
Sequential Composition of Robust Controller Specifications

Jerome Le Ny and George J. Pappas

Abstract— We present a general notion of robust motion
specification and a mechanism for sequentially composing
them. These motion specifications form tubular abstrac-
tions of the trajectories of a robot in different control
modes, and are inspired by the techniques available for the
design and analysis of low-level controllers. In particular,
characterizations of input to output stability with respect
to the disturbance inputs and trajectory tracking error
output provide a suitable parametrization of the tubes. We
also describe a randomized planner that composes different
motion specifications from a given database to guarantee
that any corresponding sequence of control modes steers
a robot to a given region while avoiding obstacles. The
main features of this compositional framework are that:
i) at the planning level, it does not require the integration
of the robot dynamics and the knowledge of how the con-
trollers operate, but only the specification of the tracking
performance achieved by these controllers. This enables a
rigorous separation of concerns between establishing the
feasibility of the high-level planning task and refining the
low-level controller designs; ii) it can account quantitatively
for robustness to unmodeled dynamics and various sources
of disturbance and sensor noise. In particular it can help
evaluate the impact of the sensing and actuation quality
on the overall feasibility of a task.

I. INTRODUCTION

Formalisms available for the analysis of cyber-
physical systems such as robotic systems, based for
example on hybrid automata mixing discrete events with
differential equations, are arguably unwieldy to use for
design purposes. System descriptions based on such
general formalisms often accidentally include undesired
behaviors complicating the analysis, such as Zeno phe-
nomena, and lead to ubiquitous state-space explosion
problems. To address the latter problem in particular,
increasing emphasis is being placed on compositional
design frameworks that allow one to build such systems
from components and derive system properties from the
separate analysis of the individual components.

In robotics and in particular motion planning, several
such compositional frameworks have been proposed,
including motion description languages (MDLs) [1], [2]
and the maneuver automaton [3], as well as the sequen-
tial composition of funnels [4]–[6] based on preimage

The authors are with the Department of Electrical and Systems
Engineering, University of Pennsylvania, Philadelphia, PA 19104,
USA jeromel, pappasg@seas.upenn.edu.

backchaining [7]. In these examples, a set of controllers
is available to execute specific atomic behaviors, and
one wishes to build more complex behaviors from these
atoms.

A drawback of the MDL framework however is that
it relies on the explicit knowledge of how the individual
controllers work, i.e., of what input they generate in
different part of the state space and as time evolves. As
a result, it is difficult to separate the task of composing
behaviors from the task of designing the individual con-
trollers, and analyzing high-level composed behaviors
still requires the complex integration of the dynamics
of hybrid automata. In contrast, the approach in [4] to
sequential composition of behaviors does not require the
knowledge of the specific controller designs, but only
of what the controllers achieve, namely local regulation
of the trajectories to certain points in the state space.
The framework is limited to the class of regulating
controllers however, and does not address quantitatively
certain issues, such as robustness to noise, disturbance,
and unmodeled dynamics.

In Section II, we introduce an abstract notion of
motion or controller specification and a mechanism for
sequentially composing such specifications. Essentially,
a specification defines a tube around a reference trajec-
tory describing how accurately a control mode tracks this
reference. Disturbances prevent perfect tracking, but the
role of a controller is to eventually bring the tracking
errors sufficiently close to zero. The funnels of [4] cor-
respond to the case with no external disturbance and all
reference trajectories consisting of fixed points. We also
specialize the definition to the important case of input
to output stability specifications, for which the robot
in each control mode is required to be input to output
stable [8] with respect to the disturbance inputs and the
tracking error output. This notion provides a suitable
concrete way of parametrizing the tubes, using standard
Lyapunov analysis techniques. Finally, the mechanism
for composing specifications describes how the tracking
errors change (typically increase) as we switch between
control modes.

Having defined a notion of control mode specification
and of sequential composition of such specifications,
we can then consider the general problem of searching

in the space of sequences of specifications for a plan
achieving a desired behavior. Section III focuses on one
fundamental such problem, where the goal is to steer
the robot from one region to another while avoiding
obstacles. This in fact a building block for more complex
specifications based on temporal logic for example. We
propose a planner to solve this problem, based on the
Rapidly-exploring Random Tree (RRT) algorithm [9].
Finally, in Section IV we discuss a detailed example
involving a curvature constrained vehicle moving among
obstacles using simple line tracking controllers.

