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Abstract— We consider the problem of optimizing the trajec-
tory of a mobile sensor with perfect localization whose task is to
estimate a stochastic, perhaps multidimensional field modeling
the environment. When the estimator is the Kalman filter,
and for certain classes of objective functions capturing the
informativeness of the sensor paths, the sensor trajectory op-
timization problem is a deterministic optimal control problem.
This estimation problem arises in many applications besides
the field estimation problem, such as active mapping with
mobile robots. The main difficulties in solving this problem are
computational, since the Gaussian process of interest is usually
high dimensional. We review some recent work on this problem
and propose a suboptimal non-greedy trajectory optimization
scheme with a manageable computational cost, at least in static
field models based on sparse graphical models.

I. INTRODUCTION

Mobile robots with sensing capabilities are rapidly be-
coming a critical asset for Intelligence, Surveillance, and
Reconnaissance (ISR) missions [1] and environmental mon-
itoring [2]. Improving their sensing performance requires
the development of path planning algorithms to design in-
formative paths. In turn, defining this sensing performance
requires a model of the underlying phenomenon of interest.
For a number of environmental monitoring applications,
such as ocean sampling [2], processing meteorological data
[3] or geostatistical data [4], environment models based on
collections of Gaussian random variables have long been
popular, in part due to the computational tractability of the
associated inference problems [5]. In robotics, probabilistic
models have also been proposed to create a stochastic map
of the environment of a robot [6]. Gaussian processes in
particular can be used to build this stochastic map as well
as model the uncertainty about the robot state and its sensor
measurements, and form the foundation of most approaches
to the Simultaneous Localization and Mapping (SLAM)
problem [7] [8].

Once a stochastic environment model has been chosen, it
becomes important to design trajectories for mobile sensing
platforms allowing them to take measurements that provide
as much information as possible about the hidden parameters
of the model. This design problem is close to certain prob-
lems studied under the names of optimal design of experi-
ments, active learning, or sensor management [9]–[11]. The
main complication introduced by mobile robotic networks
that is mostly absent from the classical sensor management
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problems, is that one can only indirectly control the sensor
configurations by modifying the robot state. Concretely,
whereas in radar management problems for example one
can assume that a sensor can switch instantaneously between
different targets of interest [12], for mobile robots we need to
design a path in the environment that is feasible for the robot,
a problem that in itself is the object of significant research
[13]. Nonetheless, the trajectory optimization problem to
improve the estimate of a stochastic map (potentially coupled
with the robot localization problem to obtain the active SLAM
problem) has received significant attention in recent years
[2], [10], [14]–[36]. We review the literature that is closest
to our problem formulation in later sections.

This paper is organized as follows. Section II describes a
general model of the environment based on Gaussian Markov
random fields. Such an environment model typically involves
a large number of variables. We review some important facts
about the consequence of natural conditional independence
assumptions about these variables on the sparsity pattern
of the information matrix of the field (the inverse of the
covariance matrix). Section III introduces the mobile sensor
model and a class of objective functions which allows the
formulation of the sensor trajectory optimization problem to
be formulated as a deterministic optimal control problem.
This feature depends critically on the properties of the
Kalman filter and has been exploited since the early work
on sensor management problems [37]. In section IV, we
describe possible approaches to the trajectory optimization
problem. We illustrate the drawbacks of the greedy heuristic,
which is the most frequently used, in numerical simulations
presented in section IV-E. To improve on this heuristic, we
note that the deterministic nature of the optimal control
problem allows us to solve the problem using a value
iteration scheme progressing forward, which has critical
computational advantages in such high-dimensional state
spaces. We propose a heuristic to reduce the dimension of
the space over which we execute the dynamic programming
algorithm to the dimension of the robot state space. We
provide some analysis of this heuristic and briefly show its
performance in the numerical simulations.

