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ABSTRACT
Road traffic information systems rely on data streams
provided by various sensors, e.g., loop detectors, cam-
eras, or GPS, containing potentially sensitive location
information about private users. This paper presents an
approach to enhance real-time traffic state estimators
using fixed sensors with a privacy-preserving scheme
providing formal guarantees to the individuals traveling
on the road network. Namely, our system implements
differential privacy, a strong notion of privacy that pro-
tects users against adversaries with arbitrary side in-
formation. In contrast to previous privacy-preserving
schemes for trajectory data and location-based services,
our procedure relies heavily on a macroscopic hydrody-
namic model of the aggregated traffic in order to limit
the impact on estimation performance of the privacy-
preserving mechanism. The practicality of the approach
is illustrated with a differentially private reconstruction
of a day of traffic on a section of I-880 North in Califor-
nia from raw single-loop detector data.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Sys-
tems]: Signal processing systems; G.3 [Probability
and Statistics]: Time series analysis
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1. INTRODUCTION
Traffic congestion remains one of the major concerns

in urban areas around the world. This phenomenon
is responsible for large and increasing costs linked to
lost time, fuel consumption, or increased pollution and
health-related issues. Considering the difficulty of de-
veloping new expensive infrastructures, it is crucial to
develop better ways of managing traffic, e.g., using real-
time control policies. These strategies can be enabled by
the proliferation of sensors available to provide a more
accurate picture of the traffic state over time. Such
sensors include traditional systems built into the pave-
ment, e.g., single and double loop inductors, more re-
cent systems such as cameras or radars integrated into
the infrastructure, as well as floating cars moving with
the traffic and periodically reporting their position and
speed information. Recently, there has also been some
interest in letting individual users with GPS equipped
smartphones play the role of such floating cars, send-
ing their personal location traces to a data aggregator
responsible for the traffic state estimation [7].

One issue that is generally not formally addressed in
the vast literature on traffic state estimation is that of
privacy. However, as with other monitoring systems re-
lying on increasingly detailed data from their partici-
pants, such as smart grids and various sensor networks,
privacy related concerns are starting to be voiced, and
should be carefully addressed in order to encourage user
adoption of these systems. With traffic estimation sys-
tems or location based services, the main concern is re-
lated to the potential possibility for an adversary to ob-



tain information about or even reconstruct a given in-
dividual’s trajectory from publicly available data. This
data includes what the aggregator or service provider
decides to publish, e.g., real-time traffic density maps,
but also all accessible databases containing information
that could be linked for inference purposes. For exam-
ple, the knowledge of home and work location of indi-
viduals can easily help re-identify anonymized location
traces [24]. The great diversity of the sources of side
information renders the task of of modeling privacy at-
tacks very challenging.

Previous work on preserving individuals’ privacy in
traffic information systems is sparse. Hoh et al. [8] rely
on a notion of privacy, k-anonymity, that is not par-
ticularly strong at preserving location privacy [17]. In
particular, they focus on privacy for individual measure-
ments, and thus do not directly offer formal protection
guarantees for users transmitting time-series such as lo-
cation traces. Some research on privacy for location-
based services, see e.g., [2, 14], can be considered some-
what related to our work. These papers are typically
concerned with perturbing GPS location traces to pro-
vide privacy while reconstructing some aggregate statis-
tics, e.g, average density. However, they generally ei-
ther do not rely on a formal definition of privacy, are
not well adapted to real-time computations, or consider
simply the minimization of mutual information between
the users’ private data and the published data, which ig-
nores the crucial issue of side information [16]. Note also
that most recent emphasis has been on privacy issues
raised by GPS-equipped smartphones, whereas we only
consider here more traditional static sensors. However,
the latter can a priori also pose a risk, especially as their
density increases. Indeed, [1] describes an optimization-
based vehicle reidentification scheme that uses all types
of traffic measurements.

The goal of this paper is to enhance a traffic state esti-
mator, producing in real-time a traffic density or speed
profile for a road section, with a privacy-preserving sche-
me providing quantitative privacy guarantees. For this
purpose, we rely on a formal and strong notion of pri-
vacy, called differential privacy, which has recently been
widely adopted for many applications involving sensitive
personal data [4,6]. This notion of privacy characterizes
certain randomized algorithms that produce answers to
statistical queries according to a distribution that is not
very sensitive to the presence or absence of the data of
any single individual. As a result, people contributing
to a dataset are guaranteed that by doing so, they do
not dramatically increase the ability of an adversary to
infer private information about them, even by linking
the released answers to any other available sources of
information. Moreover, compared to previous research
on privacy for location based services, a distinguishing

feature of our work is that we do not only rely on the
microscopic data originating from the participants, but
also on a macroscopic model of the aggregate dynamics,
which helps reduce the degradation in estimation perfor-
mance due to the privacy-preserving mechanism. While
this idea is standard for traffic state estimation, model-
based methods for differential private data assimilation
are still underdeveloped.

