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Abstract— Real-time signal processing applications are in-
creasingly focused on analyzing privacy-sensitive data obtained
from individuals, and this data might need to be processed
through model-based estimators to produce accurate statistics.
Moreover, the models used in population dynamics studies, e.g.,
in epidemiology or sociology, are often necessarily nonlinear.
This paper presents a design approach for nonlinear privacy-
preserving model-based observers, relying on contraction anal-
ysis to give differential privacy guarantees to the individuals
providing the input data. The approach is illustrated in two
applications: estimation of edge formation probabilities in a
dynamic social network, and syndromic surveillance relying on
an epidemiological model.

I. INTRODUCTION

The development of many recent technological systems,
such as location-based services, the “Internet of Things”,
or electronic biosurveillance systems, relies on the analysis
of personal data originating from generally privacy-sensitive
participants. Unfortunately, even when the system produces
only aggregate statistics from these individual data streams,
e.g., a dynamic map showing road traffic conditions or an
estimate of power consumption in a neighborhood, signifi-
cant privacy breaches can occur [1]. This is mainly due to
the possibility of correlating the system’s output with other
publicly available data. The integration of privacy-preserving
mechanisms with formal guarantees into such systems would
help alleviate some of the justified concerns of the par-
ticipants and encourage wider adoption. In this paper, we
continue the work initiated in [2], [3] on privacy-preserving
signal filtering and estimation, considering nonlinear models.

While various information theoretic definitions can be
given to the concept of privacy and are potentially applicable
to the processing of data streams in real-time [4], we focus
on the notion of differential privacy, which originates from
the database and cryptography litterature [5]. A differentially
private mechanism publishes information about a dataset in
a way that is not too sensitive to a single individual’s data.
As a result, it becomes difficult to make inferences about
that individual from the published output. Previous work on
the design of linear filters with differential privacy guarantees
includes [2], [3], [6]–[8]. The problem studied in this paper is
that of designing privacy-preserving nonlinear model-based
dynamic estimators, which to the best of our knowledge has
not been studied in a general setting before.
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One way of achieving differential privacy for an estimator
is to bound its so-called sensitivity [5], a form of incremental
system gain between the private individual input signals and
the published output [3]. The main contribution of this paper
is to demonstrate how contraction analysis [9], [10] can be
used for this purpose. Compared to standard observer design
however, the addition privacy constraints requires controlling
the observer gain to bound the system’s sensitivity.

The rest of the paper is divided as follows. Section II
presents the formal problem statement, provides a brief
introduction to the notion of differential privacy, and de-
scribes privacy-preserving mechanisms with input and output
perturbation. In Section III we state the necessary results
from contraction theory, which are applied in Section IV to
the design of differentially private observers with output per-
turbation. The methodology is illustrated via two examples
in Sections V and VI.

Notation: In this paper, N := {0, 1, . . .} denotes the set of
non-negative integers. For T : X→ Y a linear map between
finite dimensional vector spaces X and Y equipped with the
norms | · |X and | · |Y respectively, we denote by ‖T‖X,Y its
induced norm. If X = Y and both spaces are equipped with
the same norm |·|X, we simply write ‖·‖X. Finally, (Ω,F ,P)
denotes a generic probability space.

II. PROBLEM STATEMENT

A. Observer Design

Suppose that we can measure a discrete-time signal
{yk}k≥0 for which we have a state-space model of the form

xk+1 = fk(xk) + wk (1)
yk = gk(xk) + vk, (2)

where wk, vk are noise signals capturing the uncertainty in
the model, xk ∈ X := Rn for some n, and yk ∈ Y := Rm
for some m. The goal is to reconstruct from yk an estimate
of the state xk that we denote zk, i.e., we want to build a
state observer, which we assume in this paper to be of the
simple Luenberger-type form

zk+1 = fk(zk) + Lk(yk − gk(zk)), (3)

where Lk is a sequence of gain matrices to determine.
In the applications discussed later in the paper, the signal

yk is collected from privacy-sensitive individuals, hence
needs to be protected. On the other hand, the model (1),
(2), i.e., the functions fk, gk, is assumed to be publicly
available. The data aggregator wishes to release the signal
zk produced by (3) publicly as well. However, since zk



depends on the sensitive signal yk, we only allow the release
of an approximate version of zk carrying certain privacy
guarantees detailed formally in the next subsection. We will
later see that the gain matrices need to be carefully chosen
to balance accuracy or speed of the observer on the one hand
and the level of privacy offered on the other hand.