II. ENVIRONMENT MODELING

A. Gaussian Markov Random Fields

In this paper, we model the environment in which the
robot (also described hereafter as the mobile sensor) evolves
as a time-varying Gaussian Markov random field (GMRF)
{φt(s)}s∈D, t = 0, 1, . . . , tf , where tf is the time horizon,
and D is a discrete set. Hence for each t, φt is a Gaussian



vector, and the components φt(s) for s ∈ D are also allowed
to be vector valued. Typically, the partition specified by
the set D is related to certain conditional independence
assumptions made in the model, as explained below. In
the sensing applications mentioned in the introduction, s
typically represents a position on a spatial grid, whereas in a
SLAM problem it can be the index of an obstacle or “feature”
in the environment. In the latter case φt(s) could then be the
position and orientation in the plane of a moving-obstacle at
time t, a 3-dimensional vector.

In some fields of spatial statistics, for example geostatis-
tics, weather prediction or ocean modeling, models using
Gaussian processes (GPs) with D a continuous space arise
frequently, see e.g. [4], [38], [39], and have been used in
the context of active sensing with mobile robots [2], [22],
[24], [28], [35]. However, the model is usually reduced to
a finite-dimensional model similar to ours by considering
a discrete set of locations of interest, including a discrete
set a measurements along the robot trajectories. Moreover,
even if the basic environment model is specified in terms
of a continuous space GP, there are known techniques to
approximate it by a discrete GMRF [40], [41]. A potential
drawback of the approach based on continuous-space GPs
however is that they are specified using covariance functions,
whereas information matrices (the inverses of covariance
matrices) have often useful properties for modeling (using
the graphical model formalism [5]), numerical analysis [41],
[42] and sensor fusion in multi-sensor systems [43]. Note
finally that some methods in spatial statistics which have
been used in the context of robotic sensing networks, such
as Kriging [2], [4], [24], [38], do not make any Gaussian
assumption about the field but require the estimator to be
linear in the measurements. In this case the filtering equations
are identical to the ones used in this paper for the optimal
filter with the Gaussian assumption (Kalman filter).

The dynamics of the environment model are assumed to
be linear

φt+1 = Atφt + wt, (1)

where At is a matrix of appropriate dimensions, and the
noise wt is Gaussian with covariance matrix E(wtw′t) =
Wt δ(t − t′). We assume here that the mean of [φt(s)]s∈D
for t fixed is known and taken without loss of generality to
be 0. Indeed adding a known deterministic process to the
model (1) has no influence on the path planning problem
if the performance measure is intended to only reflect the
estimate uncertainty, as will be the case in this paper. The
initial covariance matrix Σ0 := Var(φ0) is known.

B. Basic Properties of GMRFs

Fixing the time t = 0, the vector {φ0(s)}s∈D is jointly
Gaussian φ0 ∼ N(0,Σ0). Assuming that Σ0 is nonsingular,
we can work instead with the information matrix Ω0 = Σ−1

0 .
We drop the subscript indicating time t = 0 in this section,
so that we write φ,Σ,Ω. An important fact, which does
not play a role in the formulation of the problem below
but only in its numerical solution, is that problem modeling

using GMRFs tends to involve information matrices Ω that
are sparse (whereas Σ is not) if the interactions between
features of the environment are local. The origin of this
assumption is based on the following facts. We capture the
structure of the Gaussian density p(φ) ∝ exp{− 1

2φ
TΩφ}

by an undirected graphical model. This is an undirected
graph G = (V, E), i.e., with set of vertices V and set of
edges E , with |V| = |D| and where vertex s is associated to
the subvector φ(s). For a GMRF this graph captures certain
conditional independence assumptions, namely, conditional
independence is associated with graph separation. If R,S, T
are subsets of V and S separates R and T (i.e., there is no
path between R and T that does not pass through S), then
φ(R) and φ(T ) are conditionally independent given φ(S)
(here φ(A) for A ⊂ V denotes the vector {φ(s)}s∈A). The
neighborhood of a node s of the graph is defined as Ns =
{t ∈ V|(s, t) ∈ E}. Hence we have immediately the Markov
property p (φ(s)|φ(V \ {s})) = p (φ(s)|φ(Ns)) . We use the
notation φ(−A) := φ(V \ {A}) for A ⊂ V , and simplify to
φ(−s) := φ(−{s}) if A = {s}. So more generally, if we let
NA =

