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Abstract— We consider the problem of determining the
existence of known constant signals over a set of sites, given
noisy measurements obtained by a team of active sensors that
can switch between different sites. Since the quality of detection
depends on the time that the sensors allocate at every site,
maximizing the total detection probability relies on selecting the
sites and possibly the order in which these should be monitored.
When the switching time between sites is negligible, as in
steerable camera networks, we show that optimizing the global
detection performance for a team of sensors with uncorrelated
measurement noise is a convex problem. On the other hand, for
significant switching times, which can be due to path planning
for mobile robots in surveillance missions, the detection problem
can be approximated by an integer program, known as the
orienteering problem. Due to its hardness, even small instances
of this problem are difficult to solve. Focusing on the single
sensor problem, we propose a heuristic that employs the well
studied traveling salesman problem to determine an optimal
sequence of sites that maximizes the available time for detection.
We finally show that when the switching penalties can be
captured by a constraint on the number of sites to be observed,
then submodularity of the unconstrained performance objective
results in an effective greedy algorithm for selecting these sites.

I. INTRODUCTION

The development of active sensor networks, steerable cam-
era networks [1], and sophisticated mobile sensor platforms
for Intelligence, Surveillance, and Reconnaissance missions
(ISR) [2] is prompting researchers to revisit classical signal
processing problems under the light of the newly offered
capabilities. In these problems, studied under the names of
sensor management, active learning, or optimal experiment
design (see e.g. [3] and the references therein), deciding
where and when the sensors should measure is strongly
correlated with the sensing performance. A typical such
example is the waveform selection problem [4]–[9], for target
tracking using multifunction radars.

Introducing mobility in sensor networks couples sensor
management with motion planning [10]. Recent work in this
area includes for example controlling spacecraft formations
for interferometric imaging [11], [12] and ocean sampling
[13], and focuses mostly on estimation problems. Another
well investigated problem concerns the optimization of the
geometric configuration of a sensor network to improve
the detection of instantaneous spatially distributed events
[14]. Mobile sensor management for more dynamic detection
problems forms essentially the topic of the search theory
literature [15], [16], which often neglects the motion con-
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straints and focus on single target single sensor problems
(although there are exceptions, see [15]).

We consider a signal detection problem for multiple sites
and multiple active sensors. The sensors must switch between
the available sites and determine for each site whether a
known signal exists or not, based on noisy observations.
Since the probability of correct detection depends not only on
the capabilities of the sensors, but also on the time allocated
to each site, minimizing the time required to switch between
sites is important. Applications of this problem range from
camera networks in galleries or museums, to UAVs counting
the number of events at certain locations of interest and
reporting unusually high levels of activity. In this paper, we
make the simplifying assumption of known constant signals
distorted by white noise with known characteristics. The
locations of the sites are also known and the overall task
needs to be completed within given time limits.

In Section II we provide an overview of the results in
signal detection theory that we rely on. In Section III we
study the problem for negligible steering times between sites
and show that finding the optimal time allocation per site is a
convex problem. Note that after having completed the work
described in this paper, we came across the paper [17], which
is quite close to the model of section III. In Sections IV and V
we consider the case of a single sensor, but with additional
resource constraints. Namely, Section IV assumes that the
sensor has enough energy to observe only a subset of given
cardinality of the set of all sites. We show that the detection
performance is a submodular set function, which allows us to
characterize the performance of a greedy heuristic to select
the subset of sites to observe. In Section V we assume
that there are significant traveling times between the sites,
which have to be subtracted from the total time available
for detection. A discretized version of this problem reduces
it to a combinatorial optimization problem known as the
orienteering problem. Due to the computational complexity
of this problem, a heuristic which consists in decoupling path
planning and detection, and employing traveling salesman
tours, provides solutions more efficiently.