Remark 1: Note that we do not provide here nor use in
our designs any model of the noise signals wk and vk,
which are simply used as a device to explain the discrepancy
between any measured signal yk and the signal predicted by
a deterministic model.

B. Differential Privacy

A differentially private version of the observer (3) should
produce an output that is not too sensitive to certain vari-
ations associated to an individual’s data in the input signal
yk. The formal definition of differential privacy is given in
Definition 1 below. An individual’s signal could correspond
to a specific component of yk, or yk could already represent
an signal aggregated from many individuals [3]. We specify
first the type of variations in yk that we want to make hard
to detect by defining a symmetric binary relation, denoted
Adj, on the space of datasets D of interest, here the space of
signals y. We consider here the following adjacency relation

Adj(y, ỹ) iff (4)

∃k0 ≥ 0 s.t.

{
yk = ỹk, k < k0

|yk − ỹk|Y ≤ Kαk−k0 , k ≥ k0,

where | · |Y is a specified norm on Y, and K > 0, 0 ≤ α < 1
are given constants. In other words, we aim at providing
differential privacy guarantees for transient deviations start-
ing at any time k0 that subsequently decrease geometrically.
Note that in [6], [7] the authors consider for the design of a
differentially private counter an adjacency condition where
the (scalar) input signals can vary by at most one and at a
single time period. In comparison, our adjacency condition
(4) greatly enlarges the set of signal deviations associated to
an individual for which we aim to provide guarantees.

Differentially private mechanisms necessarily randomize
their outputs, so that they satisfy the following property.

Definition 1: Let D be a space equipped with a symmetric
binary relation denoted Adj, and let (R,M) be a measurable
space. Let ε, δ ≥ 0. A mechanism M : D×Ω→ R is (ε, δ)-
differentially private for Adj if for all d, d′ ∈ D such that
Adj(d, d′), we have

P(M(d) ∈ S) ≤ eεP(M(d′) ∈ S) + δ, ∀S ∈M. (5)

If δ = 0, the mechanism is said to be ε-differentially private.
This definition quantifies the allowed deviation for the output
distribution of a differentially private mechanism, when the
variations at the input satisfy the adjacency relation. Smaller
values of ε and δ correspond to stronger privacy guarantees.
In this paper, the space D was defined as the space of input
signals y, the adjacency relation considered is (4), and the
output space R is the space of output signals z for the
observer. We then wish to publish an accurate estimate of

the state x while satisfying the property of Definition 1 for
specified values of ε and δ.

C. Sensitivity and Basic Mechanisms

Enforcing differential privacy can be done by randomly
perturbing the published output of a system, at the price
of reducing its utility or quality. Hence, we are interested
in evaluating as precisely as possible the amount of noise
necessary to make a mechanism differentially private. For
this purpose, the following quantity plays an important role.

Definition 2: Let p be a positive integer. The `p-sensitivity
of a system G with m inputs and n outputs with re-
spect to the adjacency relation Adj is defined by ∆pG =
supAdj(u,u’) ‖Gu − Gu′‖p, where by definition ‖v‖p =

(
∑∞
k=0

∑n
i=1 |vk,i|p)

1/p for v = {vk}k≥0 a vector-valued
signal, where vk ∈ Rn has components {vk,i}ni=1.
In practice we are interested in the sensitivity of a system
for the cases p = 1 and p = 2. The basic mechanisms of
Theorem 1 below (see [3] for proofs and references), can
be used to produce differentially private signals. First, we
need the following definitions. A zero-mean Laplace random
variable with parameter b has the pdf exp(−|x|/b)/2b, and
its variance is 2b2. The Q-function is defined as Q(x) :=
1√
2π

∫∞
x
e−

u2

2 du. Now for ε > 0, 0.5 > δ > 0, let µ =

Q−1(δ) and define κδ,ε = 1
2ε (µ+

√
µ2 + 2ε), which can be

shown to behave roughly as O(ln(1/δ))1/2/ε.
Theorem 1: Let G be a system with m inputs and n

outputs. Then the mechanism M(u) = Gu + w, where all
wk,i, k ≥ 0, 1 ≤ i ≤ n, are independent Laplace random
variables with parameter b = (∆1G)/ε, is ε-differentially
private for Adj. If wk is instead a white Gaussian noise with
covariance matrix κ2δ,ε(∆2G)2In, the mechanism is (ε, δ)-
differentially private.