⋃
s∈A(N (s)\A) be the neighborhood of the subset A

of nodes, then p (φ(A)|φ(−A)) = p (φ(A)|φ(NA)) . Hence
we can use the graph formalism to specify the conditional
independence relationships of a set of Gaussian random
variables. Moreover, these relationships are reflected in the
sparsity pattern of the information matrix Ω (see e.g. [44],
[5, prop. 2.1]). To see why, consider for simplicity the case
where φ(s), φ(t) are scalars. Then the conditional canonical
correlation coefficient of φ(s) and φ(t), conditioned on their
local neighborhood φ(N{s,t}) is

ρst|N{s,t} =
cov[φ(s), φ(t)|φ(N{s,t})]√

Var[φ(s)|φ(N{s,t})]Var[φ(t)|φ(N{s,t})]

=
−Ωst√
ΩssΩtt

, (2)

where in general we denote by Ωst the block (s, t) of the
matrix Ω (and Ωst is a scalar for φ(s) and φ(t) scalars).
A similar formula holds for multidimensional variables
φ(s), φ(t) [5]. If (s, t) /∈ E then N{s,t} separates s and
t, which therefore must be conditionally independent, and
this is equivalent to Ωst = 0 by (2). Hence conditional
independence assumptions, typically made based on the local
nature of certain environmental phenomena, translate directly
into a sparse information matrix.

Because ultimately the numerical procedures for inference
and trajectory optimization involve computations with the
covariance or information matrix, sparsity patterns in these
matrices are important. The fact that covariance matrices are
not sparse in general can be seen with the simple example of
a one-dimensional Gaussian autoregressive process φ(0) =
0, φ(s+1) = λφ(s)+w(s), where the w(s) are independent
and identically distributed standard normal random variables
and |λ| < 1. It is desirable that such a simple model captures
some notion of local interactions in the one-dimensional
field. Indeed the associated graphical model is just a line
graph and so Ωij = 0 for |i − j| ≥ 2, i.e., the information



matrix is tridiagonal. However, the covariance matrix is full,
namely we have Σij = 1

1−λ2λ
|i−j|. One can try to truncate

this covariance matrix [24], [35], [45], but the probabilistic
interpretation of this approach is not clear, and one must
then be careful to maintain positive-definiteness of the sparse
version of the covariance matrix.

Finally, this section has focused on the case of static fields,
and numerical examples are provided in section IV-E. An
important research direction is to understand how to maintain
sparse models for time-varying fields [42].

III. PERFORMANCE CRITERION FOR TRAJECTORY
OPTIMIZATION

The (possibly time-varying) Gaussian stochastic map de-
scribed in the previous section is a model of the environment
in which our mobile measurement system (or robot) evolves.
This measurement system is a controlled dynamical system
xt+1 = ft(xt, ut), where the state xt is assumed perfectly
known in this paper. Potentially, the state xt can be parti-
tioned to represent the state of several robots. There is a
control signal u0, . . . , utf−1 available to steer the vehicle.
The robot can take measurements y1:tf := [yT1 , . . . , y

T
tf

]T ,
and we assume a measurement model which is linear in
the state of the environment: yt = Ct(xt)φt + vt, where
the noise vt is Gaussian with covariance matrix E[vtvt′ ] =
Vt(xt)δ(t − t′). Here the matrices C(xt) and V (xt) can
depend nonlinearly on the state of the robot, and typically
reflect the fact that the robot can sense only the part of
the map that is close to its position. The random vector φt
given a set y1:t of these linear measurements is still Gaussian
with information matrix Ωt = Σ−1

t , which can be computed
recursively using the information filter

Ω̄t = (At−1 Ω−1
t−1A

T
t−1 +Wt−1)−1 (3)

Ωt = Ω̄t + Ct(xt)TVt(xt)−1Ct(xt). (4)

Note that Ω̄t is the conditional information matrix of φt given
the measurements y1:t−1. The conditional mean of φt given
y1:t can also be computed recursively via the Kalman filter
equations but will not play a role in this paper.