II. ROBUST MOTION SPECIFICATIONS

A. Notation

For s ∈ R and a map t ∈ R 7→ F (t), we define
the time shifted map F s by F s(t) := F (t + s). P(X)
denotes the set of subsets of a set X . We denote the
Euclidean norm of a vector x by |x|. Bρ(x0) denotes
the Euclidean ball with center x0 and radius ρ ≥ 0.
Finally, we denote the sup norm of a signal t → w(t)
over the interval [0, t) by

‖w‖t := sup
s∈[0,t)

|w(t)|,

including ‖w‖∞ when t =∞ in the definition.

B. Motion Specifications

Consider a robot with dynamics described in local
coordinates by

ẋ = f(x, u, w), (1)
y = Hx, (2)

where x(t) ∈ X ∼= Rn is the robot state, u is a control
input, and w is a disturbance input, which can also
account for modeling errors. We wish to steer the output
y ∈ Y ∼= Rp (a linear transformation of the state) in
the obstacle free subset Yfree ⊂ Y. For example, y can
be a subset of the coordinates of x that are subject to
collision avoidance constraints. We assume that H is full
row rank.

We use a set of predesigned tracking controllers
to steer the robot. A control mode m consists of a
reference trajectory t 7→ rm(t) ∈ X, together with a
controller Km specifying the input u(·) as long as the
mode is engaged. The controller is designed so that the
state x tracks rm and hence the output y tracks the
signal Hrm. In some cases, only an output reference
trajectory yref,m could be specified and then we can
typically define rm = H†yref,m, where H† is the
Moore-Penrose pseudo-inverse of H , see [10, chap. 4].
In addition, a particular control setup can introduce
additional disturbances denoted νm, e.g., measurement

noise. Hence a control mode is also associated to a
particular disturbance signal wm = [wT , νTm], possibly
of larger dimension than the open-loop disturbance w.

For planning purposes, we only rely on certain per-
formance specifications for a controller and not on the
knowledge of the actual controller design or implemen-
tation. More precisely, we need the following data for a
given control mode.

Definition 1: A motion specification for a control
mode m engaged on the interval [tm, t

′
m) is a tuple

σm = (rm,Cm, Em,Zm,Dm) where
1) rm : R+ → X is called the reference trajectory

for the motion. We then define the tracking error
em : R+ → X by em(t) = xtm(t) − rm(t), 0 ≤
t ≤ t′m − tm.

2) Cm ⊂ X is called the enabling condition and one
must have em(0) ∈ Cm.

3) Em : R+ → P(X) is a set-valued function of time,
satisfying Cm ⊂ Em(0) and em(t) ∈ Em(t) for all
0 ≤ t ≤ t′m − tm.

4) Zm : R+ → P(Y) is a set-valued function of time,
satisfying Hem(t) ∈ Zm(t) for all 0 ≤ t ≤ t′m −
tm.

5) Dm is a set of of admissible disturbance signals for
the mode, equipped with a norm ‖ · ‖Dm .

In other words, a motion specification represents the
tracking performance of a controller for a specific refer-
ence trajectory. There is an enabling condition that must
be met by the robot state in order to start the motion.
The sets Em(t) and Zm(t) represent the tracking errors
in the state and output space respectively. Note that we
can always choose Zm(t) = HEm(t) in Definition 1-
4). The reason for a separate definition is that one can
sometime get a better estimate for the output tracking
error than for the state tracking error. The next sub-
section provides more concrete representations of these
tracking error sets. Next, we introduce a mechanism
for sequentially composing motion specifications and
specifying the propagation of the tracking error.

Definition 2: Two motion specifications σm1
, σm2

for
two modes m1 and m2 can be sequentially composed
after a time d1 in mode m1, denoted

σm1 Bd1 σm2 ,

if they satisfy

rm1(d1) + Em1(d1) ⊂ rm2(0) + Cm2 .

In this case, we define the tracking error transition map
τd1σm1

,σm2
: P(X)× P(Y)→ P(X)× P(Y) by

τd1σm1
,σm2

(Em1
(d1),Zm1

(d1)) = (Em2
(0),Zm2

(0)).

Hence two motion specifications can be sequentially
composed after duration d1 in mode m1 if we know with
certainty that mode m1 steered the state close enough
to r2(0) in order to engage mode m2. In this case, the
transition map transforms the set of possible tracking
errors for mode m1 at the time of switching to an initial
set of possible tracking errors for mode m2. Finally, the
planning problem that we address in this paper is the
following.

