Cc]ixd + [Dc]iyd
6: update output i(ud,i)
7: tx ← tm+i

scheduler. In general, using the functions of Algorithms 1
and 2 we can implement the model of Fig. 2, assuming that

1. the processing of samples using the functions specified
by Algorithm 1 follows the same order as the sampling
times {tik}k,1≤i≤m.

2. If the output update function of Algorithm 2 is exe-
cuted while there are still unprocessed samples, then
these samples must be discarded. In this case the time
sequences {tik} of Fig. 2 correspond to the samples
that are effectively processed. Algorithm 1 with out-
put update (O 6= ∅) can be used to perform frequent
control updates and avoid wasting samples.

3. the computational delays introduced by lines 2-6 of
Algorithm 1 or lines 2-5 of Algorithm 2 are assumed
to be negligible here.

Assumptions 1 and 2 guarantee that the sequence of up-
dates of the variable tx is valid (monotonically increasing).
As noted earlier, the updates of the variables ti correspond
to the actual sampling times of the physical input signals.
However, if computational delays cannot be neglected, then
Algorithms 1 and 2 do not quite correspond to the model of
Fig. 2, as discussed next.

2.1.2 Computational Delays
If delays due to the computations on lines 2-6 of Algo-

rithm 1 or lines 2-5 of Algorithm 2 are significant, we need
to modify the model of Fig. 2 or the functions in Algorithm
1 and 2 to make them consistent with each other. The dis-
crepancy comes from the fact that the output produced by
the implementation has value ui(t

i) = ui(t
i
k) in Algorithm

1 or ui(t
m+i) in Algorithm 2, but the output signal changes

only at times ti + δc,i or tm+i + δc,i respectively, where δc,i

is the computation delay. Hence in general we need to add
a delay block after each output hold block on Fig. 2, which
captures the properties of the delay δc,i.

If however the computation time δc,i is perfectly known, a
modification of the implemented functions can avoid the in-



troduction of delay blocks in the mathematical model. For
this purpose, we replace tm+i by tm+i + δc,i in lines 2, 3
and 7 of Algorithm 2. Moreover, Algorithm 1 should not
be used to make output updates, that is, we should take
O = ∅ there. Since assumption 2 above must be satisfied,
this way of compensating computational delays might not
always be convenient, in which case the introduction of ad-
ditional blocks in the mathematical model to account for the
(perfectly known) delay cannot be avoided. If delay compen-
sation is feasible, then with the modification of Algorithm 2
just described the output value ui(t

m+i + δc,i) is produced
exactly at time tm+i + δc,i, hence we avoid the introduction
of delay blocks in the mathematical model. The times at the
output sample and hold devices in the mathematical model
of Fig. 2 must be changed from tm+i

k to tm+i
k + δc,i however.

2.1.3 Static Controller Case
The implementation of a static controller (u = Dcy) is

significantly simpler, since no integration of the controller
dynamics is required. Note moreover that a static controller
block K commutes with the hold and sampling blocks in
the mathematical model of figure 2, and that for two blocks
S,H that are synchronized (i.e., sample or change value at
the same instants {tk}), we have SH = I. These properties
can be used to simplify the mathematical model. For ex-
ample, consider a static controller with two inputs sampled
simultaneously, and one output. Its implementation model,
mapping continuous-time signals y1, y2 to the continuous-
time, piecewise constant signal u1, is (HS)outK(HS)in. As-
sume now that the output is updated right after sampling
new values of the inputs, and that the computation time is
neglected. This corresponds to using only Algorithm 1 for
sampling and output update. Then the blocks H and S in
the mathematical model are all synchronized. By the pre-
ceding remarks, we have HSKHS = HK(SH)S = HKS =
HSK = KHS. The representation HSK is more efficient
from a modeling and analysis point-of-view however, be-
cause it introduces the disturbance HS on a one-dimensional
signal u1 whereas KHS introduces it on the two dimensional
signal y.