We would like to maximize some performance measure
reflecting the quality of the measurements taken by the mo-
bile sensor. There are a variety of design criterions proposed
in the literature on optimal experiment design [10] and for
concreteness we choose one of them which is theoretically
appealing. We wish to maximize the mutual information [46]
between the field state and the measurements. Recall that
the entropy of a normal random vector of dimension n, with
normal distribution N(µ,Σ) with mean µ and covariance
matrix Σ, is given by

H(N(µ,Σ)) =
n

2
ln(2πe) +

1
2

ln |Σ|, (5)

where |Σ| denotes the determinant of Σ (hence entropy is
independent of the mean of the Gaussian). Also, if x is
Gaussian with distribution N(µ,Σ), Ω = Σ−1 and z =

Cx+ v with v Gaussian N(0, V ) independent of x, we can
write the mutual information between x and z as

I(x; z) =
1
2

ln
|Ω + CTV −1C|

|Ω|
. (6)

Then maximizing the mutual information between the field
state over time and the measurements along a trajectory
of the robot is maximizing I(φ1:tf ; y1:tf ), with φ1:tf :=
[φT1 , . . . , φ

T
tf

]T . We could more generally replace φt by
φt(L), for L ⊂ D a subset of the field locations. By our
Markov assumptions and the chain rule of mutual informa-
tion, we can write (see e.g. [11, p.43]) I(φ1:tf ; y1:tf ) =∑tf
t=1 I(φt; yt|y1:t−1). Now using (5) or (6) we get

I(φt; yt|y1:t−1) = H(φt|y1:t−1)−H(φt|y1:t)

=
1
2
(
ln |Ω̄t + Ct(xt)TV −1

t (xt)Ct(xt)| − ln |Ω̄t|
)
.

Hence

I(φ1:tf ; y1:tf ) =
1
2

tf∑
t=1

(
ln |Ω̄t + CTt V

−1
t Ct| − ln |Ω̄t|

)
.

(7)
In particular if the field is static (At = I,Wt = 0 for all t),
we have Ω̄t = Ωt−1 and so

I(φ1:tf ; y1:tf ) = I(φ0; y1:tf ) =
1
2

(ln |Ωtf | − ln |Ω0|).

Other measures of information can be used, such as the
trace of the covariance matrix [10], [17]. More generally, we
can try to optimize an objective function of the form

max J(Ω0, x0) =
tf−1∑
t=0

rt(Ωt, xt, ut) +R(Ωtf , xtf ). (8)

over all control policies u0, . . . , utf−1. Here rt(Ω, x, u) and
R(Ω, x) are immediate and terminal rewards respectively.

IV. CLOSING THE LOOP

A. Active Mapping

We can now consider the active mapping problem with
perfect localization. Most of the related literature in robotics
focuses on the filtering problem in the presence of measure-
ments nonlinear in the state of the map [42], and on the robot
localization problem in the presence of uncertain dynamics,
which are not considered here. The design of the control
inputs is usually not considered and assumed to be provided
by an operator. Even for a robot with perfect localization and
linear measurements however, the design of a control policy
which optimizes an information criterion such as (7) is a
challenging task. Given an initial information matrix Ω0 and
an initial state for the robot x0, the optimization problem to
solve is of the form

maxπ J(Ω0, x0) =
tf−1∑
t=0

rt(Ωt, xt, ut) +R(Ωtf , xtf ) (9)

subject to Ωt = (At−1 Ω−1
t−1A

T
t−1 +Wt−1)−1

+ Ct(xt)TVt(xt)−1Ct(xt) (10)
xt = ft(xt−1, ut−1),Ω(0) = Ω0, x(0) = x0, (11)



where the optimization is over all control policies π =
u1, . . . , utf−1. Note that (9) is a deterministic optimal control
problem. This is a consequence of our assumption that
the stochastic map dynamics are linear Gaussian, that the
measurements are linear in φt with Gaussian noise, and of
the fact that our objective does not depend on the actual
estimated value of the field but only on the information
(or covariance) matrix. This fact has been exploited since
the early work on sensor management [9], [37]. Note that
in robotics, except for the SLAM problem, maps are often
based on “occupancy grids” [8, chap. 9], where the presence
of obstacles is modeled as binary random variables. In this
framework, active mapping requires solving a stochastic
control problem (say, using POMDP techniques [47]), which
is potentially more difficult.

