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Abstract— Inspired by socially influenced decision making
mechanisms such as the collective behavior of cancer cells,
honey bees searching for a new colony or the mobility of
bacterial swarms, we consider a Mean Field Games (MFG)
model of collective choice where a large number of agents
choose between multiple alternatives while taking into account
the group’s behavior. For example, in elections, individual
interests and collective opinion swings together contribute in the
crystallization of final decisions. At first, the agents’ decisions
are determined by their initial states. Subsequently, the model
is generalized to include a priori individual preferences towards
the destination points. For example, personal preferences that
transcend party lines in elections. We show that multiple
strategies exist with each one of them defining an epsilon Nash
equilibrium.

I. INTRODUCTION

Collective decision making occurs when a large number of
agents choose between multiple alternatives while influenced
by the group’s behavior. This phenomenon is abundant in
most social structures, e.g., in socio-economic systems [1],
biological populations [2], or human societies. Socially influ-
enced decision making is characterized by the weak coupling
of the agents, i.e., (i) they are considerably influenced by the
(anonymous) group’s behavior, (ii) their isolated individual
behaviors have negligible impact on the population’s attitude
and (iii) they collectively reproduce the global behavior of
the group. For example, in elections, an individual-social
trade off occurs, where individual interests and collective
opinion swings together contribute in the crystallization of
final decisions [3]–[5].

A related topic in economics is discrete choice models
where an agent chooses between multiple alternatives such
as the mode of transportation [6], entry and withdrawal
from the labor market, or residential location [7]. In many
circumstances, these individual choices are influenced by the
so called “Peer Effect”, “Neighbourhood Effect” or “Social
Effect”. For example, smoking decision in schools [8]. Brock
and Durlauf propose in [9] a static binary discrete choice
model of a large population, which takes into account the
social effect as represented by the mean of the population.
They use an approach similar to MFG to show that, for an
infinite size population, each agent can predict the mean
of the population by a fixed point calculation, and make
a decentralized choice based upon its prediction. More-
over, they show that multiple anticipated means may exist.
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Our analysis leads to similar insights for a dynamic non-
cooperative multiple choice game, including situations where
the agents have limited information about the dynamics of
other agents.

In this paper, we consider situations where a large number
of agents must move, within a finite time horizon, from their
initial positions towards one of multiple destination points.
Along the path, they must remain grouped and develop as
little effort as possible. A related topic, in stochastic optimal
control, is the “Homing” problem which was introduced first
by Whittle and Gait in [10] and studied later in [11], [12] for
example. However, this problem is concerned with situations
where a single agent tries to reach one of multiple predefined
targets.

Our purpose is to model situations where individual deci-
sions both depend on and collectively influence the group’s
behavior. In [13], we considered the binary choice case where
each agent knows the exact initial conditions of the other
players. In this paper, we consider a model with multiple
destination points. Moreover, we assume that each agent has
limited information about the other agents’ initial states in the
form of a common initial probability distribution. This would
represent, for example, the individual opinions privacy in
the elections example. In addition to the randomized limited
information about the initial states, we generalize the prob-
lem to consider nonuniform agents with initial preferences
towards the final destinations. For example, even though
influenced by the exogenous peers’ smoking behavior, a
teenager’s decision to smoke depends on a priori affinities
towards the final decision “smoking” or “non smoking”.
These affinities are the result of many endogenous factors,
such as education, parental pressure, financial condition,
health, cigarette’s taste etc. In the elections example this
would reflect personal preferences that transcend party lines
for example.

A. Mathematical Model

We consider a noncooperative dynamic game, involving
N agents, with identical linear dynamics

ẋi = Axi +Bui ∀i ∈ {1 . . . , N}, (1)

where xi ∈ Rn is the state of agent i and ui ∈ Rm its control
input. We assume that each agent has a limited information
about the other agents initial conditions in the form of
a statistical distribution. Thus, we assume that the initial
conditions x0

i , i = 1, . . . , N , are independent and identically
distributed (i.i.d.) on some probability space (Ω,F ,P). Each



agent i is associated with an individual cost function

Ji(ui, x̄, x
0
i ) = Ex

0
1:N

(∫ T

0

{q
2
‖xi − x̄‖2 +

r

2
‖ui‖2

}
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+
M

2
min

j=1,...,l

(
‖xi(T )− pj‖2

)∣∣∣x0
i

)
(2)

where x̄ = 1/N
∑N
j=1 xj , q, r are positive constants and

M is a large positive number. These costs force the agents
to stay grouped around the mean, to expend as little effort
as possible and to reach, before a time T , one of the
predefined destinations pj , j = 1, . . . , l. We seek an ε−Nash
equilibrium [14], a sort of Nash equilibrium approximation,
where ε converges to zero as the size of the population goes
to infinity.