II. HYPOTHESIS TESTING

A. A Single Sensor & A Single Site

Consider a single sensor monitoring a single site during a
time interval [0, T ] and let the measurement be given by

x(t) = θs(t) + w(t), 0 ≤ t ≤ T,

where θ ∈ {0, 1} is an unknown parameter, s(t) is a known
scalar signal, and w(t) is a zero mean Gaussian white noise
with known spectral height N0/2. Our goal is to decide



between the hypothesis H0 with θ = 0, i.e., x(t) = w(t),
and H1 with θ = 1, i.e., x(t) = s(t) + w(t). Equivalently,
we want to infer from the measurements if the signal s(t)
is present at the site or not. An optimal detector [18]
first passes the measured signal through a correlation filter
y =

∫ T
0
s(t)x(t)dt. Then y is the realization of a Gaussian

random variable Y with conditional mean

E[Y |H0] = 0, E[Y |H1] =
∫ T

0

|s(t)|2dt =: ‖s‖2T = µ1,

and variance under both hypothesis equal to
N0
2

∫ T
0
|s(t)|2dt = σ2

0 . Following the filter, the detector
compares y to a threshold. More precisely, consider the
likelihood ratio (LR)
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=
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This LR is compared to a threshold τ that depends on the
chosen performance criterion [18], [19]. Equivalently, we test
the log-likelihood ratio
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,

with τ̃ = (σ0 log τ)/µ1. Note that when L(y) = τ the
optimal test needs in general to randomize the decision,
but this case has no influence on the performance of
the detector under the Gaussian assumption since it oc-
curs with probability 0. For simplicity, we consider the
Bayesian detector with uniform prior on H0 and H1 (or
equivalently the minimax detector), in which case τ = 1.
Then, the probabilities of false alarm and missed detec-
tion are PF = P

(
y
σ0
> µ1

2σ0

∣∣∣ y ∼ N(0, σ2
0)
)

and PM =

P
(
y
σ0
< 0

∣∣∣ y ∼ N(µ1, σ
2
0)
)
, and both turn out to be equal

to 1−Φ(µ1/2σ0), where Φ is the standard normal cumulative
distribution function: Φ(x) = 1√

2π

∫ x
−∞ e−u

2/2 du. The total
probability of error is

Pe =
1
2
PM +

1
2
PF = 1− Φ(µ1/2σ0) = 1− Φ(γ),

where γ2 denotes the signal-to-noise ratio (SNR)

γ2 =
µ2

1

4σ2
0

=
‖s‖4T

4N0
2 ‖s‖

2
T

=
‖s‖2T
2N0

.

Hence, the probability of error Pe depends on the observation
interval [0, T ] through γ = ‖s‖T /

√
2N0, with ‖s‖T =(∫ T

0
|s(t)|2dt

)1/2

.

B. Multiple Sensors & A Single Site

Consider now M sensors running their own correlation
filters and all observing the same single site. Suppose sensor
j observes the site during interval Ij = [tj , t′j ] (the sensors
do not necessarily all start and stop observing at the same

times tj and t′j). Under hypothesis H1, sensor j’s filter
produces the random variable

Y j =
∫ t′j

tj
s(t)x(t)dt =

∫
Ij
s(t)x(t)dt

=
∫
Ij
|s(t)|2dt+

∫
Ij
s(t)wj(t)dt

:= µj(Ij) +
∫
Ij
s(t)wj(t)dt.

with conditional expectation

E[Y j |H0] = 0, E[Y j |H1] =
∫
Ij
|s(t)|2dt =: µj(Ij)

and variance

Var(Y j |H0) = Var(Y j |H1) =
N j

2

Z
Ij
|s(t)|2dt =

N j

2
µj(Ij),

where N j/2 is the spectral height of the Gaussian white mea-
surement noise of sensor j. The cross-correlations between
sensor signals now depend on the specific assumptions. In
general,

Cov(Y j1 , Y j2 |H0) = Cov(Y j1 , Y j2 |H1)

= E
„Z

Ij1

s(t)wj1(t)dt

Z
Ij2

s(t)wj2(t)dt

«
.