2.2 Effects of a Communication Network
Let us now consider the situation where a communica-

tion channel connects the plant to the controller, which we
assume to be a shared communication bus (in contrast to,
say, a multi-hop wireless network). A medium access con-
trol (MAC) protocol, such as the Controller Area Network
(CAN) in automotive applications, must be implemented
on the various resources accessing the channel (microcon-
trollers, sensors, actuators). Since the samples are time-
stamped, the network delays do not impact the processing
of samples by Algorithm 1, assuming that we take O = ∅
and that the samples are processed in the same order as the
sampling times {tik}k,1≤i≤m. Hence the network protocol
should schedule the transmission of signal samples in the
order in which they become available.

Perfectly known transmission delays δp,i between the time
at which an output is updated in line 6 of Algorithm 2 and
the time at which it reaches the plant could potentially be
compensated in the same way as known computational de-
lays, by replacing tm+i with tm+i + δp,i in Algorithm 2 and
using {tm+i

k + δp,i} in the mathematical model of Fig. 2.
Again, the requirement of assumption 2 of subsection 2.1

(HS - I)F D - I

HS D

s1, s2, ...

F -1

Figure 3: Implementation effects on a continuous-
time signal. HS is a sample-and-hold operation at
times {sk}k≥0, which can be uncertain. The block D
models a delay, possibly uncertain and time-varying,
and can be added at the outputs of Fig. 2 to model
computational and communication delays. The sec-
ond equivalent representation views the operation
of these blocks as perturbations of the nominal sig-
nals. Note that the signals entering the delay block
are piecewise constant. A low-pass filter is included
in the uncertain sampling block to ensure that this
block has finite energy gain.

can lead to wasting too many samples. We must then again
account for propagation delays of the output updates by in-
troducing delay blocks at the output of the mathematical
model of Fig. 2 instead. Delay blocks can also be used to
model uncertain and time-varying delays.

2.3 Robustness Analysis and Important Un-
certainty Blocks

We have seen in the previous sections how the mathemati-
cal model of Fig. 2 can capture the software implementation
of a controller using sampling and output functions as de-
scribed in Algorithms 1 and 2, with possibly additional delay
blocks to model acquisition, transmission and computation
delays. The mathematical model of the implementation is
then used for closed-loop system analysis and potentially re-
finement of the control design. Note that the analysis of the
mathematical model involves the sequences {tik}, {tm+i

k } of
times at which the input signals are sampled and the output
signals are updated. Certain assumptions are made on these
sequences at the control design stage, but various sources of
uncertainty such as computational and communication de-
lays make it hard for the scheduler to guarantee a precise
control over these times. For example, consider a microcon-
troller executing Algorithm 1, and requesting a new sample
of signal yi. If a communication network is present, the time
at which the controller request reaches the sensor might be
uncertain, resulting in an uncertain sampling time tik. In
general, the analysis and design then involve a trade-off:

• Making more constraining assumptions on the uncer-
tainty blocks of the mathematical model, such as neg-
ligible delays, perfectly synchronized input and out-
put blocks with perfectly known and periodic sampling
times, facilitates the control design step but typically
translates into specifications that are costly and very
hard or even impossible to implement on a given ar-
chitecture.



• Relaxing these assumptions by increasing the class of
allowed uncertainties due to implementation effects gives
more flexibility to the implementation team but leads
to potentially overly conservative control laws and per-
haps controllers that are more complex in order to cope
with these uncertainties. However, an implementation
aware analysis at the initial control stage can detect
earlier if certain system specifications are impossible
to meet.

We have seen that viewing implementation effects as dis-
turbances leads us to studying the following uncertainty
blocks, see Fig. 3:

• Operators of the form D− I, where D is a delay, pos-
sibly time-varying and uncertain.

• Operators of the form HS− I, where HS is a sample-
and-hold device, with typically time-varying and un-
certain sampling times.