Problem 1: Given a set S ⊂ X of possible initial
states x(0) for the robot, and a set G ⊂ Yfree of
desired outputs to reach, given a family F of motion
specifications, does there exist K ∈ N and sequences
σm0

, σm1
, . . . σmK

∈ F and d0, . . . , dK−1 ≥ 0 such
that

1) S ⊂ Cm0
,

2) σmi
Bdi σmi+1

, 0 ≤ i ≤ K − 1,
3) Hrmi

(t) + Zmi
(t) ∈ Yfree, for all 0 ≤ i ≤ K −

1, 0 ≤ t ≤ di (i.e., collisions are avoided),
4) HrmK

(dK) + ZmK
(dK) ⊂ G.

That is, we are looking at the planning level for a
sequence of specifications which is guaranteed to lead
from a starting region to a goal region while keeping
the output in the obstacle free space Yfree.

C. Input to Output Stability Specifications

The previous subsection defines motions specifica-
tions in abstract set-theoretical terms. In practice, we
need to instantiate Definition 1 to versions that are
computationally more convenient and motivated by the
tools available for the analysis and design of controllers.

If some control mode m with a controller Km track-
ing a known continuously differentiable trajectory t →
rm(t) ∈ X is engaged from time tm onward, the closed-
loop system follows the dynamics, for t ≥ 0,

ξ̇m = fm(t, ξm, wm), em(0) ∈ Cm, (3)
zm := y −Hrm = Hem, wm ∈ Dm (4)

where em denotes the tracking error as in Definition 1
and the state of the closed-loop system ξm = [eTm, ζ

T
m]T

includes the state ζm of the controller Km. The distur-
bance signal is wm = [wT , νTm] as explained above.

Example 2.1: Consider a dynamic controller with er-
ror feedback,

ζ̇m = η(ζm, h(em) + νm)

u = θ(ζm),

where νm is a noise contaminating a tracking error
measurement h(em). Then we have for the closed loop

system

ėm = f(em + rm, θ(ζm), w)− ṙm
ζ̇m = η(ζm, h(em) + νm)

zm := Hem,

which is of the form (3), (4), since since rm, ṙm are
known functions of time.

A convenient requirement for the control modes is that
the closed-loop dynamics (3) in each mode be input to
state stable (ISS) or input to output stable (IOS) [8],
[11]. We use the following terminology. A function γ :
[0,∞) → [0,∞) is of class G if it is continuous, non-
decreasing and satisfies γ(0) = 0. It is of class K if it
is of class G and strictly increasing. GL (resp. KL) is
the class of functions [0,∞)2 → [0,∞) that are of class
G (resp. K) on their first argument and decrease to zero
on their second argument.

For a given mode m with dynamics (3), let us assume
available a set of J inequalities of the form

|gi(em(t))| ≤ max{βim(|ξm(0)|, t), γim(‖wm‖t)}, (5)

for all t ≥ 0, em(0) ∈ Cm, wm ∈ Dαm = {w|‖w‖∞ ≤
α}, and i = 1, . . . ,K, where βim are GL functions
and γim are of class G. In other words, the closed-
loop system in mode m is locally input to output stable
[8] with respect to the input disturbance wm and the
outputs gi(em), i = 1, . . . , J , with the minor variation
that we use functions of class G and GL instead of K
and KL in the definition. These inequalities can be used
to give a representation of the set-valued maps Em, Zm
of Definition 1.

The ISS and IOS notions [8], [11] are typically used
to study asymptotic stability properties of nonlinear
systems. The function βm characterizes the transient
regime of the mode, and the quantity γm(‖wm‖∞)
the steady-state tracking error. Here however, we use
the functions βm, γm to abstract the dynamics of the
robot over finite time intervals. Hence special cases of
the general definition are useful for computations. Of
particular interest are functions βm of the exponentially
decreasing form

βm(ξ, t) = km(ξ)e−λmt,

where km is a function of class G, for example km(ξ) =
k0,m |ξ|. Assuming that the functions km and γm admit
finite dimensional parametrizations, they can be stored in
memory together with the decay rate λm. This provides
a finite-dimensional abstraction of the closed-loop dy-
namics of mode m, including the effect of perturbations.
The main advantage of using characterizations of the
form (5) for computations is that Lyapunov analysis

techniques are available to derive such bounds, see
Section IV for an example.