Letting E[wj1(t)wj2(t′)] = Nj1j2

2 δ(t− t′) (with N jj = N j)
we obtain the covariance matrix

Σj1j2(Ij1 , Ij2) = Cov(Y j1 , Y j2 |H0) = Cov(Y j1 , Y j2 |H1)

=
N j1j2

2

∫
Ij1∩Ij2

|s(t)|2dt.

Assuming Σ is positive definite, then we can define Ω =
Σ−1. Define further the quantities Y = [Y 1 . . . YM ]T and
µ = [µ1 . . . µM ]T . Then the log-likelihood ratio becomes

logL(y) = log
p1(y)
p0(y)

= −1
2

(y − µ)TΩ(y − µ) +
1
2
yTΩy

= µTΩy − 1
2
µTΩµ.

Under the assumption that all sensors share their information
y1, . . . , yM , the log-likelihood ratio can be computed and
results in the following test:

µTΩy
H1
>
<
H0

log τ +
1
2
µTΩµ

or equivalently

µTΩy√
µTΩµ

H1
>
<
H0

log τ√
µTΩµ

+
1
2

√
µTΩµ.

As before, consider the Bayesian detection problem with
uniform prior (or minimax detection problem), for which
τ = 1 and so log τ = 0. Then y ∼ N(0,Σ) under H0,
and µTΩy√

µTΩµ
is a normal random variable with mean 0 and

variance
µTΩE[yyT ]Ωµ

µTΩµ
=
µTΩΣΩµ
µTΩµ

= 1,
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Fig. 1. Plot of the detection times per site and coefficients αi for n = 15
sites and total detection times T = 3, 15. Observe that for small total time
T , more time is spent at sites with large αi, while the opposite is true for
large T . This is due to the shape of the correct detection probability function
Φ at any given site. Although for small time T sites with large coefficient
αi give a higher detection probability, this probability gets saturated at 1
much sooner than it does for sites with low αi. Hence, when T is large, it
is more beneficial to stay at sites with low αi.

so the false alarm probability becomes PF = 1 −
Φ(
√
µTΩµ/2). By symmetry, this is also the probability of

missed detection. The total probability of error is then

Pe =
1
2
PF +

1
2
PM = 1− Φ(

√
µTΩµ/2).

If all noises are independent, then Σj1j2 = 0 for j1 6= j2 and
so Ωjj = 2/(µjN j). Hence,

√
SNR =

1
2

√
µTΩµ =

1
2

√√√√ M∑
j=1

2µj(Ij)
N j

=

√√√√1
2

M∑
j=1

‖s‖2Ij
N j

=

√√√√ M∑
j=1

SNRj .

In other words, with uncorrelated sensor noises, the total
SNR can be obtained by adding the individual sensor SNRs,
which greatly simplifies calculations.

III. TIME ALLOCATION WITHOUT
SWITCHING COSTS

In Section II we studied the signal detection problem for a
single site and any number of sensors. When multiple sites
are considered, an optimal allocation of the available time
for detection at each site needs to be determined in order
to minimize the total error probability. In this section, we
address this problem for the case where the switching times
between sites are negligible. This, for instance, is the case
for networks of pan-tilt cameras [1].

A. A Single Sensor

Consider first the case of a single sensor observing N
sites, one at a time, in order to determine whether known and
constant signals s1(t) = s1, s2(t) = s2, . . . , sN (t) = sN

are present or not. The observation noise when observing
target i is Gaussian with spectral height Ni/2. Let ti be
the total time that the sensor spends observing target i, T
the total time available to complete the detection task, and
αi = |si|/

√
2Ni. Along the lines of Section II-A, our goal

is to minimize a weighted sum of the error probabilities at
all sites, or equivalently

maximize
N∑
i=1

wiΦ(αi
√
ti) (1)

subject to
N∑
i=1

ti = T, ti ≥ 0, ∀ i = 1, . . . , N.

where the weights satisfy wi > 0 for i = 1, . . . , N .
Normalizing the times spent at every site, i.e., letting pi =
ti/T and βi = αi

√
T , the optimization problem becomes

(Fig. 1)

maximize
N∑
i=1

wiΦ(βi
√
pi) (2)

subject to p = (p1, . . . , pN ) ∈ ∆N−1,

where ∆N−1 is the (N − 1)-dimensional simplex

∆N−1 = {x ∈ RN |xi ≥ 0,
∑N
i=1 xi = 1}.