The trade-off mentioned above manifests itself in the control
analysis by making more or less restrictive assumptions on
the class of uncertain operators D and HS considered, such
as variations in the sampling periods and delays, size of the
delays, etc.

Robustness analysis results for systems with delay blocks
that are uncertain and time-varying can be found for exam-
ple in [17, 20]. In our situation, we note that all inputs to
the delay blocks are piecewise constant signals, an informa-
tion which could potentially be exploited. Indeed, consider
a piecewise constant signal changing value at times {sk}k≥0

and entering an uncertain delay block. Let {δk}k≥0 be the
incurred delays, and let tk = sk + δk. It is not hard to see
that as long as the delay block preserves the order of the
sequence of switching times, a valid representation of the ef-
fect of this delay can be obtained by using the time-varying
piece-linear delay model

w(t) = Dv(t)⇔ w(t) = v(t− δ(t))

with v piecewise constant, and δ(t) such that

δ(tk) = δk,
dδ

dt
(t) = 1, tk ≤ t < tk+1.

In other words δ(t) = δk + t − tk and w(t) = v(tk − δk) for
t ∈ [tk, tk+1). Here the delay signal has constant derivative
but is discontinuous. Another valid representation, again
using the fact that the input signal is piecewise constant,
is to take for δ(t) a continuous piecewise linear signal that
linearly interpolates the points (tk, δk). This allows us to
use the results of [20].

Note that these two types of uncertainty blocks (uncertain
delay and uncertain sample-and-hold) are by no means the
only ones that should be considered. For example, we have
not included in the discussion above any quantization effects
at the sampling devices nor the fact that digital computa-
tions are performed in finite-precision arithmetic. In the rest
of the paper, we consider aperiodic sample-and-hold blocks
in more details.

3. APERIODIC SAMPLE AND HOLD OP-
ERATORS

In section 2 we argued that it is important to study op-
erators of the form ∆ = HS − I, where HS is a sample-
and-hold operation with uncertain sampling times deter-
mined partially by the RTOS as well as communication
and perhaps computational delays. This operator has been
the topic of recent research papers, somewhat implicitly in
e.g. [9–11, 25, 32]. Its input-output behavior, which is our
main interest here, is considered explicitly in [13, 24]. Let
us denote its sampling times as {tk}k≥0, t0 = 0, and the
inter-sampling times

hk := tk+1 − tk, k ≥ 0.

We consider a situation where for control design and analysis
purposes, the implementation platform and scheduler can
guarantee an upper and lower bound hu, hl on the the inter-
sampling times, that is2

0 < hl ≤ hk ≤ hu, ∀k ≥ 0. (3)

Such bounds can be extracted from the analysis of the be-
havior of the scheduler deciding the execution times of the
sample processing and output update functions.

Robustness analysis is based on the quantitative char-
acterization of the uncertainties, for example via L2-gain
bounds. In particular a recent result of Mirkin [24] can be
immediately rephrased as‚‚‚‚∆ ◦ 1

s

‚‚‚‚ ≤ 2

π
hu, (4)

where 1
s

is the Laplace transform of an integrator, and through-

out the paper ‖·‖ for a system S denotes the L2 power gain,
i.e., the infimum of the set of γ ≥ 0 such that

inf
T≥0

Z T

0

γ2|v(t)|2 − |w(t)|2dt > −∞,

for all locally square integrable signals v, w such that w(t) =
(Sv)(t) for all t.