The rest of this paper is organized as follows. Sections
2 and 3 present some background material necessary to
develop a model-based traffic state estimator. Namely,
we introduce a macroscopic model of traffic flow dy-
namics, and the measurement models for the data orig-
inating from single-loop detectors, the only type of sen-
sors considered here. Section 4 also provides some back-
ground on designing differentially private mechanisms.
Section 5 explains how we sanitize the sensor measure-
ments to provide differential privacy guarantees. Fi-
nally, Section 6 describes the overall privacy-preserving
estimator architecture, built around an extended Kalman
filter and a traffic mode estimator. We also present some
results on estimating traffic from real world induction
loop data on a section of the Interstate 880 in California.
Note that while we assume a particular traffic estimator
for concreteness, the privacy-preserving scheme should
be applicable to other choices.

Notation: Throughout the paper, P denotes a prob-
ability measure defined on a generic probability triple
(Ω,F ,P), where F is a σ-algebra on Ω. [N ] denotes the
set {1, . . . , N}.

2. TRAFFIC FLOW DYNAMICS
In this section we present the model of the traffic flow

dynamics that we use in our data-assimilation scheme.
The reader can refer to [20] for example for a detailed
discussion of such models. We consider unidirectional
traffic along a single road section, with position denoted
x. We can have a possibly varying number of lanes
λ(x), and neglect the influence of on- and off-ramps for
simplicity. Denoting by ρtot(x, t) the total density over
all lanes (in vehicles per mile say) and by qtot(x, t) the
total flow over all lanes, we have the conservation law
for vehicles, in integral form,

d

dt

∫ x2

x1

ρtot(x, t)dx = qtot(x1, t)− qtot(x2, t), ∀x1, x2, t,

(1)
and the corresponding partial-differential equation (PDE)
form valid at points where the solutions are sufficiently
smooth

∂ρtot

∂t
+
∂qtot

∂x
= 0. (2)

For numerical simulations purposes, finite-difference
methods approximating (2) are generally not appropri-



ate due to the existence of discontinuities (shock waves)
in the solutions. Among various discretization methods
available for conservation laws, we have finite volume
methods that divide the road into cells, and compute
the average density in each cell recursively. We thus
divide the road into I cells numbered 1, . . . I. We add
two so-called ghost cells numbered 0 and I + 1, one on
each side, to handle boundary conditions, which will be
discussed later. The discrete-time conservation law for
vehicles corresponding to the integral form (1), is then

ρitot,k+1 = ρitot,k +
τ

Li
(f i−1

tot,k − f
i
tot,k), for i = 1, . . . I,

(3)
where τ is a timestep, Li is the length of cell i, f itot,k

is the total so-called numerical flux out of cell i (i.e.,
through the interface i → i + 1) during period k, and
ρitot,k is the total vehicle density in cell i at period k,
i.e., during the time interval [kτ, (k + 1)τ). Note here
that the numerical flux f itot,k is different in general from
the flow qtot(xi|i+1, t), where xi|i+1 denotes the location
of the interface between cells i and i + 1. More details
are provided below.

To complete the model, we then need to introduce
a hypothesis on driving behavior, typically expressed in
the form of a relation between flow or speed and density.
However, these relations must normally be expressed in
terms of lane-averaged, also called effective, quantities.
Hence we define the lane-averaged traffic density ρ(x, t)
(say, in vehicles per mile per lane), lane-averaged traffic
speed v(x, t), and lane-averaged traffic flow q(x, t) =
ρ(x, t)v(x, t) [20, Chapter 7]. If we denote by ρj(x, t),
vj(x, t) and qj(x, t) the density, speed and flow in lane
j at a position x, and recalling that λ(x) is the number
of lanes, then we have the relations

ρ =

∑λ
j=1 ρj

λ
=:

ρtot

λ
, q =

∑λ
j=1 qj

λ
, v =

λ∑
j=1

ρj
ρtot

vj .

The discretization (3) remains valid with the effective
(lane-averaged) density and flux ρk and fk replacing the
total quantities, except in regions where the number of
lanes changes. For the discrete model, we define λi to
be the number of lanes at the interface i → i + 1. Any
location where the number of lanes changes is always as-
sumed to fall inside a cell. The modified discrete model
for effective quantities with a varying number of lanes
is then [20, p. 74]

ρik+1 = ρik +
τ

Li

(
λi−1

λi
f i−1
k − f ik

)
, for i = 1, . . . I.

(4)
We can now provide an expression of the effective nu-

merical flux f ik through the interfaces. In first-order
models, proposed initially by Lighthill and Whitham
[11] and independently by Richards [15] (LWR models),

⇢J

vf
w

⇢

qmax

q

⇢C

Figure 1: Triangular fundamental diagram and
associated parameters.

the effective density is a fundamental quantity and a
sufficient description of the local traffic state, since the
effective speed and thus also the effective flow are as-
sumed to be known static functions of it. The assumed
expression of flow in terms of density q(ρ) is called the
fundamental diagram, and can be obtained for a specific
road segment for example by fitting observational data.