The continuous time problem corresponding to the map-
ping problem (9) is

maxu(·) J(Ω0, x0) =
∫ tf

t=0

r(t,Ω, x, u)dt

+R(Ω(tf ), x(tf )) (12)
subject to

Ω̇ = −ΩA−ATΩ− ΩWΩ + C(x)TV −1(x)C(x), (13)
ẋ = f(t, x, u),Ω(0) = Ω0, x(0) = x0,

where the continuous-time Riccati equation (13) replaces the
discrete-time version (10).

B. The Greedy Policy

In order to solve the active mapping problem (9) (or its
continuous time version), the greedy policy is often used, see
e.g. [16], [18], [23], [25], [35]. The greedy policy consists
in choosing in state (Ω, x) at time t the control ut which
maximizes the immediate reward rt(Ω, x, u) in (9). For the
objective (7), the greedy policy therefore is chosen as

ut(Ω, x) ∈ arg max
u∈Ut(x)

(
ln |Ω̄ + CTt+1(u)V −1

t+1(u)Ct+1(u)|

− ln |Ω̄|
)

where Ω̄ = (At−1 Ω−1ATt−1 + Wt−1)−1 and by a slight
abuse of notation Ct(u) := Ct(ft(x, u)) and Vt(u) :=
Vt(ft(x, u)). The set Ut(x) denotes the controls available
at time t when the robot is in state x. Grocholsky [16]
uses a continuous-time version of the greedy policy for this
objective function. Other heuristic approaches have been
proposed. For example in [2], instead of using the greedy
policy, the sensing vehicles are constrained to move along
ellipses whose parameters are optimized.

C. A Solution using Forward Value Iteration

Sim and Roy [17] have discussed the benefits of devel-
oping better policies than the greedy policy for the active
SLAM problem, and the same is true for the simpler mapping
problem (9) with perfect robot localization. In [29], the
author proposes to use the maximum principle to solve
the continuous time problem (12) (using the formulation

in terms of covariances). This requires solving a two-
point boundary value problem of the size of the joint state
(Ω, x), an approach which is unlikely to scale to realistic
field models. Moreover, the procedure is not guaranteed a
priori to converge to a global optimum. In [34], [36] the
authors parametrize the control history using a piecewise
linear function and optimize the parameters by solving a
nonlinear program. Note that optimal control approaches for
the simplified version of this problem which arises in sensor
management has a long history, see e.g. [9].

In general, the main bottleneck for computations is the
large dimension of the state Ωt in (9). Suppose that φt
is a d dimensional vector, then Ωt ∈ RN , N = d(d+1)

2 .
In discrete time, the simplest approach to solving (9) is to
use dynamic programming and in particular backward value
iteration. This would require discretizing this N dimensional
state space, which is not practical for most purposes. For
example, considering a scalar field over a relatively small
grid of 50×50 points, we have d = 2500, N > 3 ·106 and if
each real valued entry of the information matrix is quantized
over n bits, the size of the discrete state space used for the
computations is then (2n)N ! Even if Ωt turns out to be sparse
and belongs in fact to a subspace of dimension of order d
(i.e., in section II-B each node in the graph has a small
number of neighbors), we cannot hope to handle realistic
problems by general numerical methods simply relying on
discretization. However, we can take advantage of the fact
that (12) is a deterministic problem to solve it instead using
an alternative version of value iteration which progresses
forward in time [13], [48], and which is not available to
solve stochastic control problems. Alternatively, this forward
version of value iteration could also be replaced by general
purpose shortest path algorithms [48]. This approach has
in fact been used together with additional heuristics in the
active SLAM problem [17] and in a problem complementary
to (9) which considers the robot localization problem in a
perfectly known environment [49], [50]. As soon as robot
localization is introduced however, the problem becomes
dependent on the actual measurement values obtained by the
sensors, and we face a stochastic optimal control problem.
In [17], [49], [50], the problem is approximated and reduced
to a deterministic problem by neglecting the deviations of
the vehicle from its mean trajectory for the purpose of
planning. It is important therefore to develop first good
solution methods for the simpler problem (9), which can later
serve as base heuristics for more complicated scenarios, in
particular involving uncertain robot dynamics.