In the following lemma we show that the function p =
(p1, . . . , pN ) 7→ Φ(βi

√
pi) is concave. Since a sum of

concave functions is concave, Lemma 1 implies that the
optimization problem (2), or equivalently (1), is convex.

Lemma 1: For any βi ≥ 0 and any i ∈ {1, . . . , N}, the
function p 7→ Φ(βi

√
pi) is concave on ∆N−1.

Proof: Observe first that the univariate function pi 7→
Φ(βi

√
pi) is concave on [0, 1]. Indeed,

d

dpi
Φ(βi

√
pi) =

βi
2
√
pi

1√
2π
e−

β2
i pi
2

and taking the second derivative we get

d2

dp2
i

Φ(βi
√
pi) = −1/8

e−1/2 βi
2pi
√

2βi
(
βi

2pi + 1
)

√
πpi3/2

,

which is negative in (0, 1]. To obtain the function of the
lemma, we pre-compose with the projection on the ith

coordinate direction, which is linear, hence concavity is
preserved [20, p.79].

Remark 1: The objective function of problem (1) is sep-
arable by site and, since there is a single constraint tying
the sites together, large-scale instances of this problem can
be solved using the dual decomposition method, which de-
composes at each subgradient step the large N -dimensional
problem into N one-dimensional problems [21].

B. Multiple Independent Information-Sharing Sensors

The single sensor case described in Section III-A can
be extended to the case of M sensors sharing all their
information. As before, observations of site i by sensor j
are subject to a Gaussian white noise with spectral height
N j
i /2, where noises of different sensors are assumed to be



independent. Suppose that sensor j is available for a total
time T j , j = 1, . . . ,M and let tji be the time that sensor
j spends observing site i. Using the results of section II-B,
minimizing a weighted sum of the probability of detection
error for all sites leads to the program

maximize
N∑
i=1

wiΦ

 |si|√
2

√√√√ M∑
j=1

tji
N j
i

 (3)

subject to
N∑
i=1

tji = T j , j = 1, . . . ,M.

tji ≥ 0, i = 1, . . . , N, j = 1, . . . ,M.

The decision variables are the times tji and using Lemma 1,
it is easy to see that (3) is a again a convex program.
Moreover, it can also be decomposed and solved using dual
decomposition methods.

IV. TIME ALLOCATION AND SITE SELECTION
FOR A SINGLE SENSOR

While the detection problem takes a nice convex form
when the switching costs between sites are negligible, this is
usually not the case when additional resource constraints are
introduced. In this section, we consider a single sensor and
assume that due to energy constraints, it can only observe at
most k of the N sites. As before, the the goal is to determine
the existence of a constant signal si(t) = si at site i and
the measurements are subject to a noise with spectral height
Ni/2 at that site. Then, the problem addressed in this section
is that of selecting a subset of at most k sites to observe
so that the overall weighted detection error probability is
minimized.

For a uniform prior (P(H0) = P(H1) = 1/2) and the
Bayesian detection problem under consideration, the error
probability associated with not observing a site is 1/2. Let
N = {1, . . . , N} denote the set of sites, and define the
performance function v(·) for each subset S ⊆ N as

v(S) := max
{ti}i∈S

∑
i∈S

wi(Φ(αi
√
ti)− 1)−

∑
i/∈S

wi
2

(4)

subject to
∑
i∈S

ti = T, ti ≥ 0, i ∈ S.