In this paper we work for concreteness with trian-
gular fundamental diagrams, which are arguably the
most popular in practice. The resulting LWR model
is also called the Cell-Transmission Model (CTM) [3],
and can be efficiently simulated. For simplicity we make
the additional modeling assumption that each cell has
the same fundamental diagram, whose parameters are
assumed known. The triangular fundamental diagram
can be expressed as follows

q(ρ) =

{
vfρ if ρ ≤ ρC = w

vf+wρJ ,

w(ρJ − ρ) if ρC < ρ ≤ ρJ ,

where ρJ is the maximum or “jam” density on the road
segment, and ρC is the critical density at which the max-
imum flow qmax = vfρC is attained. The two cases cor-
respond to free and congested traffic respectively, with
vf the free traffic speed, and w the congestion wave
propagation speed. Fig. 1 illustrates these definitions.

For this triangular fundamental diagram, a standard
numerical method, the Godunov method, corresponds
to using the following numerical flux in (4):

f ik = F (ρik, ρ
i+1
k ) := min{S(ρik), R(ρi+1

k )}
= min

{
ρikvf , qmax, w(ρJ − ρi+1

k )
}
.
(5)

Note that this flux can be interpreted as the minimum
between the maximum flow S(ρ) = min{ρvf , qmax} that
can be sent from cell i − 1 and maximum flow R(ρ) =
min{qmax, w(ρJ − ρi+1

k )} that can be received by cell i.
Starting from the deterministic CTM model, we now

form the following stochastic state-space model of the



density dynamics on the road

ρik+1 = ρik +
τ

Li

(
λi−1

λi
F (ρi−1

k , ρik)− F (ρik, ρ
i+1
k )

)
+ ξik,

(6)
for i = 1, . . . I. Here ξik is a Gaussian random vari-
able, whose variance can be tuned later on in the design
of the state estimator, based on the relative confidence
we place in the model or the observations. To close
the model, we also need the densities ρ0 and ρI+1 in
the ghost cells upstream and downstream of the road
section. It is often assumed in the literature that these
densities are exactly known, but this can be hard to jus-
tify in practice, and density pseudo-measurements can
be very noisy. Hence we assume a simple random walk
model for these densities

ρ0
k+1 = ρ0

k + ξ0
k, ρI+1

k+1 = ρI+1
k + ξI+1

k , (7)

where ξ0
k, ξ

I+1
k denote again Gaussian random variables.

This standard modeling technique allows us to estimate
these ghost cell densities from the measurements as well,
and is used in the context of traffic estimation for ex-
ample in [21].

3. SENSORS AND MEASUREMENT MOD-
ELS

In this section, we describe the measurements avail-
able from single loop detectors, which are the most com-
mon types of sensors available for traffic estimation pur-
poses. We then present measurement models for these
sensors, which are necessary for the development of our
estimator. Single loop detectors are static sensors, placed
at a fixed location along the road segment and continu-
ously observing the traffic at that location. They report
for each lane the following quantities at periodic inter-
vals, e.g., every T = 30s or 60s:

• Vehicle counts c(t), that is, the number of vehicles
that crossed the sensor line during the last period
of T seconds;

• Occupancy o(t), that is, the percentage of the pe-
riod in the last T s where a vehicle was driving
above the detector.

Single loop detectors cannot measure traffic density or
velocity at their location directly. However, we can use
their measurements to obtain estimates of these quan-
tities, subject to some random errors. Namely, we have
for each lane

vj(t) ≈ g
cj(t)

oj(t)T
, qj(t) ≈

cj(t)

T
, ρj(t) ≈

oj(t)

g
. (8)

Note that the speed and density“pseudo-measurements”
depend on the so-called g factor, which is the average
effective vehicle length at the sensor location, can vary

with time, but is sometimes estimated precisely and
available as public information [9], notably in the Cali-
fornia highway system.

In our model, we include a cell boundary at each
static sensor location. We then consider the pseudo-
measurements (8) as the available measurements at that
location, from which we want to build our effective den-
sity estimate along the road. There are therefore various
ways of exploiting the loop detector measurements. The
simplest measurement model is

yik = yi+1
k :=

1

gλi

λi∑
j=1

oij,k = ρik + νik = ρi+1
k + νi+1

k , (9)

where νik, ν
i+1
k are Gaussian random variables describ-

ing measurement errors, and yik, y
i+1
k play the role of the

density measurements for cells i and i + 1 around the
sensor placed at the interface i → i + 1. Note that for
simplicity we choose τ to be a divisor of T . During the
interval between sensor reports, we receive no measure-
ment and thus only use the dynamic model to update
the density estimate.

A second measurement model that we can develop
with single-loop detector data uses the flow pseudo-
measurements obtained via the vehicle counts as well
as the fundamental diagram. For a sensor again at the
interface i → i + 1, we could consider the nonlinear
measurement model

φik :=
1

Tλi

λi∑
j=1

cij,k = F (ρik, ρ
i+1
k ) + νik. (10)

However, this model requires comparing the densities
ρik and ρi+1

k or their estimates, in order to choose the
correct minimum term in the expression (5), and an er-
ror in this choice can have a large impact on estimation
performance.