D. Input and Output Perturbation

We see that the amount of noise necessary for differential
privacy with the mechanisms of Theorem 1 is proportional to
∆1G/ε or to κδ,ε∆2G. A very useful additional result stated
here informally says that post-processing a differentially
private signal without re-accessing the privacy-sensitive input
signal does not change the differential privacy guarantee
[3, Theorem 1]. Now, in Theorem 1 the system G can
simply be the identity, whose `1- and `2- sensitivity for
the adjacency relation (4) when | · |Y is the 1-norm or the
2-norm are K/(1 − α) and K/

√
1− α2 respectively. This

immediately gives a first possible design for our privacy-
preserving observer, simply adding Laplace or Gaussian
noise directly to the input signal y, see Fig. 1 a). Moreover
the observer can then be designed to mitigate the effect of
this input noise, whose distribution is known. We call this
design an input perturbation mechanism. Note also that for
α close to 1, 1√

1−α2
can be significantly smaller than 1

1−α ,
so that sacrificing some δ in the privacy guarantee to use the
`2-sensitivity provides better accuracy.

The simple input perturbation mechanism is attractive
because users can typically perturb their data themselves, and
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Fig. 1. Gaussian mechanisms with input (a) and output (b) perturbation.
nk represents a zero-mean white Gaussian noise with identity covariance
matrix. Dashed lines represent a differentially private signal.

can perform well when the input noise is small. However,
the convergence of nonlinear observers is often local and
for small values of ε, δ, adding a large noise at the input
can lead to poor transient performance [3, Section V] and
perhaps divergence of the estimate from the true trajectory.
Moreover, characterizing the output error due to input noise
requires understanding how this noise is transformed after
passing through the nonlinear observer. In general, at the
output the noise distribution can become multimodal and the
noise non white and non zero mean, creating in particular a
systematic bias that can be hard to predict.

An alternative is the output perturbation mechanism,
shown on Fig. 1 b). In this case the privacy-preserving noise
is added after the observer denoted G, which from Theorem 1
requires computing the sensitivity of G. We should then try to
design an observer that has both good tracking performance
for the state trajectory and low sensitivity to reduce the
output noise necessary, and we focus on this issue in the
following. As shown on Fig. 1 b), we can also add a
smoothing filter at the output to filter out the Laplace or
Gaussian noise [3], although this will generally affect some
transient performance measure of the overall system. We do
not discuss the design of the smoothing filter in this paper.

Example 1: Consider the memoryless system yk 7→
φ(yk) = y2k and the adjacency relation (4) for α = 0, so that
we have a deviation at a single time period of at most K
between yk and ỹk. Consider then the Gaussian mechanism,
and let’s assume κδ,ε = 1. For the input perturbation scheme,
the signal zk = (yk + Kξk)2 = y2k + 2Kykξk + K2ξ2k =
y2k + ek, is differentially private when ξk is a standard
Gaussian white noise. In this case, the privacy-preserving
noise at the input induces a systematic bias at the output
between zk and y2k equal to E[ek] = E[K2ξ2k] = K2.

III. CONTRACTING SYSTEMS

In the rest of the paper we focus on output perturba-
tion mechanisms, as described on Fig. 1 b), and we use
contraction theory to bound the sensitivity ∆G and hence
compute the noise level necessary for privacy. The proofs
of the following technical results, needed in later sections,
follow standard ideas from the contraction theory literature,
see, e.g., [9]–[12] and the references therein. They can be

found in an extended version of this paper [13].
Consider a discrete-time system

xk+1 = fk(xk), (6)

with xk ∈ X, for all k ∈ N. Let us denote by φ(k; k0, x0)
the value at time k ≥ k0 of a solution of (6) which takes the
value x0 at time k0. A forward invariant set for the system
(6) is a set C ⊂ Rn such that if x0 ∈ C, then for all k0 and
all k ≥ k0, φ(k; k0, x0) ∈ C.