3.1 Flexibility of the Input-Output Approach
Using an input-output approach and gain bounds such as

(4) allows the study of complicated systems in a modular
way. Consider for example the closed-loop system

ẋ = Ax+Bu =

»
0 1
0 −0.1

–
x+

»
0

0.1

–
u

u = Kx = −
ˆ
3.75 11.5

˜
x,

which is studied in several papers, e.g. [12, 24, 25, 31, 39].
In these references, it is assumed that both outputs x1, x2

are sampled simultaneously. In this case, it is currently
known that the sampled system is stable for uncertain inter-
sampling intervals with hu = 1.69s for example [9] (the max-
imum constant sampling period for which the system is sta-
ble is 1.729s). Note that since K is a static controller, we can
use a single sample-and-hold block around the controller as
discussed in subsection 2.1.3, and to simplify computations
we can place this block after the single output of the con-
troller. The result (4) together with the small-gain theorem
then shows that as long as the nominal closed loop system
G(s) = sKP/(1−KP ) with P = (sI −A)−1B has L2 gain

2the lower bound hl is introduced for technical reasons at
this point, but we conjecture that increasing it does not help
in obtaining tighter results in proposition 1 below.



(H∞-norm) less than πhu/2, the sampled system is stable.
This gives a maximum value hu = 1.3659s guaranteeing sta-
bility, which is somewhat conservative.

As discussed in the following subsections, it is possible to
refine the characterization of the input-output behavior of
the block ∆, hence there might still be room for reducing
the conservativeness of the input-output approach. But in
any case the main advantage of this approach in our view
is the possibility of immediately considering more flexible
architectures as in Fig. 2. For example, the input-output
gain result (4) also allows us to consider the situation where
the two plant outputs x1, x2 are sampled at different times
with corresponding upper bounds hu,1, hu,2 on their inter-
sampling times, see Fig. 3.1. The nominal system has now
two inputs w = [w1, w2]T and two outputs z = [z1, z2]T

using the notation of the figure, and the perturbation is
block-diagonal»

w1

w2

–
=

»
(H1S1 − I) ◦ 1

s
0

0 (H2S2 − I) ◦ 1
s

– »
z1
z2

–
. (5)

The transfer function of the nominal system, properly scaled,
is then

G(s) =

»
2hu,1/π 0

0 2hu,2/π

–
s(I − PK)−1PK,

where the scaling by D =

»
2hu,1/π 0

0 2hu,2/π

–
is introduced

to make sure that the uncertain operator defined by (5) and
multiplied by D−1 has L2-gain at most 1. Applying the
scaled small gain theorem [8, p.248] then yields a Linear Ma-
trix Inequality (LMI) which is feasible if and only if ‖G‖ < 1,
a sufficient condition for stability of the perturbed system.
We can then verify for example that the system is stable for
hu,1 = 1.85s and hu,2 = 1.2s. Hence we see that the system
can accommodate sensors working at fairly different rates
and a variety of schedules that do not require simultaneous
sampling of the two plant output signals.

K P

(HS-I)/s

+

+

s

z
w

(a) Simultaneous sampling of
the two outputs.

K P

(H1S1-I)/s

(H2S2-I)/s

s

s

z1

z2

w1

w2

+

+

+
+

(b) Distinct sampling times.

Figure 4: Example with two sampling configura-
tions. F is a static controller so (a) can model the
simultaneous sampling of the two plant outputs. In
the configuration (b), the output of the controller
changes every time one of the signal is sampled at
the input (computational delays are neglected).

3.2 L2-gain Computations
In view of the flexibility of the input-output approach out-

lined in the previous paragraph, we consider here some addi-
tional results regarding the characterization of uncertainty

blocks of the form ∆ = HS − I, where the sampling times
are uncertain but satisfy (3). Note that a (strictly proper)
pre-filter such as 1/s is necessary in (4) because the L2-gain
of the unfiltered operator ∆ is infinite [5]. The choice of
the filter 1/s has been previously motivated by the study of
∆ from the point-of-view of time-delay systems [10], but as
pointed out by Mirkin [24] other choices are possible, which
could be interesting depending on the dynamics of the nom-
inal closed-loop system. In this subsection, we compute the
L2-gain of the operator ∆ ◦ F , where F = C(sI −A)−1B is
a pre-filter with A is stable, complementing the result (4) of
Mirkin who considers the case F = 1/s.