Another approximate measurement model turned out
to be more robust. Define φik as in (10), and assume
first that we have a traffic mode estimate mi

k for the
interface, either free (F, for ρ ≤ ρc) or congested (C,
for ρ > ρc). This estimate could be obtained by relying
on the measurements yik of (9) and comparing them to
ρc, with some additional filtering described in Section
6. We then form the new density pseudo-measurements

zik = zi+1
k :=


φi
k

vf
, if mi

k = F

ρJ − φi
k

vf
, if mi

k = C,
(11)

and consider again the model

zik = zi+1
k = ρik + ηik = ρi+1

k + ηi+1
k , (12)

where ηik, η
i+1
k are Gaussian random variables.

A last measurement model could use the speed pseudo-
measurements involving the ratio of counts and occu-



pancies. Such a model is left for future work however.
As we discuss in Section 5, occupancy measurements
appear to be more difficult to handle from a differen-
tial privacy point of view, and both (9) and the velocity
estimates rely directly on them. Note also that double
loop detectors can measure vehicle speed directly but
unfortunately they are not as common as single loop
detectors. Such sensors could be advantageous from a
location privacy perspective.

4. DIFFERENTIAL PRIVACY
In this section we review the notion of differential pri-

vacy [6], and present certain mechanisms that can be
used to achieve it. We refer the reader to the surveys
by Dwork, e.g., [4], for a more detailed discussion of the
notion of differential privacy, and to [10] for the proofs
of some additional results presented in Sections 4.1 and
4.2.

4.1 Definition
Let D be a space of datasets of interest (e.g., a space

of data tables, or a signal space). A mechanism is a
map M : D×Ω→ R, for some measurable output space
R, such that for any element d ∈ D, M(d, ·) is a random
variable, typically written simply M(d). A mechanism
can be viewed as a probabilistic algorithm to answer
a query q, which is a map q : D → R. Intuitively,
in the following definition, D is a space of datasets of
interest, and we have a symmetric binary relation Adj
on D, called adjacency, such that Adj(d, d′) if and only
if d and d′ differ by the data of a single participant.

Definition 1. Let D be a space equipped with a sym-
metric binary relation denoted Adj, and let (R,M) be
a measurable space, where M is a given σ-algebra over
R. Let ε, δ ≥ 0. A mechanism M : D× Ω→ R is (ε, δ)-
differentially private (for Adj) if for all d, d′ ∈ D such
that Adj(d, d′), we have

P(M(d) ∈ S) ≤ eεP(M(d′) ∈ S) + δ, ∀S ∈M. (13)

If δ = 0, the mechanism is said to be ε-differentially
private.

The definition says that for two adjacent datasets, the
distributions over the outputs of the mechanism should
be close. The choice of the parameters ε, δ is set by
the privacy policy, with smaller values corresponding to
stronger privacy guarantees.

A fundamental property of the notion of differential
privacy is that no additional privacy loss can occur by
simply manipulating an output that is differentially pri-
vate. To state this more precisely, recall that a prob-
ability kernel between two measurable spaces (R1,M1)
and (R2,M2) is a function k : R1 ×M2 → [0, 1] such

that k(·, S) is measurable for each S ∈ M2 and k(r, ·)
is a probability measure for each r ∈ R1. The proof of
the following theorem can be found in [10].

Theorem 1 (Resilience to post-processing).
Let M1 : D × Ω → (R1,M1) be an (ε, δ)-differentially
private mechanism. Let M2 : D × Ω → (R2,M2) be
another mechanism, such that there exists a probability
kernel k : R1 ×M2 → [0, 1] verifying

P(M2(d) ∈ S|M1(d)) = k(M1(d), S), a.s., (14)

for all S ∈M2 and d ∈ D. Then M2 is (ε, δ)-differentially
private.

Note that in (14), the kernel k is not allowed to depend
on the dataset d. In other words, this condition says
that once M1(d) is known, the distribution of M2(d)
does not further depend on d. Hence a mechanism M2

accessing a dataset only indirectly via the output of a
differentially private mechanism M1 cannot weaken the
privacy guarantee. This theorem is implicitly used re-
peatedly in the following, every time we process an al-
ready differentially private signal to improve the quality
of an estimate, while claiming that this has no impact
on privacy.

Finally, the last result that we introduce relates to the
independent application of several mechanisms to the
same database, i.e., with each mechanism’s randomness
introduced independently of the others. Indeed, in our
estimator, we use two differentially private mechanisms,
and still want to provide a differential privacy guarantee
for the overall scheme.

Theorem 2. Consider M1, . . .Mr, r independent mech-
anisms on a space D, where Mi is (εi, δi)-differentially
private. Then the mechanism M = (M1, . . .Mr), which,

for d ∈ D, outputs (M1(d), . . . ,Mr(d)), is
(∑r

i=1 εi,∑r
i=1 δi

)
-differentially private.