Definition 3: Let α be a nonnegative constant. The system
(6) is said to be α-contracting for the norm |·|X on a forward
invariant set C ⊂ X if for any k0 ∈ N and any two initial
conditions x0, x̃0 ∈ C, we have, for all k ≥ k0,

|φ(k; k0, x0)− φ(k; k0, x̃0)|X ≤ αk−k0 |x0 − x̃0|X. (7)
Theorem 2: A sufficient condition for the system (6) to be

α-contracting for a norm | · |X on a convex forward invariant
set C is that

‖Fk(x)‖X ≤ α, ∀x ∈ C,∀k ∈ N, (8)

where Fk(x) = ∂fk
∂x (x) is the Jacobian matrix of fk at x and

‖ · ‖X is the matrix norm induced by | · |X.
For any positive definite matrix P , |x|P =

√
xTPx defines

a norm on X = Rn. Specializing the condition of Theorem
2 to this norm, we obtain the following result.

Corollary 1: Let P be a positive definite matrix. A suf-
ficient condition for the system (6) to be α-contracting for
the norm | · |P on a convex forward invariant set C is that
the following Linear Matrix Inequalities (LMI) are satisfied

Fk(x)TPFk(x) � αP, ∀x ∈ C,∀k ∈ N.
Theorem 3: Consider a (contracting) system on X

x̄k+1 = fk(x̄k), (9)

and the modified system

xk+1 = fk(xk) + dk(xk), (10)

where dk(xk) denotes a perturbation input. Suppose that
there exists k0 ∈ N such that dk(xk) = 0 for k < k0, and

|dk(xk)|X ≤ Kαk−k0 ,∀k ≥ k0, (11)

for some constants K,α ≥ 0. Finally, suppose that we have
the contraction condition

‖Jk(x; p)‖X ≤ β, ∀p ∈ [0, 1],∀x ∈ C, ∀k ≥ k0, (12)

where C is a convex set that is forward invariant for (9) and
(10), and Jk(x; p) = ∂fk

∂x (x) + p
αk−k0

∂dk
∂x (x). If x0, x̄0 ∈ C,

then for k ≥ k0, and any ρ > 0, we have

|xk − x̄k|X ≤ ρ(γk−k0 − αk−k0) + γk−k0 |x0 − x̄0|X,

where xk = φ(k; k0, x0), x̄k = φ(k; k0, x̄0) and γ =

max
{
α+ K

ρ , β
}
.

Remark 2: Note that if dk is independent of x, then the
contraction condition (12) is simply a contraction condition
on the original system (9) since ∂dk(x)

∂x = 0.



IV. DIFFERENTIALLY PRIVATE OBSERVERS WITH
OUTPUT PERTURBATION

Let us now return to our initial differentially private
observer design problem with output perturbation. We can
rewrite the system (3) in the form zk+1 = (fk(zk) −
Lkgk(zk)) + Lkyk. For a measured signal ỹ adjacent to y
according to (4), we then get the observer state trajectory

z̃k+1 = (fk(z̃k)− Lkgk(z̃k)) + Lkỹk

z̃k+1 = (fk(z̃k)− Lkgk(z̃k)) + Lkyk + Lkδk, (13)

where δk = ỹk − yk. We can now use the gain matrices
Lk to attempt to design a contractive observer (in order for
zk to converge to xk), while at the same time minimizing
the “gain” of the map δ → z. The proof of the following
proposition follows immediately from Theorem 3.