The main advantage of the forward version of value
iteration for this problem is that we can build the set of
reachable information matrices progressively starting from
the initial state, and consider only this reachable subspace,
instead of discretizing the space of all information matrices
as the backward version of the algorithm would require.
The algorithm constructs iteratively a graph containing the
reachable space. We start with the initial node corresponding
to the initial state (x0,Ω0). From this node, there are arcs
for each possible control values u0, which lead to nodes



corresponding to the state values (x1,Ω1) reachable at time
t = 1. The graph can be organized in stages, with one stage
for each time period. Starting from each node corresponding
to a reachable value of (xt,Ωt), there is one arc for each
control value ut leading to a node of stage t+1 corresponding
to the value (xt+1,Ωt+1) obtained from the dynamics (10),
(11). Let us denote these dynamics more succinctly by the
difference equation (Ωt, xt) = Ft(Ωt−1, xt−1, ut−1). Let
St be the set of states (Ω, x) reachable at time t from
(Ω0, x0) by some control policy. Also, let Ut(xt) be the set
of available controls at time t when the robot is in state xt,
and let Ut = ∪x∈St

Ut(x). Next, define for all (Ω, x) ∈ St

F−t (Ω, x) = {(Ω̂, x̂, û) ∈ St−1×Ut−1|Ft(Ω̂, x̂, û) = (Ω, x)},

the set of state-control pairs which can reach (Ω, x). These
sets can be built while building the graph above. The forward
value iteration algorithm computing the optimal value of
J(Ω0, x0) is described in algorithm 1.

Algorithm 1 Forward Value Iteration
V0(Ω0, x0) = 0
for all u ∈ U0(x0) do
S1 ← S1 ∪ {F0(Ω0, x0, u0)}

end for
for all 1 ≤ t ≤ tf − 1 do

for all (Ω, x) ∈ St do
for all u ∈ Ut(x) do
St+1 ← St+1 ∪ {Ft(Ω, x, u)}

end for
Vt(Ω, x) = max(x̂,Ω̂,û)∈F−t (Ω,x){rt−1(Ω̂, x̂, û) +
Vt−1(Ω̂, x̂)}

end for
end for
for all (Ω, x) ∈ Stf do
Vtf (Ω, x) = max(x̂,Ω̂,û)∈F−tf

(Ω,x){rtf−1(Ω̂, x̂, û) +

R(Ω, x) + Vtf−1(Ω̂, x̂)}
end for
J(Ω0, x0) = max(Ω,x)∈Stf

Vtf (Ω, x).

D. Heuristic Pruning in the Forward Value Iteration Algo-
rithm

Even though the forward value iteration algorithm avoids
considering the part of the state space that is not reachable,
its complexity is still too high for most problems and all but
very short time horizons. Indeed, the conditional information
matrix Ωt obtained at period t by a robot reaching state xt
depends essentially on the whole path x0, x1, . . . , xt, not just
on the value of xt. Hence the number of nodes (Ω, x) at stage
t grows essentially as the number of feasible paths of length t
in the state space of the robot. We can reduce the complexity
of the algorithm by considering the following heuristic,
which reintroduces a degree of myopia in the algorithm. At
stage t of the forward value iteration algorithm, for a given
value of the robot state xt = x̃, we discard all state values

(Ω, x̃) ∈ St except the one which achieves the maximum of
Vt(Ω, x̃) over the different information matrices Ω which can
be obtained by the different robot paths terminating in state x̃
at time t. This way, we ensure that the number of nodes in the
graph at stage t remains bounded by the number of reachable
vehicle state values xt. Denote by G = (V, E) the graph built
by the complete forward value iteration algorithm. That is,
the nodes V at stage t correspond to the reachable values
of the state (Ωt, xt), and the arcs E to the available control
actions. Let Ĝ = (V̂, Ê) be the pruned graph. A node in Ĝ at
stage t can be represented simply by the value of the robot
state xt.