4.2 A Gaussian Mechanism for the Publica-
tion of Continuous-Valued Time Series

A mechanism that throws away all the information
in a dataset is obviously private, but not useful, and in
general one has to trade off privacy for utility when an-
swering specific queries. We recall below a basic mech-
anism that can be used to answer numerical queries
in a differentially private way. First, consider a query
q : D → R, where the output space R is equipped with
a norm denoted ‖ · ‖R. The following quantity plays
an important role in the design of differentially private
mechanisms [6].

Definition 2. Let D be a space equipped with an adja-
cency relation Adj. The sensitivity of a query q : D→ R



is defined as ∆Rq := maxd,d′:Adj(d,d′) ‖q(d) − q(d′)‖R.
In particular, for R = Rk equipped with the p-norm

‖x‖p =
(∑k

i=1 |xi|p
)1/p

, for p ∈ [1,∞], we denote the

`p sensitivity by ∆pq.

A differentially private mechanism proposed in [5] mod-
ifies an answer to a numerical query by adding iid zero-
mean Gaussian noise. Recall the definition of the Q-

function Q(x) := 1√
2π

∫∞
x
e−

u2

2 du. We have the follow-

ing theorem [5,10].

Theorem 3. Let q : D → Rp be a query. Then
the Gaussian mechanism Mq : D × Ω → Rp defined
by Mq(d) = q(d) + w, with w ∼ N

(
0, σ2Ip

)
, where

σ ≥ ∆2q
2ε (K +

√
K2 + 2ε) and K = Q−1(δ), is (ε, δ)-

differentially private.

For the rest of the paper, we define κδ,ε = 1
2ε (K +√

K2 + 2ε), so that the standard deviation σ in The-
orem 3 can be written σ(δ, ε) = κδ,ε∆2q. Moreover,
we are interested in mechanisms publishing vector val-
ued signals. Consider a system G accepting datasets
and publishing such a signal based on the data, i.e.,
G : D → R := (Rp)N, for some p. The `2-sensitivity of
G can be defined as in Definition 2, using the l2 norm
on R

‖x‖2 =

( ∞∑
k=0

‖xk‖22

)1/2

, for x = {xk}k≥0.

The following theorem generalizes Theorem 3 to such
systems publishing signals. Certain technical measura-
bility issues in the proof of this result are resolved in [10].
Note that a (discrete-time) zero-mean Gaussian white
noise signal w with covariance Σ is simply a sequence of
independent Gaussian random variables {wk}k≥0 with
E[wk] = 0, E[wkw

T
l ] = 0 for k 6= l, and E[wkw

T
k ] = Σ,

for all k.

Theorem 4. Let G : D → (Rp)N. The mechanism
M(d) = G(d) + n, where n is a zero-mean Gaussian
white noise with covariance matrix κ2

δ,ε(∆2G)2Ip, is (ε, δ)-
differentially private.

4.3 An Exponential Mechanism for the Publi-
cation of Discrete-Valued Sequences

Before presenting our estimator, we need to develop
one more way of sanitizing data sequences, which should
be applicable to discrete-valued data, such as the se-
quence of traffic modes over time in a cell. For this pur-
pose we propose an extension of the exponential mecha-
nism introduced in [12]. Consider a function q : D×R→
R, which to a dataset d and a response r associates a
score q(d, r). Fix a measure µ on R (we will assume µ to

be uniform in this paper). The exponential mechanism,
denoted Eµ,εq : D→ R, given a database d, picks an out-
put r ∈ R randomly with the probability distribution

exp(εq(d, r))dµ(r)∫
R

exp(εq(d, r))dµ(r)
.

Hence this mechanism gives a larger probability to the
outputs r that maximize the score q(d, r). Next, define

∆q = sup
r∈R

sup
Adj(d,d′)

|q(d, r)− q(d′, r)|.

We have the following theorem [12].

Theorem 5. The exponential mechanism Eµ,εq is 2ε∆q
- differentially private.

Proof. For S a measurable set of R, we have

P(E(d) ∈ S) =

∫
S

exp(εq(d, r))dµ(r)∫
R

exp(εq(d, r))dµ(r)
.

Now for d′ adjacent to d, and for each r,

q(d′, r)−∆q ≤ q(d, r) ≤ q(d′, r) + ∆q

so

P(E(d) ∈ S) ≤
eε∆q

∫
S

exp(εq(d′, r))dµ(r)

e−ε∆q
∫
R

exp(εq(d′, r))dµ(r)

P(E(d) ∈ S) ≤ e2ε∆qP(E(d′) ∈ S).