Example 2.2: Suppose that we only have the follow-
ing two such inequalities for each motion specification.
The first bounds the Euclidean norm of the state tracking
error

|em(t)| ≤ max{β1
m(|ξm(0)|, t), γ1m(‖wm‖t)}. (6)

The second bounds the Euclidean norm of the output
tracking error

|zm(t)| ≤ max{β2
m(|ξm(0)|, t), γ2m(‖wm‖t)}, (7)

assuming it is less conservative than using |Hem| ≤
‖H‖|em| in (6). In this case, rm(t) + Em(t) and
Hrm(t) + Zm(t) are Euclidean balls around the ref-
erences rm(t) and Hrm(t) respectively.

Consider now the transition between two motion
specifications σm1

and σm2
, where σm1

is followed
for a duration d1. From the first inequality (6), we get
a bound of the form |x(t1 + d1) − rm1(d1)| ≤ ρ1,
where t1 is the time at which mode m1 is engaged. If
Bρ1(rm1

(d1)) ⊂ rm2
(0)+Cm2

, we can conclude that the
modes can be sequentially composed. Let t2 = t1 + d1.
Since t 7→ x(t) is continuous, we have

|em2
(0)| = |x(t1 + d1)− rm2

(0)|
≤ ρ1 + |rm1

(0)− rm2
(0)| := ρ2.

Hence we can define E2(0) as Bρ2(rm2
(0)). Moreover,

we have

|ξm2
(0)| ≤

√
ρ2 + |ζm2

(0)|2,

where ζm2
(0) depends on the initialization of the con-

troller for mode m2. This last bound is used to re-
place |ξm2

(0)| in the inequalities (6), (7) for σm2
, and

to obtain representations of the error tracking maps
Em2(t),Zm2(t).

III. SEARCHING FOR A MOTION COMPOSITION

In this section, we describe a randomized algorithm to
solve Problem 1, based on the RRT planner of [9], and
exploiting the notion of sequential composition of robust
motion specifications presented in Section II-B. The
pseudo-code for the algorithm is given as Algorithms
1-3.

The RRT algorithm builds a graph that is eventually
used to steer the vehicle to the goal region by sequen-
tially composing modes. A node n in the graph records

1) the specification σmn
of the mode mn used to reach

the node.
2) the duration dn since the mode mn was last en-

gaged.

3) The index pred(n) of the predecessor node in the
tree.

Intuitively, a node n can be associated to the point
rmn

(dn) ∈ X. Moreover, mode mn was last engaged at
some ancestor of node n, although there was perhaps
no mode switch at the direct predecessor pred(n).
We initialize the tree with the root node with index 0,
recording x̂0, an estimate of the initial state of the robot,
and Ê0, so that S ⊂ x̂0 + Ê0, with S as in Problem 1.

Given a partially constructed tree, to create a new
node, we first generate a new sample point s in the free
output space Yfree. Then, we find a node in the RRT,
say node n, close to this sample point according to some
heuristic notion of distance µ : N × Y → R+, where
N is the set of nodes in the RRT. Generally µ involves
the distance from Hrmn(dn) to s and a measure of the
size of the output or state tracking error Emn

(dn) or
Zmn

(dn) at the node. In the example of Section IV, we
take

µ(n, s) = |Hrmn
(dn)− s|+ α diam(Zmn

(dn)),

for some constant α ≥ 0.
Once the sample s is produced and a node n in the

tree is selected “close” to s, we create one or more new
nodes from node n. The function generating new nodes
is described in Algorithm 3. First, we consider a number
of possible motion specifications that can be sequentially
composed with σmn

after dn (see Section II-B), with
reference trajectories starting from or close to rmn

(dn),
and preferably steering the output toward s. We also
select deterministically or at random a duration T for
which we consider following each of these modes.

Among the set of motions considered, we first include
the possibility of continuing to follow mode mn, for an
additional time T . We also select some other compatible
motion specifications to potentially switch to and to
follow at least for some time T from node n. For
example, we could switch to tracking a straight line
towards s, if such a motion exists. Collision avoidance
is checked at this stage, to verify that the tube around
the reference trajectory does not intersect any obstacle,
and to remove the motion from consideration if it does.
In case of mode switching, we use the transition map
τ to evaluate the change (typically an increase in size)
in the tracking error sets due to switching. For each
of the motions considered, we have a specification, in
particular a final position on the corresponding reference
trajectory at time T , together with tracking error sets. We
finally select among these motions the one that steers
the vehicle closest to s, again based on the “distance”
function µ. We add a corresponding node to the tree

with predecessor n, recording the motion specification
picked, as well as a motion duration equal to dn + T if
the mode mn was extended, and T otherwise. Note that
it is also possible to add several nodes at this step, if
several motions give satisfactory performance. However,
there is a tradeoff since the search for the closest node
to the generated sample takes longer as the tree gets
bigger.