Proposition 1: Consider the system (3), and two measured
signals y, ỹ adjacent according to (4). Let K ′ = K ×
supk ‖Lk‖Y,X. Suppose also that we have the bound

‖Fk(z)− LkGk(z)‖X ≤ β, ∀z ∈ C, ∀k ∈ N, (14)

for some constant β, where Fk(z) = ∂fk
∂z (z), Gk(z) =

∂gk
∂z (z), and C ⊂ X is a convex forward invariant set for

(3) and (13). Then for the two trajectories zk and z̃k of (3)
corresponding to the inputs yk and ỹk (and assuming the
same initial condition z0 = z̃0 ∈ C for our observer), we
have for any ρ > 0{

zk = z̃k, ∀k ≤ k0
|zk − z̃k|X ≤ ρ(γk−k0 − αk−k0), ∀k > k0,

where γ = max
{
α+ K′

ρ , β
}

, and k0 is the time period
where y and ỹ start to potentially differ according to (4).

Note in the previous proposition that the choice of Lk
has an impact both on ρ and γ. Increasing the gain Lk can
help decrease the contraction rate β, but at the same time it
increases K ′, forcing us to increase ρ so that α+K ′/ρ < 1.
Hence in general we should look to achieve a reasonable
contraction rate β with the smallest gain possible, in order
to reduce the overall system sensitivity (in the sense of
Section II-C). We conclude this section with two corollaries
of Proposition 1 providing differentially private observers
with output perturbation.

Corollary 2: Consider the signal x̂k = zk + ξk, where
zk is computed from (3), the conditions of Proposition 1
are satisfied for the 1-norm on X, and ξk,i are iid Laplace
random variables with parameter

b =
ρ

ε

(
1

1− γ −
1

1− α

)
. (15)

Then this signal x̂k is ε-differentially private for the adja-
cency relation (4).

Corollary 3: Let P be a positive definite matrix. Consider
the signal x̂k = zk + ξk, where zk is computed from (3), the
conditions of Proposition 1 are satisfied for the | · |P norm on

X, and ξk is a Gaussian white noise with covariance matrix
σ2P−1, where σ = κδ,ε ρB and

B :=

∑
k≥0

(γk − αk)2

1/2

≤ 1√
1− γ2

.

Then this signal x̂k is (ε, δ)-differentially private for the
adjacency relation (4).

Proof: From the bound of Proposition 1, we deduce
that Dzk + ζk is a differentially private signal, where ζk is a
Gaussian white noise with covariance matrix σ2I and D is
the matrix square root of P . Hence D−1(Dzk + ζk) is also
differentially private and we defined ξk = D−1ζk.

We thus have two differentially private mechanisms with
output perturbation, provided we can design the matrices Lk
to verify the assumptions of Proposition 1 with the 1- or 2-
norm on X. The next sections provide application examples
for the methodology.

V. EXAMPLE I: ESTIMATING LINK FORMATION
PREFERENCES IN DYNAMIC SOCIAL NETWORKS

In this section we focus on a state-space model recently
proposed in [14] to describe the dynamics of link formation
in social networks, called the Dynamic Stochastic Block-
model. This model combines a linear state-space model for
the underlying dynamics of the network and the stochastic
blockmodel of Holland et al. [15], resulting in a nonlinear
measurement equation. Examples of applications of this
model include mining email and cell phone databases [14],
which obviously contain privacy-sensitive data.

Consider a set of n nodes. Each node corresponds to an
individual and can belong to one of N classes. Let θabk be
the probability of forming an edge at time k between a
node in class a and a node in class b, and let θk denote
the vector of probabilities [θabk ]1≤a,b≤N . For example, edges
could represent email exchanges or phone conversations.
Edges are assumed to be formed independently of each other
according to θk. Let yabk =

mabk
nab

be the observed density of
edges between classes a and b, where mab

k is the number of
observed edges between classes a and b at time k, and nab

is the maximum possible number of edges between these
two classes. For simplicity, we assume that the quantities
nab are publicly known (for example, if the class of each
node is public information), and we focus on the problem
of estimating the parameters θabk using the signals yabk . This
corresponds to the “a priori” blockmodeling setting in [14],
[15]. The links formed between specific nodes constitute
private information however, so directly releasing mab

k or
yabk or an estimate based on them is not allowed.