The following version of the exponential mechanism
will be used to estimate the traffic mode (fluid or con-
gested) of a road segment. Consider a mechanism that
publishes, for each dataset d, a sequence of vectors X :=
{Xi

k}
1≤i≤M
k≥0 , with Xi

k ∈ {F,C} discrete-valued. Con-

sider also a set of functions qik : D × {F,C} → R, such
that for all d, d′ adjacent, there exists an increasing fi-
nite subsequence k(i), 1 ≤ i ≤M , with

|qik(i)(d,X
i
k(i))− q

i
k(i)(d

′, Xi
k(i))| ≤ ρi, (15)

qik(d,Xi
k) = qik(d′, Xi

k), if k 6= k(i),

for all 1 ≤ i ≤ M . Finally, consider a mechanism E
that, given d ∈ D, picks the components Xi

k randomly
and independently for all i, k, with

P(Xi
k = C) =

exp(εqik(d,C))

exp(εqik(d,C)) + exp(εqik(d,F))
. (16)

Corollary 1. The mechanism E is 2ε
(∑M

i=1 ρi

)
-

differentially private.

Proof. For each finite nonnegative integer K, and
each vector XK = {Xi

k}
1≤i≤M
0≤k≤K consider the function

q̂(d,XK) =
∑M
i=1

∑K
k=0 q

i
k(d,Xi

k). The exponential mech-
anism for this function q̂ takes exactly the equivalent



form (16). Moreover, for d, d′ adjacent, there is a finite
sequence k(i) for 1 ≤ i ≤M such that

|q̂(d,XK)− q̂(d′,XK)|

=

∣∣∣∣∣
M∑
i=1

qik(i)(d,X
i
k(i))− q

i
k(i)(d

′, Xi
k(i))

∣∣∣∣∣
≤

M∑
i=1

ρi.

Hence we obtain a differentially private mechanism for
each finite K. To deduce that the actual mechanism,
releasing a countably infinite number of random vari-
ables, is differentially private (in other words, the case
K →∞), technical measurability issues can be resolved
by following the same reasoning as in [10, Lemma 2].

5. DIFFERENTIALLY PRIVATE TRAFFIC
SENSOR MEASUREMENTS

In the rest of this paper, we consider, for datasets of N
user trajectories of the form x = {(x1(t), . . . , xN (t))|t ≥
0}, the following adjacency relation

Adj(x, x̃) iff there exists i ∈ [N ] s.t. xj = x̃j ,∀j 6= i.
(17)

Hence two sets of traces are adjacent according to (17)
if and only if they differ by at most a single trace. Note
also that here two traces differ if their value differs at
any single time. Mechanisms that are differentially pri-
vate for this adjacency relation are quite strong, since
they essentially hide the presence of an individual, not
just its location.

5.1 Flow Measurements
Consider the definition of flow pseudo-measurements

φik in (10), based on counts reported by single-loop de-
tectors for each lane. Let x and x̃ be two sets of tra-
jectories, adjacent for (17). Suppose that the road is
equipped withM single-loop detectors, reporting at each
time kT the counts cij,k or c̃ij,k, i = 1, . . .M, j = 1, . . . λi,
corresponding to the two adjacent sets of trajectories.
Denote the corresponding flow pseudo-measurements φik
and φ̃ik, i = 1, . . .M . Then

‖φ− φ̃‖22 =

∞∑
k=0

M∑
i=1

|φik − φ̃ik|2 =

M∑
i=1

∞∑
k=0

|φik − φ̃ik|2.

Now consider say a sensor at the interfarce i → i + 1,
and the term

∞∑
k=0

|φik − φ̃ik|2 =
1

T 2(λi)2

∞∑
k=0

∣∣∣∣∣∣
λi∑
j=1

(cij,k − c̃ij,k)

∣∣∣∣∣∣ .
For concreteness assume that the differing trajectory in
the two adjacent datasets is the first one, and associate

to the two trajectories x1(t) and x̃1(t) two vehicles A
and B. The counts cij,k and c̃ij,k must be almost all
identical, except for the fact that vehicles A and B can
cross the line of the sensor at different periods and in
different lanes. Hence |cij,k− c̃ij,k| = 0 except for at most
two pairs (jA, kA) and (jB , kB) where the difference can
be one, corresponding to the lane and period at which
A and B cross the sensor. Thus, we have

∞∑
k=0

|φik − φ̃ik|2 ≤
2

T 2(λi)2
,

and finally, since the reasoning is the same for all M
sensors

‖φ− φ̃‖2 ≤
√

2

T

√√√√ M∑
i=1

1

(λi)2
=: ∆f . (18)

Proposition 1. The mechanism publishing for each
sensor the perturbed flow pseudo-measurements φik+nik,
where φik is defined in (10) and nik are independent
zero-mean white Gaussian noise signals with covariance
κ2
δ,ε∆f , with ∆f defined in (18), is (ε, δ)-differentially

private.

5.2 Density and Mode Measurements
Following (8), density pseudo-measurements at the

sensor location can be based on the reported occupancy
measurements. Using these measurements directly is
problematic however, because the occupancy time due
to a single vehicle, equal to lv/vv, with lv its length and
vv its speed, can vary widely depending on its speed. As
a result, the sensitivity of these density pseudo-measure-
ments is high and the standard Gaussian perturbation
mechanism leads to unreliable measurements, especially
at low density. This can result in frequent mode esti-
mation errors in the final estimator.