In the rest of this section, we discuss the performance
of the pruning heuristic in more details. Consider a path
P = (Ω0, x0), (Ω̃1, x̃1), . . . , (Ω̃tf , x̃tf ) in the graph G. We
let t0 = 0 and define recursively the blocking times for this
path to be,

tk = min{t : tf ≥ t > tk−1 and (x̃t−1, x̃t) /∈ Ê}, (14)

for all k ≥ 1 for which the set is nonempty. That is, tk
is the kth time where we find that there is no edge from
x̃t−1 to x̃t in Ĝ. This can happen when there is another state
(Ω′t, x̃t) in G such that Vt(Ω′t, x̃t) > Vt(Ω̃t, x̃t) so that the
state (Ω̃t, x̃t) is removed from Ĝ. Let m be the maximum
index k for which tk is defined, and note that m ≤ tf .

Let us now consider the specific objective function (7), i.e.,
we wish to maximize I(φ1:tf ; y1:tf ). We define the following
notation. First, the objective function is completely deter-
mined by the trajectory of the robot x0:tf := x0, x1, . . . , xtf .
For simplicity of notation, we write I(x1, . . . , xtf ) :=
I(φ1:tf ; y1:tf ), for the measurements y1:tf obtained along
the trajectory x0:tf . Similarly, we write for the conditional
mutual information I(xt+1:t′ |x1:t) := I(φ1:tf ; yt+1:t′ |y1:t)
Next, consider an optimal vehicle trajectory x0, x

∗
1, . . . x

∗
tf

,
i.e., maximizing the objective function (7). Let t1, . . . , tm
be the blocking times (14) for this optimal trajectory. We
have, by definition of the first blocking time and by the
construction of Ĝ

I(x∗1, . . . , x
∗
t1−1, x

∗
t1) ≤ I(x(1)

1 , . . . , x
(1)
t1−1, x

∗
t1), (15)

where x
(1)
1 , . . . , x

(1)
t1−1, x

∗
t1 is a feasible path through the

graph Ĝ, which terminates in the same vehicle state as the
optimal path at time t1. Next,

I(x(1)
1:t1−1, x

∗
t1 , x

∗
t1+1:t2) ≤ I(x(2)

1 , . . . , x
(2)
t2−1, x

∗
t2),

for some path x(2)
1 , . . . , x

(2)
t2−1, x

∗
t2 feasible in Ĝ. That is, by

the chain rule for mutual information,

I(x
(1)
1:t1−1, x

∗
t1) + I(x∗t1+1:t2 |x

(1)
1:t1−1, x

∗
t1) ≤ I(x

(2)
1:t2−1, x

∗
t2).

Similarly, for k ≤ m− 1,

I(x(k)
1:tk−1, x

∗
tk

) + I(x∗tk+1:tk+1
|x(k)

1:tk−1, x
∗
tk

)

≤ I(x(k+1)
1:tk+1−1, x

∗
tk+1

), (16)



and finally

I(x(m)
1:tm−1, x

∗
tm) + I(x∗tm+1:tf

|x(m)
1:tm−1, x

∗
tm)

≤ I(x(m+1)
1:tf−1, x

∗
tf

). (17)

Here for each 1 ≤ k ≤ m+ 1, the path x(k)
1 , . . . , x

(k)
tk−1, x

∗
tk

,
with the convention tm+1 = tf , is feasible in Ĝ and
terminates at a state of the optimal vehicle trajectory. Now
define, for 1 ≤ k ≤ m,

∆(k) = I(x∗tk+1:tk+1 |x
∗
1:tk−1, x

∗
tk

)− I(x∗tk+1:tk+1 |x
(k)
1:tk−1, x

∗
tk

)

Let x0, x̂1, . . . x̂tf be the path returned by the pruned
forward value iteration algorithm, and Î be the corresponding
value for the mutual information. Then we have

Proposition 1: Î ≥ I∗ −
∑m
k=1 ∆(k).