Definition 1: Consider N players, a set of strategy profiles
S = S1 × · · · × SN and for each player k a payoff
function Jk(u1, . . . , uN ), ∀(u1, . . . , uN ) ∈ S. A strategy
(u∗1, . . . , u

∗
N ) ∈ S is called an ε−Nash equilibrium with

respect to the costs Jk, if there exists an ε > 0 such that
for any fixed 1 ≤ i ≤ N , ∀ui ∈ Si, we have

Ji(u
∗
1, . . . , u

∗
i−1, ui, , u

∗
i+1, . . . , u

∗
N ) ≥ Ji(u∗1, . . . , u∗N )− ε.

Inspired by the MFG theory [14]–[17], we seek a set
of decentralized strategies satisfying the ε−Nash property.
To compute its strategy, each agent will then need only
to know its own state and the common initial distribution
of the agents. The minimum term in the cost makes the
problem non-standard with respect to the Mean Field Games
(MFG) literature cited below. Unlike these standard papers,
the proofs, given in this paper, for the existence of a fixed
point macroscopic behavior are based on topological fixed
point theorems, namely Brouwer’s and Schauder’s fixed point
Theorems. This results in weak assumptions and multiplicity
of solutions. The latter would explain the existence of mul-
tiple social behaviors in many similar situations. However,
as it will be shown later, the computation of these fixed
points requires more sophisticated methods than the simple
iterations used in the case of contraction maps. As described
in [14], [15], [17], the MFG approach assumes a continuum
of agents to which one can ascribe an assumed given de-
terministic macroscopic behavior (the mean field), captured
here by the mean trajectory x̄ set equal to some posited
yet unknown deterministic trajectory ˆ̄x. The cost functions
being now decoupled, each agent optimally tracks ˆ̄x. The
resulting control laws depend on the local states and ˆ̄x. The
solution of the tracking problem is presented in Section II. By
implementing the resulting decentralized strategies in their
dynamics, the agents reproduce a new candidate tracking
path obtained as the mean agent population trajectory. In line
with MFG analysis, the posited tracked path is considered
an acceptable candidate only if it is replicated by the mean
of the agents when they optimally track it. Thus, we look
for candidate trajectories that are fixed points of the tracking
path to tracking path map defined above. The fixed points
of the tracking path to tracking path map are studied in
Section III. In Section IV, the problem is generalized to
include initial preferences towards the destination points.

In this case, the agents are assumed to be nonuniform and
each agent has limited information about the other agents
dynamic parameters, in the form of a statistical distribution
over the matrices A and B. We show in Section V that the
decentralized strategies developed when tracking the fixed
point trajectories in all the cases considered above constitute
ε−Nash equilibria with ε going to zero as N goes to infinity.
In Section VI we provide some numerical simulation results,
while Section VII presents our conclusions.

B. Notation

The following notation is used throughout the paper.
C(X,Y ) denotes the set of continuous functions from a
normed vector space X to Y ⊂ Rk with the standard supre-
mum norm ‖.‖∞. xi:j denotes the vector (xi, xi+1, . . . , xj).
P(A) denotes the probability of an event A. Ex denotes
the expectation with respect to the mesure induced by the
random variable x. 1X denotes the indicator function of a
subset X . The transpose of a matrix M is denoted by MT .
Ik refers to the identity k × k matrix. Subscript i is used
to index entities related to the agents. Subscripts j and k
are used to index entities related to the home destinations.
{X ≤ x} denotes the set {ω ∈ Ω|X(ω) ≤ x} where X is
a random variable on some probability space (Ω,F ,P) and
x ∈ R.

Remark 1: For the proofs of theorems and lemmas one
can refer to [18].

II. TRACKING PROBLEM AND BASINS OF ATTRACTION

Following the MFG approach and the analysis in [13], we
assume the trajectory x̄(t) in (2) to be given for now and
equal to ˆ̄x(t). The cost function (2) can be written

Ji(ui, ˆ̄x, x
0
i ) = min

j=1,...,l
Jij(ui, ˆ̄x, x

0
i ), (3)

where

Jij(ui, ˆ̄x, x
0
i ) =

∫ T

0

{q
2
‖xi − ˆ̄x‖2 +

r

2
‖ui‖2

}
dt

+
M

2
‖xi(T )− pj‖2, (4)

Moreover, we have

inf
ui(.)