Instead of using the occupancy measurements directly
to estimate the density, the strategy adopted in this pa-
per is to use them to estimate only the mode of the
traffic, i.e., fluid or congested, which corresponds to
ρ ≤ ρc and ρ > ρc on the fundamental diagram re-
spectively. The density itself is estimated from the flow
pseudo-measurements and the fundamental diagram as
in (11), but this requires an additional mode estimate
as discussed here, because to each flow measurement
0 ≤ q < qmax correspond two possible densities on the
fundamental diagram, namely q/vf or ρJ − q/w.

Our differentially private mode pseudo-measurements
mi
k for each sensor i ∈ [M ] at each period k ≥ 0 are

constructed using the exponential mechanism of Section
4.3. At period k and for sensor i ∈ [M ], suppose that we
are given access to the raw data of occupancy measure-
ments for each car, not just the lane aggregate (sum of
occupancies) over the period. We replace each such car



measurement, say ov, by the quantity cv = min{ ovg , ρc}.
Note that ov/g is the contribution to the density pseudo-
measurement due simply to car v. If this contribution
exceed ρc, i.e., this car by itself contributes to a reading
of congestion (which can happen if, say, the car passes
on the sensor very slowly or stops there), we fix it at ρc
(another value could be used, e.g., 2ρc). This trunca-
tion will allow us to bound the sensitivity to individuals’
data, and is not too detrimental to mode estimation,
since very slowly moving cars are a good indication of
congestion. Next, we replace the occupancies oij,k for

each lane 1 ≤ j ≤ λi, obtained by summing the ov for
the vehicles, by the quantities cij,k obtained by summing
the cv. Finally, we compute the scores

qik(C) =
1

ρcλi

λi∑
j=1

cij,k, (19)

qik(F) =

2− 1

ρcλi

λi∑
j=1

cij,k

 . (20)

The idea is that 1
λi

∑λi

j=1 c
i
j,k represents an average den-

sity indicator, with the score qik(C) high for high density
(congestion), and qik(F) high for low density (free traf-
fic).

Proposition 2. The exponential mechanism publish-
ing the mode pseudo-measurements mi

k for each sensor,
by generating them randomly and independently with
identical distribution

P(mi
k = C) =

exp(εqik(C))

exp(εqik(C)) + exp(εqik(F))
,

is 4ε
(∑M

i=1
1
λi

)
-differentially private.

Proof. A single vehicle’s data cv contributes at most
ρc to a single term cij.k in (19) or (20), since the vehi-
cle is counted in only one lane. Changing a vehicle’s
trajectory can thus change the difference in (15) by at
most 2

λi
. The assumptions of Corollary 1 are verified

because a vehicle passes through each sensors’ location
at a unique period.

6. TRAFFIC STATE ESTIMATION
In this last section, we present the overall architecture

of our privacy-preserving traffic estimator, and illustrate
its performance on a real-world dataset. The output of
the estimator is a density map ρ(x, t) or rather ρik, pro-
duced in real-time as time increases. From the density,
we can then deduce the speed map using the fundamen-
tal diagram.

6.1 Estimator Architecture

User 
trajectories

occupancy 
measurements

count 
measurements

Gaussian
mechanism

exponential 
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HMM filter

c
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diagram

diff. private
density
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a
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   density pseudo-meas.
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ŝi
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�i
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k

⇢̂i
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Figure 2: Architecture of our differentially pri-
vate traffic estimator using single-loop detec-
tors only. The red arrows represent differen-
tially private signals. Legend: (a) perturbed
flow pseudo-measurements from vehicle counts;
(b) private mode estimate built from occupancy
measurements; (c) computation (11) of density
pseudo-measurements from perturbed flow mea-
surements and mode estimates.

The estimator architecture is depicted on Fig. 2.
The main data-assimilation procedure is done by an
extended Kalman filter (EKF) [18], using the density
pseudo-measurements zik (12), and the dynamic traffic
model (6). We do not use the density measurements
yik from (9), because a Gaussian mechanism for these
measurements would require truncating the occupancy
measurements as we did in Section 5.2, preventing an
accurate density reading for high densities, and would
still add too much noise at low densities. The differ-
ential privacy guarantee for the overall architecture is
the sum of (ε1 + ε2, δ1), where (ε1, δ1) are the parame-
ters chosen for the Gaussian mechanism, and ε2 is the
parameter chosen for the exponential mechanism. Note
that the architecture relies on the result of Theorem 1,
which shows that the outputs of the HMM filter and the
EKF are differentially private because their inputs are.