We can study the operator ∆◦F by generalizing the lifting
technique used for periodically sampled systems [5], as in
e.g. [7, 34]. Corresponding to a sequence {tk}k≥0 of time
instants, we have a lifting operator L : L2[0,∞)→ K, where
K as a set consists of sequences {sk}k≥0 with sk ∈ Kk :=
L2[0, hk). L is defined by

Lf = {fk}k≥0, with fk(t) = f(tk + t),∀t ∈ [0, hk).

Moreover K has the structure of a Hilbert space, with inner
product

〈u, v〉 =

∞X
k=0

〈uk, vk〉k :=

∞X
k=0

Z hk

0

uk(t)∗vk(t)dt,

for u = {uk}k≥0, v = {vk}k≥0. We denote the corresponding
norm on K simply by ‖ · ‖2,K. The lifting operator L is
an isometry between L2[0,∞) and K, which allows us to
compute L2 gains in the lifted domain. In the following,
we use the notation E to denote a generic Euclidean space
Rs with appropriate dimension s. By immediate extension
of the lifting techniques developed for periodically sampled
systems [5], the lifted version of the operator (HS − I) ◦ F
is an operator mapping K to K that can be represented
by the linear parameter-varying discrete-time and infinite-
dimensional system

ξk+1 = A(hk)ξk +B(hk)uk, (6)

yk = [C(hk)−H(hk)C]ξ(k) +D(k)uk,

with ξk = x(tk) and the operators

A(hk) : E → E , A(hk) = ehkA,

B(hk) : Kk → E , B(hk)uk =

Z hk

0

eA(hk−τ)Buk(τ)dτ,

C(hk) : E → Kk, (C(hk)x)(t) = CeAtx, ∀t ∈ [0, hk),

D(hk) : Kk → Kk, (D(hk)uk)(t) = C

Z t

0

eA(t−τ)Buk(τ)dτ,

H(hk) : E → Kk, (H(hk)x)(t) = x, ∀t ∈ [0, hk).

Define Ĉ(hk) = [C(hk)−H(hk)C] : E → Kk, so that

(Ĉ(hk)x)(t) = C(eAt − I)x, ∀t ∈ [0, hk).

Finally, consider for h > 0 and γ > ‖D(h)‖ (the induced
norm of the operator D(h) : L2[0, h)→ L2[0, h)) a choice of

matrices Ãγ,h, B̃γ,h and C̃γ,h satisfying

Ãγ,h = A(h) +B(h)D∗(h)(γ2I −D(h)D∗(h))−1C(h)

B̃γ,hB̃
T
γ,h = γ2B(h)(γ2I −D∗(h)D(h))−1B∗(h)

C̃Tγ,hC̃γ,h = γ2Ĉ
∗
(h)(γ2I −D∗(h)D(h))−1Ĉ(h).



Due to space constraints, we do not include here a discussion
of the procedure for computing the matrices Ãγ,h, B̃γ,h, C̃γ,h
for fixed γ, h, but it follows closely the discussion in [5, chap-

ter 13]. Note that the choice for B̃γ,h, C̃γ,h is not unique
and these matrices can be obtained for example from a
Cholesky decomposition once the right-hand side of the re-
lations above is computed.

Proposition 1. The system ∆ ◦F has L2-gain less than
γ if γ ≥ ‖D(hu)‖ and the following parameter-dependent
LMI has a feasible solution Q � 0 such that for all h ∈
[hl, hu]»
ÃTγ,hQAγ,h −Q+ C̃Tγ,hC̃γ,h ÃTγ,hQB̃γ,h

B̃Tγ,huQÃγ,h B̃Tγ,hQB̃
T
γ,h − γ2I

–
≺ 0. (7)

Proof. The system has L2-gain less than γ if it is dissipa-
tive with respect to the supply rate sk(uk, yk) = γ2‖uk‖2k −
‖yk‖2k [35]. Hence we consider the inequality