If nab is large enough, the authors in [14] argue from the
Central Limit Theorem that an approximate model where
yabk is Gaussian is justified, so that yk = θk + vk, where vk
is a Gaussian noise vector with diagonal covariance matrix
(whose entries theoretically should depend on θk, but this
aspect is neglected in the model). Rather than defining a
dynamic model for θk, whose entries are constrained to be



between 0 and 1, let us redefine the state vector to be the so-
called logit of θk, denoted ψk, with entries ψabk = ln

θabk
1−θabk

,
which are well defined for 0 < θabk < 1. The dynamics of
ψk is assumed to be linear ψk+1 = Fψk + wk, for some
known matrix F . The noise vectors wk are assumed to be
iid Gaussian with known covariance matrix W in [14]. The
observation model now becomes yk = g(ψk)+vk, where the
components of g are given by the logistic function applied
to each entry of ψ, i.e., gab(ψk) = 1

1+e−ψ
ab
k
.

An extended Kalman filter is proposed in [14] to estimate
ψ, but we pursue here a deterministic observer design to
illustrate the ideas discussed in the previous sections. Hence,
we consider an observer of the form

ψ̂k+1 = Fψ̂k + L(yk − g(ψ̂k)) = (Fψ̂k − Lg(ψ̂k)) + Lyk,

with L a constant square gain matrix. To enforce contraction
as in Proposition 1, we should choose L so that ‖F −
LG(ψk)‖ ≤ β, where G(ψ) is the Jacobian of g at ψ, a
square and diagonal matrix with entries Gii(ψ) = e−ψ

i

(1+e−ψi )2
,

with i indexing the pairs (a, b).
To simplify the following discussion, let’s assume that F

is also diagonal (as in [14], where the coupling between
components occurs only through the non-diagonal covariance
matrix W ). In this case, the systems completely decouple
into scalar systems, and it is natural to choose L to be
diagonal as well. The observer for one of these scalar system
takes the form

zk+1 = fzk + l

(
yk −

1

1 + e−zk

)
= fzk −

l

1 + e−zk
+ lyk,

where zk is one component (a, b) of ψ̂k and yk now
represents just the corresponding scalar component of the
measurement vector as well. Since the state space X is now
R, the norm |·|X is simply the absolute value. For contraction,
we wish to impose the condition, for some 0 < β < 1,

−β ≤ f − l e−z

(1 + e−z)2
≤ β (16)

i.e., f − β ≤ l e−z

(1 + e−z)2
≤ f + β. (17)

Now note that 0 ≤ e−z

(1+e−z)2 ≤ 1
4 for all z. Hence, by

taking l ≤ 4(f + β), the right hand side of (17) is satisfied.
Moreover, for −a ≤ z ≤ a, we have e−z

(1+e−z)2 ≥ b :=
e−a

(1+e−a)2 . In this case, by taking l ≥ f−β
b , the left hand side

of (17) is also satisfied.
Suppose that we want to design a privacy-preserving

observer for the interval θ ∈ [0.05, 0.95], or equivalently
ψ ∈ [−2.95, 2.95] approximately. In this interval, we have
0.0475 ≤ e−ψ

(1+e−ψ)2
≤ 1

4 . Suppose that we have f = 0.95.
Then we must have

f − β
0.0475

≤ l ≤ 4(f + β). (18)

In general to reduce the sensitivity we should choose a small
gain l, which is compatible with (18) if we choose β close
enough to f . Indeed, setting l = (f − β)/0.0475 and ρ =

lM/(β − α) in Proposition 1 so that γ = β (assuming β >
α), we can verify for example that the `1 sensitivity and
thus the noise parameter b in (15) decreases monotonically
as β increases toward f . However, performance concerns for
the observer should also dictate the minimum tolerable gain
(with a gain l = 0, the observer is perfectly private but is not
useful). We refer the reader to [13] for a numerical example
illustrating the design and behavior of the observer.