Allowing to continue a given motion is important
in practice to obtain tighter bounds. Indeed, tracking
error sets can grow as we switch from one motion
specification to another. For example a robot performing
a maneuver can see its localization performance decrease
for typical sensor packages.

Algorithm 1 Robust Forward RRT Planner. x̂0 is the
initial state estimate, with x̂0 ∈ Ê0. G is the desired
goal set. T is the constructed tree.

Require: x̂0, Ê0, Ẑ0;G
σ ← (r ← x̂0,C← ⊥, E ← Ê0,Z ← Ẑ0,D← ⊥)
T .addNode(σ, d← 0,pred← ⊥)
while 1 do
s← randomOutput(Yfree)
n← T .extend(s)
if rmn

(dn) + Emn
(dn) ⊂ G then

return T , n
end if

end while

Algorithm 2 T .extend(s). T .nearestNeighbor(x)
returns the node “closest” to x in the tree according
to µ, see the main text.

nnear ← T .nearestNeighbor(s, µ)
nnew ← generateChildNode(nnear, s)
T .addNode(nnew)

IV. EXAMPLE

A. Problem Formulation

The purpose of this section is to illustrate the concepts
outlined above for a specific example, involving robust
motion planning for a Dubins vehicle. Much of the re-
cent work on planning robust paths assumes a probabilis-
tic description of the disturbances, see e.g. [12], [13].
These planners either make more restrictive assumptions
on the environment and the motion library [12], or aim
at higher precision but require much more computations
because they integrate the system dynamics and perform
many simulations [13].

Algorithm 3 generateChildNode(n, s). Creates a new
node with predecessor node n and a motion specification
and duration steering the robot from n towards s. mn is
the mode used to reach n. closestNode returns a node
“closest” to the sample s ∈ Y from a list of candidate
nodes, with distance measured according to µ.
modeList← generateCandidateMotions(n, s)
T = randomTime() {- duration of motion ; random
or fixed -}
for m in modeList do

if m = mn then
{- we continue the same motion -}
d← dn + T
σ ← σmn

Check for collision of the tube rmn(t) +
Zmn(t), t ∈ [dn, dn + T].

else
{- we switch mode -}
Check rmn(dn) + Emn(dn) ⊂ rm(0) + Cm
E0,Z0 ← τdn

mn,m

σ ← σm s.t. Em(0) ⊃ E0, Zm(0) ⊃ Z0
d← T
Check for collision of the tube rm(t)+Zm(t), t ∈
[0, d].

end if
if All checks passed then

Add to candidateNodeList the node
(σ, d, pred← n)

end if
end for
return closestNode(candidateNodeList, s, µ)

The dynamics of the vehicle with configuration
(x, y, θ) ∈ R2×S1, fixed constant velocity v and mini-
mum turning radius 1/2 are described by the equations

ẋ = v cos θ + wx,

ẏ = v sin θ + wy,

θ̇ = 2 v sat
(
1

2
(u+ wθ)

)
,

where sat is the saturation nonlinearity restricting a
scalar to [−1, 1], i.e., sat(x) = max{−1,min{1, x}}.
The signal w(t) = [wx(t), wy(t), wθ(t)]

T represents a
bounded perturbation. The only available input u con-
trols the angular rate θ̇. In particular, the vehicle can only
move forward at fixed velocity v, and we can set v = 1
in the following without loss of generality. We consider
a family of controllers tracking motions along half-lines
with arbitrary starting point and arbitrary direction.

B. Line tracking controllers

Consider a directed half-line with orientation θl start-
ing from [rx(0), ry(0)]

T . By a change to a new set of
coordinates denoted (χ, δ, φ), the half-line becomes the
χ-axis, oriented toward increasing χ-coordinates, δ is
the vehicle distance to the line, and φ its orientation
with respect to the line. First, in this subsection, we
design a controller regulating δ and φ to zero. That is,
it steers the vehicle to asymptotically move along the
half-line. However, it is not designed to track a specific
open-loop reference trajectory [χ(t), 0, 0] along that line.
Subsection IV-C details how to produce a control mode
specification as in Definition 1 from this design.