S(ξk+1)− S(ξk) ≤ γ2‖uk‖2k − ‖yk‖2k, ∀hk, ∀uk,∀ξk,

where S is a storage function. Looking for a quadratic stor-
age function S(ξ) = ξTQξ leads to the operator-valued pa-
rameter dependent LMI»

AThQAh −Q+ Ĉ
∗
hĈh AThQBh + Ĉ

∗
hDh

B∗hQAh +D∗hĈh B∗hQBh +D∗hDh − γ
2I

–
≺ 0.

All operators involved in this LMI have finite rank. We can
then use the techniques of [5, chap. 13], [34], to transform it
into the matrix-valued LMI of the proposition. We also use
the fact that ‖D(h)‖ increases monotonically with h, which
is easy to see [24].

Conjecture 1. The parameter-dependent LMI (7) can
be solved by sampling it at a finite number of values for
h. By continuity of the coefficients as functions of h, for
a sufficiently large number of sample points, the feasibility
of the sampled system and the parameter dependent system
are equivalent. More quantitative results could be obtained
by using a perturbation analysis of the matrix exponential as
in [12,31]. However we conjecture that it is in fact sufficient
to verify (7) for h = hu, i.e., the feasibility of the LMI for
h = hu implies the feasibility of the LMI for all 0 < h ≤ hu.

The behavior of the gain-bound of ∆ ◦ F as a function
of hu is illustrated on Fig. 5. The linear scaling of the
bound for F = 1/s (see (4)) seems to be particularly useful
for nominal systems that tolerate only a small value of hu,
whereas using a stable filter F is more useful for systems
that tolerate relatively larger inter-sampling times.

4. EXAMPLE
Consider the control system shown on Fig. 6, where P is

the linear system

ẋ =

24−1.01887 0.90506 −0.00215
0.82225 −1.07741 −0.17555

0 0 −20.2

35x+

24 0
0

20.2

35u
»
α
q

–
=

»
57.2958 0 0

0 57.2958 0

–
x.

Without the sample-and-hold blocks, this system is the con-
tinuous-time model of an aircraft pitch controller described
in [30]. Here α is the angle of attack and q the pitch rate.
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F=1/(s+1.5)
F=1/s (Mirkin)

Figure 5: L2-gain bound of (HS− I)◦F as a function
of hu, for F = 1/s [24], and F = 1/(s+1.5) (proposition
1).
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H2

H2
us

u

Figure 6: Mathematical model of a digital imple-
mentation of a pitch controller with multiple sam-
pling and control update rates.

A continuous-time design, which does not take into account
implementation effects, leads to a controller composed of 3
blocks

K1(s) =
k1

s
, K2(s) =

k2

s+ p2
, K3(s) = k3

k1 = 1.361, k2 = 0.807, p2 = 10, k3 = 0.475.

In [30] a digital implementation of this controller is sug-
gested, where all sampling and hold devices are assumed to
be synchronized. A sampling period for all these devices
of 0.025s is proposed heuristically. We can now gain some
insight into the behavior of a more realistic implementation
with devices that are not synchronized and operate with dif-
ferent sampling rates, according to the discussion of section
2.

Let us consider the following digital implementation of
this controller. We neglect any network and computation
delay in this example, hence consider only uncertain sam-
ple and hold blocks. A single CPU implements digitally
the controllers K1,K2,K3, and the mathematical model of
the digital implementation is obtained by adding the sample
and hold blocks in the configuration shown on Fig. 6. The
sampling times for the three sample and hold devices are
denoted {t1k}, {t2k} and {t3k} respectively. This model can
represent the following implementation. The signals α and
q are sampled at times {t1k} and {t2k} respectively. There



are two scalar variables x1 and x2 that keep track of the in-
ternal states of the blocks K1,K2 respectively, and that are
stored together with the last time tx1, tx2 at which they were
updated. Additional variables ud and us store the current
value of the output of the dynamic and static parts of the
controller respectively. A first function f1 reads the latest
sample value of α, stores its time-stamp in tα, and updates
the value of x2 as described in Algorithm 3 by integrating
the dynamics of K2 since the last update of x2.