VI. EXAMPLE II: SYNDROMIC SURVEILLANCE

Syndromic surveillance systems monitor health related
data in real-time in a population to facilitate early detection
of epidemic outbreaks [16]. Although time series analysis
can be used to detect abnormal patterns in the collected data,
here we focus on a model-based filtering approach [17], and
develop a differentially private observer for a 2-dimensional
epidemiological model. The following SIR model of Ker-
mack and McKendrick [18], [19] models the evolution of
an epidemic in a population by dividing individuals into
3 categories: susceptible (S), i.e., individuals who might
become infected if exposed; infectious (I), i.e., currently
infected individuals who can transmit the infection; and
recovered (R) individuals, who are immune to the infection.
A simple version of the model in continuous-time includes
bilinear terms and reads ds

dt = −µRois, didt = µRois − µi.
Here i and s represent the proportion of the total population
in the classes I and S. The last class R need not be included
in this model because we have the constraint i+ s+ r = 1.
The parameter Ro is called the basic reproduction number
and represents the average number of individuals infected by
a sick person. The epidemic can propagate when Ro > 1.
The parameter µ represents the rate at which infectious
people recover and move to the class R. More details about
this model can be found in [19].

Discretizing this model with sampling period τ , we get

sk+1 = sk − τµRoiksk + w1,k = f1(sk, ik) + w1,k (19)
ik+1 = ik + τµik(Rosk − 1) + w2,k = f2(sk, ik) + w2,k,

(20)

where we have also introduced noise signals w1 and w2 in
the dynamics. We assume here for simplicity that we can
collect syndromic data providing a noisy measurement of
the proportion of infected individuals, .i.e., yk = ik + vk,
where vk is a noise signal. We can then consider the design
of an observer of the form

ŝk+1 = f1(ŝk, îk) + l1(yk − îk)

îk+1 = f2(ŝk, îk) + l2(yk − îk).

We define the Jacobian matrix of the system (19), (20)

J(s, i) = I2 + τµRo
[
−i −s
i s− 1/Ro

]
, as well as the gain

matrix L = [l1, l2]T and observation matrix C = [0, 1].
Following Corollary 3 and according to Corollary 1, the

contraction rate constraint (14) for a norm | · |P on R2 with
P a positive definite matrix is equivalent to the family of



inequalities

(J(s, i)− LC)TP (J(s, i)− LC) � βP
JTx PJx − JTx PLC − CTLTPJx + CTLTPLC � βP,

where we used Jx := J(s, i) to simplify the notation.
Defining the new variable X = PL, this can be rewritten

JTx PJx − JTx XC − CTXTJx + CTXTP−1XC � βP,

which, using the Schur complement, is equivalent to the
family of LMIs[

βP − JTx PJx + JTx XC + CTXTJx CTXT

XC P

]
� 0,

(21)
for all x = (s, i) in the region where we want to prove
contraction. If we can find P,X satisfying these inequalities,
we recover the observer gain matrix simply as L = P−1X .

Note that to minimize K ′ in Proposition 1, we should try
to minimize ‖L‖2P = LTPL = XTP−1X , or equivalently
minimize g1 such that the following LMI is satisfied[

g1 XT

X P

]
� 0. (22)

However, we should also minimize P−1, which appears
in the covariance matrix of the privacy-preserving noise in
Corollary 3, or equivalently minimize g2 subject to[

g2I I
I P

]
� 0. (23)

In the end, we choose to minimize a cost function of the
form g1 + cg2, with c a coefficient appropriately tuned to
balance observer gain and level of privacy-preserving noise,
subject to the LMI contraints (21), (22) and (23), and P � 0
or perhaps P � c′I for another constant c′ if we wish to
impose a hard upper bound on the noise covariance.

Example 2: Let’s assume µ = 0.1, Ro = 3, M =
5× 10−4, α = 0.25 in (4), and ε = 2, δ = 0.05. That is, we
wish to provide a (2, 0.05)-differential privacy guarantee for
maximum deviations of 0.05% (see the discussion in the pre-
vious section). Although not a perfectly rigorous contraction
certificate, we sample the continuous set of constraints (21)
by sampling the set {(s, i)|0.01 ≤ i ≤ 0.5, 0 ≤ s ≤ 1 − i}
at the values of s, i multiple of 0.01, to obtain a finite
number of LMIs. Following the procedure above, for the
choice β = 1 − 10−5, c = 1, we obtain the observer
gain L = [−0.3657, 0.2951]T and the covariance matrix

σ2P−1 =

[
0.3 −0.11
−0.11 0.13

]
×10−4 for the Gaussian privacy-

preserving noise. A typical sample trajectory of the estimate
of i is shown on Fig. 2.
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