We propose a controller that works under the follow-
ing assumption on the initial state

C =
{
[χ, δ, φ]T

∣∣∣|δ| ≤ 0.9, |φ| ≤ π/3
}
.

In particular, the vehicle is initially oriented in the
desired direction. The dynamics of interest are

δ̇ = sinφ+ wδ, φ̇ = 2 sat
(
1

2
(u+ wφ)

)
,

where wδ, wφ are disturbance signals, and we keep the
notation u for the control input after the coordinate
change for simplicity. Consider the simple proportional
controller

u = −(k1δ + k2 sinφ), k1, k2 > 0. (8)

To study the asymptotic stability of the point δ = φ =
0 for the closed loop system, and hence regulation to the
line, we introduce the Lyapunov function

V (δ, φ) =
α

2
δ2 + βδφ+ γ

∫ φ

0

sinψdψ

=
α

2
δ2 + βδφ+ γ(1− cosφ),

where α, γ > 0. Assuming a priori that φ remains in
[−π/3, π/3], we have

α

2
δ2 + βδφ+

1

2

γ

1.1
φ2 ≤ V (δ, φ) ≤ α

2
δ2 + βδφ+

γ

2
φ2.

(9)

In particular, a sufficient condition for V to be positive
definite is αγ

1.1 − β
2 > 0.

Let us also assume temporarily that the dynamics do
not saturate, i.e., |u(t) + wφ(t)| ≤ 2 for all t along
the trajectory, and verify that this is the case once we
have chosen the parameters k1, k2 below. Denote V̇ :=
d
dtV (δ, φ) the derivative of V along the trajectories. We

have, in the absence of saturation,

V̇ =αδ(sinφ+ w1) + βφ(sinφ+ w1)

+ βδ(−k1δ − k2 sinφ+ w2)

+ γ sinφ(−k1δ − k2 sinφ+ w2)

=(α− βk2 − γk1)δ sinφ− γk2 sin2 φ
+ βφ sinφ− βk1δ2

+ (αw1 + βw2)δ + βw1φ+ γw2 sinφ

≤− (γk2 − 1.25β) sin2 φ− βk1δ2 (10)
+ (α|w1|+ |β||w2|)δ + |β||w1||φ|+ γ|w2|| sinφ|,

by taking α = βk2 + γk1, and using the fact that
φ sinφ ≤ sin2 φ for φ ∈ [−π/3, π/3]. We impose β > 0
to get a negative quadratic term in (10).

The two components of the IOS bound (5) are now
obtained by considering two regions in the state space.
First, introduce θ ∈ (0, 1) and rewrite (10) as

V̇ ≤ −(1− θ)[(γk2 − 1.25β) sin2 φ+ βk1δ
2]

− θ[(γk2 − 1.25β) sin2 φ+ βk1δ
2]

+ (α|w1|+ β|w2|)|δ|+ (1.25β|w1|+ γ|w2|)| sinφ|,

using |φ| ≤ 1.25 | sinφ| on [−π/3, π/3]. Now let bi be
an upper bound on |wi|, i ∈ {δ, φ}, and define

p(δ, φ) = |δ|(θβk1|δ| − αbδ − βbφ)
+ | sinφ|(θ(γk2 − 1.25β)| sinφ| − (1.25βbδ + γbφ)).

Consider the region of the state space

R := {(δ, φ)|p(δ, φ) ≥ 0}.

In that region, and for φ ∈ [−π/3, π/3], we have

V̇ ≤ −(1− θ)[βk1δ2 + (γk2 − 1.25β) sin2 φ]− p(δ, φ)
≤ −(1− θ)[βk1δ2 + 0.68(γk2 − 1.25β)φ2]. (11)

We can compare V̇ to V in this case to find an exponen-
tially converging upper bound on V . Indeed, comparing
the quadratic functions on the right-hand sides of (11)
and (9), we can obtain an inequality of the form

V̇ ≤ −λV, (12)

from which we conclude

V (δ(t), φ(t)) ≤ V (δ(0), φ(0))e−λt, (13)

for all t. Inequality (13) provides an upper bound on
the norm of the vector [δ, φ]T by using the left-hand
side of (9). In fact, we can bound the two coordinates
independently, since