Proof: Recall our convention tm+1 = tf . By the chain
rule for mutual information, we have

I∗ = I(x∗1:t1) +
m∑
k=1

I(x∗tk+1:tk+1
|x∗1:tk

)

= I(x∗1:t1) +
m∑
k=1

∆(k) +
m∑
k=1

I(x∗tk+1:tk+1
|x(k)

1:tk−1, x
∗
tk

)

(a)

≤ I(x(m+1)
1:tf−1, x

∗
tf

) +
m∑
k=1

∆(k)

(b)

≤ Î +
m∑
k=1

∆(k).

Inequality (a) is obtained by summing (15), (16) and (17).
Inequality (b) holds because the path x0, x

(m+1)
1:tf−1, x

∗
tf

is a
path in the graph Ĝ and Î is the maximal value of mutual
information which can be obtained over such paths.

Although proposition 1 does not provide an approximation
guarantee for the pruned value iteration algorithm, it sheds
some light on the conditions under which we should expect
the heuristic to perform well. Essentially, the term ∆(k)

remains small if changing the subpath x∗1:tk
of the optimal

trajectory by the subpath x(1)
1:tk−1, x

∗
tk

feasible in Ĝ does not
impact too much the value of the subsequent measurements
on the optimal trajectory for tk + 1 ≤ t ≤ tk+1. Obtaining
better performance bounds is the subject of current research.

E. Numerical Simulations

We briefly present some numerical simulations illustrating
the performance of the pruned value iteration algorithm with
respect to the greedy heuristic. The examples considered
involve static fields, and the sites D correspond to a regular
spatial grid. Fig. 1 and 2 show examples of trajectories
obtained using the greedy heuristic and the pruned forward
value iteration algorithm. The vehicle can take noisy mea-
surements of the field values at its current position and
its nearest neighbors, and can move at each period to its
neighboring positions on the grid, including the diagonals in
the two-dimensional case. In both cases, we see an important
drawback of the greedy policy, which remains trapped in

the first local region of relatively high variance encountered,
and fails to see that there are perhaps even more interesting
regions which it should explore instead during the limited
available time.
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(a) One-dimensional field
sample.
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(b) Trajectories for the greedy (dashed line)
and pruned value iteration heuristic. We
represent the position of the vehicle on the
line, as a function of time.

Fig. 1. One-dimensional Example. The greedy heuristic remains in the left
region of high variance, even though traversing the middle region of low
variance would allow the vehicle to access the region on the right which
turns out to be more rewarding.
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(a) Trajectory for the greedy policy.
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(b) Trajectory for the pruned value
iteration heuristic.

Fig. 2. Two-dimensional example for a 20 × 20 grid. The region in the
lower right corner is of highest variance and most rewarding for the sensor.
However, the greedy policy again remains trapped in the first region of
higher variance encountered, for the total duration of the mission.

V. CONCLUSION AND FUTURE WORKS

We have discussed the problem of informative path plan-
ning in Gaussian fields. This problem is currently moti-
vated by the deployment of mobile sensors, and by the
interest in developing robots which map their environment
autonomously. We have delineated essentially the simplest
problem in active sensing with mobile robots, for which
the trajectory optimization problem is deterministic. In this
problem, the robots are perfectly localized, the measurements
are linear in the state of the environment, and the objective
function does not depend on the actual values of the sensor
measurements, but only on their variance. Even for this
problem, computing an optimal trajectory is difficult for
realistic environment models, and more work in needed
to develop compact environment representations and de-
sign suboptimal trajectories with performance approximation
guarantees. Advances on this problem should be of interest
for more complex applications, such as active SLAM, by
providing sound base policies for the development of high-
performance heuristics.
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