Algorithm 3 Function f1 for processing samples of α

1: (tmp, tα)← read input α()

2: x2 ← e−p2(tα−tx2)x2 + α
p2

(1− e−p2(tα−tx2))
3: α← tmp

4: tx2 ← tα

A second function f2 is in charge of requesting and pro-
cessing samples for the signal q. In addition, it performs an
integration step for K1, and updates the output by comput-
ing the output of the static controller K3 and combining it
with the current value ud of the output of the dynamic part of
the controller. The output port with the analog control sig-
nal changes value at the times {t2k} as well because compu-
tational delays are neglected, see subsection 2.1.2. Finally,
a third function f3 only updates the controller output, after
performing integration steps for the dynamic controllers ac-
cording to Algorithm 2. An output update can be requested
by the scheduler even if no new measurement sample was
collected, i.e., the update results only from the integration
of the the controller dynamics. However, since function f3
integrates the dynamics of the controller K2 in particular,
executing it at time t requires to discard any older available
sample of the signal α that has not yet been processed by
the function f1 at that time, as discussed in subsection 2.1.1.

Algorithm 4 Function f2 for processing samples of q

1: (tmp, tq)← read input q()
2: x1 ← k1(tq − tx1)q
3: q← tmp

4: us ← k3q

5: update output(ud + us)
6: tx1 ← tq

Algorithm 5 Function f3 for additional updates of the con-
troller output

1: t3 ← request time()

2: x2 ← e−p2(t3−tx2)x2 + α
p2

(1− e−p2(t3−tx2))

3: x1 ← k1(t3 − tx1)q
4: ud ← x1 + x2
5: update output(ud + us)
6: tx1 ← t3

7: tx2 ← t3

Using the L2-gain analysis outlined above, we can for ex-
ample verify at the control design stage that as long as the
scheduler can guarantee that the sequences {t1k}, {t2k}, {t3k}
satisfy hu,1 = 4s, hu,2 = 0.049s and hu,3 = 0.455s for ex-
ample, the system is stable. In particular, we require a rel-
atively faster update rate of the static controller output us
in order to guarantee stability. These values where obtained

using the setup shown on Fig. 7. The nominal closed-loop
system has 3 inputs w1, w2, w3 and 3 outputs z1, z2, z3, and
the pre-filters used are F1 = 1

s+1
, F2 = 1

s
, F3 = 1

s
. In addi-

tion to stability, performance measures expressed in terms of
input-output power gain can be studied in a straightforward
way.
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Figure 7: Setup for Robustness Analysis.

5. CONCLUSION
In this paper, we have discussed the use of robust con-

trol techniques based on input-output analysis to study the
effect of digital implementations on nominal controller de-
signs. The analysis of control laws implemented over net-
works is currently a very active area of research, and similar
resource constraint issues arise when one considers compu-
tational constraints. Input-output control techniques offer a
promising direction of research for the analysis of networked
and embedded control systems, due to the modular nature
of the approach. Starting from a particular nominal control
system design, a careful implementation respecting a few
rules can be modeled mathematically by adding decoupled
uncertainty blocks. Stability and performance guarantees
can then be obtained automatically using efficient compu-
tational methods for a set of allowable schedules, instead of
requiring the exact specification of the scheduler behavior
at the control design stage. Adding or removing uncertainty
blocks, corresponding to different implementation choices,
does not change the framework of the analysis. These as-
pects make the input-output approach a good candidate for
the development of automated tools, capable of certifying
the properties of a nominal control system design for a range
of realistic implementation platforms, thereby simplifying
subsequent system integration and update issues.
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