V (δ, φ) ≥ min
φ
V (δ, φ) ≥ 1

2
(α− 1.1β2/γ)δ2,

by the Schur complement formula. Hence

1

2

(
α− 1.1

β2

γ

)
δ2 ≤ V (δ(0), φ(0))e−λt. (14)

Similarly, we have

1

2

(
γ

1.1
− β2

α

)
φ2 ≤ V (δ(0), φ(0))e−λt. (15)

To obtain the second component of the maximum
in (5), i.e, the ultimate bound, we consider the region
outside of R, where we cannot conclude that V is
decreasing from the argument above. Let

K1 = βθk1, K2 = αbδ + βbφ,

L1 = θ(γk2 − 1.25β), L2 = 1.25βbδ + γbφ,

so that

p(δ, φ) = K1δ
2 −K2|δ|+ L1| sinφ|2 − L2| sinφ|.

Now p(δ, φ) < 0 leads to an upper bound on the norm
of [δ, φ]T , whose value depends on bδ, bφ. Again, we
can also bound each coordinate independently. We must
have

K1δ
2−K2|δ| < max

φ
{−L1| sinφ|2+L2| sinφ|}, (16)

which provides a bound on |δ|. Similarly, we obtain a
bound on | sinφ| from

L1 sin
2 φ− L2| sinφ| < max

δ
{−K1δ

2 +K2|δ|}. (17)

Finally, from the bounds on |δ|, | sinφ| and the norm
of [δ, φ]T in the transient and ultimate regime, one can
also verify for specific values of k1, k2 and bounds εδ ≤
0.9, εφ ≤ π/3 such that

|δ(0)| ≤ εδ, |ψ(0)| ≤ εφ,

that the controller does not saturate, and that φ remains
in [−π/3, π/3], as assumed in the previous calculations.

Numerical values: Let us take k1 = 1.3, k2 = 0.9,
and assume bδ = 0.02, bφ = 0.05. We then choose θ =
0.5, β = 0.3, γ = 0.75, and α = γk1+βk2. Calculations
then show that λ = 0.0775 works in (12). Inequality (16)
leads to |δ| ≤ δ∞ := 0.27 and (17) to | sinφ| ≤ 0.34 or
|φ| ≤ φ∞ := 0.3469 after the transient regime.

C. Line tracking mode specification

From the analysis in the previous subsection, we can
now derive a control mode specification as in Defini-
tion 1 for a controller tracking a half-line with origin
[rx(0), ry(0)]

T and orientation θl. For the parametriza-
tion of the error tracking tubes E(t) and Z(t), we
can as before work in the rotated coordinate system
[χ, δ, φ]. The output coordinates are χ, δ. Assuming for

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 1. Illustration of the tubular approximation for a straight line
motion tracked by the vehicle, with φ(0) = π/3, δ(0) = 0.3, χ(0) =
1 and perturbation wχ = −0.02, wδ = 0.02 cos(t), wφ = −0.05.
The line tracked is the χ-axis, dashed.

simplicity that the coordinate χ can be measured exactly,
the reference trajectory tracked is

r(0) = 0, r(t) = [χ(t), 0]T , t > 0.

That is, we do not give an open-loop specification of the
χ coordinate, the vehicle tracks its own projection on the
half-line. This simplification is possible for our purpose
here since the speed at which the vehicle progresses
along the line is irrelevant.

Note also that because the vehicle speed is 1, we have
clearly χ(t) ≤ χ(0)+t. Assume an initial tracking error
of the form

E(0) =
{
[χ, δ, φ]T

∣∣∣|χ| ≤ εχ, |δ| ≤ εδ, |ψ| ≤ εφ},
with εδ ≤ 0.9, εφ ≤ π/3. Then for t > 0, we can take

E(t) =
{
[χ, δ, φ]T

∣∣∣|χ| = 0,

|δ| ≤ max{kδ(εδ, εφ)e−λt, δ∞},

|φ| ≤ max{kφ(εδ, εφ)e−λt, φ∞}
}
,

for some functions kδ, kφ derived from (14), (15). Fig.
1 illustrates the tubes r(t) + E(t), t ≥ 0, containing all
the line tracking trajectories with initial error in E(0).

Finally, we consider the composition of two succes-
sive motion specifications. After following mode m for
the duration d, the robot state is [χ(d), δ(d), ψ(d)]T ∈
[χ(d), 0, 0]T + E(d) in the local coordinate system. We
consider switching to a mode tracking a line with orien-
tation φl with respect to the current direction, and origin
[χ(d), 0] in the coordinate system of the specification
σm. Let σ̂ be the specification of this second mode.
Then one can see that the composition is valid if

|δ(d)| ≤ 0.9 and |φ(d)|+ |φl| ≤ π/3.