The overall weighted detection error probability associated
with subset S is −v(S). Note that for ti ≥ 0, we have
Φ(αi

√
ti) ≥ 1

2 . Rewriting Φ̃(αi
√
ti) = Φ(αi

√
ti) − 1

2 , we
can equivalently rewrite the objective function as

v(S) := max
{ti}i∈S

∑
i∈S

wiΦ̃(αi
√
ti)−

∑
i∈N

wi
2
.

We obtain the optimization problem

max
S⊆N ,|S|≤k

v(S). (5)

Clearly a solution S to (5) has |S| = k. Still, comparing
the value of v(S) for all possible subsets of size k requires
solving (4)

(
N
k

)
times, which can be impractical as N grows.

Note, for instance, that for N = 2k we have
(

2k
k

)
≈

√
2
π

4k√
2k+1

, which for k = 10 gives approximately 1.8 · 105

possible subsets of size 10.
To address this problem we propose a greedy heuristic to

find a subset S of cardinality k. We initialize the subset of
sites as S0 = ∅ and for all future iterations 1 ≤ t ≤ k we
obtain St by St = St−1 ∪ {jt} where

jt ∈ arg max
j /∈St−1

{v(St−1 ∪ {j})}.

This step can be executed by simply computing the value
v(St−1 ∪ {j}) of (4) for all j /∈ St−1. The final set is
then Sk = {j1, . . . , jk}. Hence the greedy policy requires
the computation of the program (4) O(kN) times, and the
computation at step t involves t variables. Characterizing
the performance of this greedy heuristic relies on showing
submodularity of the function S 7→ v(S), i.e.,

v(S1)+v(S2) ≥ v(S1∩S2)+v(S1∪S2), ∀S1,S2 ⊂ N . (6)

Proposition 1: The function S 7→ v(S) is submodular.

Proof: The result follows from Theorem 3.5 in [22]:
Let N = |N | be the number of sites, and δ ∈ {0, 1}N
be a vector with 0 − 1 entries, where δi = 1 if and only
if site i is selected. Hence each vector δ corresponds to a
subset S ⊂ N . Now let fi(pi, δi) = δiwiΦ̃(βi

√
pi). Then

v is submodular if and only if the following function is
submodular

ṽ(δ) = max
N∑
i=1

fi(pi, δi) (7)

subject to
N∑
i=1

pi = 1, pi ≥ 0, i = 1, . . . , N,

where we identify ṽ(δ) and the corresponding ṽ(S). Note
that summing over all indices 1 ≤ i ≤ N in the constraint is
possible, since for any fixed parameter δ, if δi = 0 for some
i, then fi(pi, 0) = 0 implies pi = 0 in the optimal solution.
Hence the constraint

∑
i∈S pi = 1 can be replaced by the

constraint
∑N
i=1 pi = 1 without changing the value of v(δ).

Consider now two variables pi and pj of a vector p
satisfying the single linear equality constraint 1TN p = 1 of
(7). In the terminology of [22], we have trivially that pi and
pj are B0-substitutes. Hence we deduce the following: First,
for all i, j ∈ N , the optimal value p∗i (δ) is nonincreasing
in δj . This means that for every δ1, δ2 with δ1 ≤ δ2 and
δ1 and δ2 differing only on the jth component we have
p∗i (δ

2) ≤ p∗i (δ1). That is, adding one more site j to a set S
will reduce the time spent at every site in S (in the optimal
solution) before j was added. Second, v(δ) is submodular in
δi and δj for all i, j ∈ N . According to [22], this means that
for every δ1 and δ2 with δ1 ≤ δ2 and δ1 and δ2 differing
only in the ith and jth components, we have

ṽ(δ1) + ṽ(δ2) ≤ ṽ(. . . , δ1i , . . . , δ2j , . . .) + ṽ(. . . , δ2i , . . . , δ
1
j , . . .).

For δ1 and δ2 corresponding to S and S∪{i, j}, i, j ∈ N \S,
this inequality can be rewritten

ṽ(S ∪ {i}) + ṽ(S ∪ {j}) ≥ ṽ(S) + ṽ(S ∪ {i, j}),



which is a necessary and sufficient condition for S → ṽ(S)
to be submodular according to our definition (6) [23, p.767].