Inverting the fundamental diagram to produce den-
sity pseudo-measurements zik from the (perturbed) flow
measurements φik requires an estimate of the traffic mode,
fluid of congested. This could potentially be obtained
directly from the current density estimate ρ̂ik produced
by the EKF, thus ignoring the occupancy measurements
completely. However, this scheme was found to be un-
reliable, and thus the exponential mechanism described
in Section 5.2 was introduced to produce mode pseudo-
measurements mi

k for each sensor from truncated occu-
pancy measurements.

Due to the randomness introduced by the exponential
mechanism however, these mode measurements mi

k tend
to switch between fluid and congested traffic too fre-
quently. To obtain a more physically meaningful behav-
ior, we don’t use these pseudo-measurements directly
but filter them through an additional hidden-Markov
model (HMM) for each sensor location, described as
follows. We introduce for the location of sensor i a
new state trajectory {sik}k≥0, with sik ∈ {C,F}, de-
scribing the actual mode estimate used to invert the
fundamental diagram. The dynamics of sik are sim-
ply described by a Markov chain with a single param-
eter π1 = P(sik+1 6= sik) describing the probability with
which the mode changes from fluid to congested at that
location. This parameter could be estimated from his-
torical data. Finally, we introduce a last parameter
π2 := P(mi

k = sik), which reflects the confidence we have
in the output of the exponential mechanism, and hence
should decrease from 1 to 1/2 as ε decreases. These pa-
rameters π1 and π2 describe completely the dynamics
and observation model of our HMM, and are sufficient
for the online recursive computation at each period of
the probability distribution P(sik|mi

0, . . . ,m
i
k) and cor-

responding maximum-likelihood estimate ŝik given the
outputs mi

0, . . . ,m
i
k of the exponential mechanism.

Regarding the choice of an EKF to perform the fi-
nal density estimation, we note that this filter could
be replaced by one of many other nonlinear filters pro-
posed in the literature on traffic flow estimation, see,
e.g., [13, 22]. It is outside the scope of this paper to
discuss particular choices of filter, although we are not
aware of a study rigorously comparing the relative per-
formance of different schemes for traffic flow estimation.
The EKF is used in [21] with a different dynamic model,
and in [19] with a CTM model. Yuan et al. [23] also use
it with a Lagrangian model rather than the Eulerian
model discussed here.

6.2 Traffic State Estimation Example
To illustrate our approach, we estimate the traffic

state from induction loop data available as part of the
Mobile Century experiment dataset [7]. This data con-
sists of counts and occupancy measurements from single

Figure 3: Speed pseudo-measurements for each
sensor location, averaged over all lanes, com-
puted from counts and occupancy data.

loop detectors, for each lane of Interstate 880 (North-
bound) in California between postmile 16.5 and 27.7,
i.e., along an approximately 11 mile road segment. The
data from 27 detectors is available, at T = 30s intervals,
and the number of lanes on the road segment varies be-
tween 4 and 5.

Fig. 3 represents the speed pseudo-measurements at
each sensor location over time, constructed from the
average vehicle counts and occupancies following (8).
From this figure, given the relatively high density of
sensors, one can identify for reference the times and lo-
cations of bottlenecks. However, these speed pseudo-
measurements are not differentially-private and hence
cannot be used directly in the EKF. Moreover they de-
pend on the occupancy measurements, which can ex-
hibit high sensitivity to a single vehicle trajectory.

Fig. 4 shows the density map reconstructed using a
non-private EKF, i.e., using raw counts and occupancy
measurements without sanitization. Hence this figure
shows the baseline performance of the estimator, before
the introduction of the privacy-preserving blocks of Fig.
2. The parameters of the fundamental diagram used
for all algorithms are vf = 65 mph, w = 11.6 mph,
ρJ = 193 vehicles/mile/lane.

Finally Fig. 5 shows an example of a (log(2)+M, 0.05)-
differential private map, where M is the number of sen-
sors used over the spatial sub-interval of interest. The
complete map is built by using 10 out of the 27 sensors,
hence is (10 + log(2), 0.05) differentially private. How-
ever, if we were only interested in say the area between
the postmiles 22.5 and 26.5, choosing 4 sensors in this
area is enough to obtain a satisfying estimation quality,



Figure 4: Real-time density map reconstruction
with a non-private extended Kalman filter.

so publishing a map for this interval could be done with
a (4 + log(2), 0.05)-differential privacy guarantee.

A more thorough discussion of the effect of various pa-
rameter choices on the performance of the architecture
is left for a full version of this paper.

7. CONCLUSION
This paper describes techniques that can guarantee

the differential privacy of individual users whose data
is used to provide online estimation of the traffic state
on a road section. In contrast to previously proposed
privacy-preserving schemes for location-based services,
we specifically target the release of aggregated quan-
tities, such as effective traffic speed and density, and
we rely on a macroscopic hydrodynamic model of the
dynamics of these variables to provide sufficiently accu-
rate estimators. Future work will build on these ideas
to develop privacy-preserving mechanisms for additional
sensing modalities and complex road networks, and study
how various choices of models and data assimilation
mechanisms (e.g., Lagrangian vs. Eulerian) impact our
ability to provide rigorous privacy guarantees.
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