−5 0 5 10 15 20 25 30 35
−5

0

5

10

15

20

25

30

35

Fig. 2. Example of robust path with error tracking tubes. The vehicle
starts from the lower left corner and must reach the encircled green
zone with certainty.

−5 0 5 10 15 20 25 30 35
−5

0

5

10

15

20

25

30

35

Fig. 3. RRT tree built to obtain the solution of Fig. 2.

Moreover, we can set

Ê(0) =
{
[χ̂, δ̂, φ̂]

∣∣∣|χ̂(0)| ≤ |δ(d)|, |δ̂(0)| ≤ |δ(d)|,
|φ̂(0)| ≤ |φ(d)|+ |φl|

}
and use these values as εχ̂, εδ, εψ . Fig. 2 and 3 show
an example of composition of motion specifications
reaching a desired goal set, obtained using the RRT
algorithm of Section III and the specifications of this
section.

V. CONCLUSION

This paper introduces a notion of robust motion
specification, and details how to sequentially compose

such specifications to establish the feasibility of a motion
planning task, taking into account various sources of
disturbance. In contrast to previously proposed motion
description languages, the atoms do not specify explicit
control inputs, i.e., how the controllers operate, but
focus instead on what the controllers can achieve, in
terms of robust tracking of reference trajectories. Many
techniques from control theory, essentially relying on
Lyapunov analysis, are available to prove that specific
controllers satisfy the proposed notion of specification.
The main directions for our future work are to establish
a form of completeness guarantee for the planner de-
scribed, and to integrate the approach with higher-level
planning techniques based on temporal logics.

REFERENCES

[1] R. W. Brockett, “Formal languages for motion description and
map making,” in Robotics, R. W. Brockett, Ed., vol. 41. Provi-
dence, RI: American Mathematical Society, 1990, pp. 181–193.

[2] V. Manikonda, P. S. Krishnaprasad, and J. Hendler, “Languages,
behaviors, hybrid architectures and motion control,” in Math-
ematical Control Theory, J. Bailleul and J. C. Willems, Eds.
New-York: Springer, 1998, pp. 199–226.

[3] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based
motion planning for nonlinear systems with symmetries,” IEEE
Transaction on Robotics, vol. 21, no. 6, pp. 1077–1091, Decem-
ber 2005.

[4] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential
composition of dynamically dexterous robot behaviors,” The
International Journal of Robotics Research, vol. 18, no. 6, pp.
534–555, 1999.

[5] L. Yang and S. M. LaValle, “The sampling-based neighborhood
graph: A framework for planning and executing feedback motion
strategies,” IEEE Transactions on Robotics and Automation,
vol. 20, no. 3, pp. 419–432, June 2004.

[6] R. Tedrake, “LQR-trees: Feedback motion planning on sparse
randomized trees,” Proceedings of Robotics: Science and Systems
(RSS), 2009.

[7] T. Lozano-Pérez, M. T. Mason, and R. H. Taylor, “Automatic
synthesis of fine-motion strategies for robots,” International
Journal of Robotics Research, vol. 3, no. 1, pp. 3–24, 1984.

[8] E. D. Sontag and Y. Wang, “Notions of input to output stability,”
Systems and Control Letters, vol. 38, pp. 235–248, 1999.

[9] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic
planning,” International Journal of Robotics Research, vol. 20,
no. 5, pp. 378–400, 2001.

[10] B. D. O. Anderson and J. Moore, Optimal Control: Linear
Quadratic Methods. Dover, 2007, republication of the 1990
edition.

[11] E. D. Sontag, “Smooth stabilization implies coprime factoriza-
tion,” IEEE Transactions on Automatic Control, vol. 34, no. 4,
pp. 435–443, April 1989.

[12] T. Schouwenaars, B. Mettler, E. Feron, and J. P. How, “Robust
motion planning using a maneuver automaton with built-in un-
certainties,” in Proceedings of the American Control Conference,
2003, pp. 2211–2216.

[13] L. Blackmore, M. Ono, A. Bektassov, and B. C. Williams,
“A probabilistic particle-control approximation of chance con-
strained stochastic predictive control,” IEEE Transaction on
Robotics, vol. 26, no. 3, pp. 502–517, June 2010.