In addition to submodularity, it is also clear that the
function S 7→ v(S) is nondecreasing, i.e., S ⊆ T ⇒ v(S) ≤
v(T ), and that v(∅) = −

∑
i∈N

wi
2 =: −W . Hence the

following proposition is a consequence of Proposition 1 and
a result of [24]. Here we denote by Sk the set of size k
selected by the greedy heuristic, by Pe(k,Sk) its weighted
detection error probability (i.e., Pe(k,Sk) = −v(Sk)), and
by P ∗e (k) the optimal weighted detection error probability
achievable by some subset of size k.

Proposition 2: The greedy algorithm returns a set Sk such
that

Pe(k,Sk)− P ∗e (k) ≤ 1
e

(W − P ∗e (k)).

Note here that W is the performance we would obtain
if none of the sites were selected. Hence the proposition
provides a performance guarantee for the greedy heuristic
by bounding its difference with respect to the optimum
performance achievable.

V. JOINT PATH PLANNING AND DETECTION
FOR A SINGLE MOBILE SENSOR

In sensing applications involving mobile robots, simply
abstracting the switching penalties by bounding the number
of visited sites as in Section IV does not necessarily capture
adequately the joint path planning and scheduling problem
that arises. More realistically, there is in general a specified
amount of time to complete the whole detection task, in-
cluding traveling between sites, and minimizing the amount
of time spent traveling is critical to maximize the overall
probability of correct detection.

In this section, we are given the traveling times between
the different sites, and we consider the joint signal detection
and path planning problem for a single mobile sensor. We
have developed two heuristics to solve this problem. The
first, which we do not describe in details due to space
constraints, relies on partitioning the total detection prob-
ability at every site in a finite number of equal intervals and
requiring that the sensor stays at a site for the amount of time
necessary to increase the detection probability by a number
of such intervals, which is itself a decision variable of the
problem. This discretization of the detection benefit and time
at every site leads to a well studied integer programming
formulation of the problem, known in the literature as the
orienteering problem [25]–[29] Although the solution to
this integer program tends to the optimal solution of the
original problem as the discretization becomes finer, solving
this integer program can be difficult in practice. To find
solutions in a way that scales better with the number of
sites we propose a second approximation to the problem,
which essentially decouples path planning from detection.
In particular, path planning relies on traveling salesman
tours [30], for which scalable constant factor approximation
algorithms and good solvers exist, while detection depends
on the solution of problem (4). This heuristic works well in
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Fig. 2. Final TSP tour for a sensor observing 40 sites. Alg. 1 returns a
tour containing 18 sites. The vehicle starts at site 34, and the edge closing
the tour is not shown for clarity.

practice, however, characterizing its accuracy is still work in
progress.

In more details, we compute for different subsets of sites a
traveling salesman tour that minimizes the total travel time,
while the remaining time is optimally allocated, by solving
problem (4) for the sites in the tour1 (Alg. 1). This approach
relies on the availability of effective software tools, which are
able to find optimal solutions for instances of the Traveling
Salesman Problem (TSP) involving hundreds of sites. In
particular we used LKH, Helsgaun’s implementation of the
Lin-Kernighan heuristic, available at [31]. To find a good
subset of nodes to include in the tour, we sequentially remove
sites one-by-one from the original set. Using this heuristic,
results can be obtained for large numbers of sites.

We tested Alg. 1 for 40 sites randomly distributed in the
unit square. The signals and noise levels at every site were
randomly chosen from the intervals (1,5) and (1,2), respec-
tively. The total available time for the combined motion and
detection task was T = 5. Fig. 2 shows the sub-optimal
TSP path that the agent follows. Fig. 3 shows the variation
in the performance

∑
i∈S Φ̃(αi

√
ti) for the successive tours

computed by Alg. 1.
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