Ji(ui, ˆ̄x, x
0
i ) = min

j=1,...,l

(
inf
ui(.)

Jij(ui, ˆ̄x, x
0
i ),

)
.

Assuming a full (local) state feedback, the optimal control
for (3) is

u∗i = u∗ij if Jij(u∗ij , ˆ̄x, x
0
i ) = min

k=1,...,l
Jik(u∗ik, ˆ̄x, x

0
i )

where u∗ik is the optimal solution of the simple linear
quadratic tracking problem with cost function Jik, namely
[19]

u∗ik(t) = −1

r
BT
(

Γ(t)xi + βk(t)
)
, ∀k ∈ {1, . . . , l}

with corresponding optimal costs

J∗ik(ˆ̄x, x0
i ) =

1

2
(x0
i )
TΓ(0)x0

i + βk(0)Tx0
i + δk(0),



and where Γ, βk and δk are respectively matrix-, vector-,
and real-valued functions, satisfying the following backward
propagating differential equations:

Γ̇− 1

r
ΓBBTΓ + ΓA+ATΓ + qIn = 0 (5a)

β̇k =

(
1

r
ΓBBT −AT

)
βk + q ˆ̄x (5b)

δ̇k =
1

2r
(βk)TBBTβk −

1

2
q ˆ̄xT ˆ̄x, (5c)

with the final conditions

Γ(T ) = MIn, βk(T ) = −Mpk, δk(T ) =
1

2
MpTk pk.

We summarize the above analysis in the following lemma.
Lemma 1: The tracking problem (3) has a unique optimal

control law

u∗i (t) = −1

r
BT
(
Γ(t)xi + βj(t)

)
if x0

i ∈ Dj(ˆ̄x) (6)

where Γ, βj , δj are the unique solutions of (5a)-(5c), and

Dj(ˆ̄x) =
{
x ∈ Rn such that(

βj(0)− βk(0)
)T
x ≤ δk(0)− δj(0), ∀k = 1, . . . , l

}
. (7)

By solving (5b) and (5c), (7) can be written as follows:

Dj(ˆ̄x) =
{
x ∈ Rn such that

(βjk)Tx ≤ δ(1)
jk + δ

(2)
jk (ˆ̄x), ∀k = 1, . . . , l

}
(8)

where Π(t) = 1
rΓ(t)BBT − AT , ΦΠ is the unique solution

of
dΦΠ(t, T )

dt
= ΠΦΠ(t, T ), ΦΠ(T, T ) = In, (9)

Ψ(η1, η2, η3, η4) = ΦTΠ(η1, η2)BBTΦΠ(η3, η4) and

βjk = MΦΠ(0, T )(pk − pj)

δ
(1)
jk =

1

2
MpTk pk −

1

2
MpTj pj

+
M2

2r
pTk

∫ 0

T

Ψ(η, T, η, T ) dη pk

− M2

2r
pTj

∫ 0

T

Ψ(η, T, η, T ) dη pj

δ
(2)
jk (ˆ̄x) =

Mq

r
(pj − pk)T

∫ 0

T

∫ η

T

Ψ(η, T, η, σ)ˆ̄x(σ) dσdη.

(10)

Given any continuous path ˆ̄x(t), there exist l basins of
attraction where all the agents initially in Dj(ˆ̄x) go towards
pj for j = 1, . . . , l. Therefore, the mean of the population is
highly dependent on the structure of Dj(ˆ̄x), j = 1 . . . , l.

Optimal control laws (6) depend on the tracked path ˆ̄x(t)
and the local state xi. As mentioned above, each agent should
reach one of the predefined destinations. The next lemma
establishes that for any control horizon length T, M can be
made large enough that each agent reaches an arbitrarily
small neighborhood of some destination point by applying
the control law (6).

Lemma 2: Suppose that the pair (A,B) is controllable and
the agents are optimally tracking a path ˆ̄x(t) that is replicated
by the mean of the population. Then, for any ε > 0 there
exists an M > 0 such that each agent, at time T , is in a
ball of radius ε and centered at one of the potential final
destinations of the agents.

III. FIXED POINT

Having presented the solution of the general tracking
problem, we now look for candidate continuous paths ˆ̄x(t)
which are sustainable, in that they are replicated as means of
the agent population under the associated optimal tracking
policies. We start our search for a fixed point path by
replacing x̄ in (2) by a continuous path ˆ̄x. By Lemma 1,
there exist l regions Dj(ˆ̄x) such that the agents initially in
Dj(ˆ̄x) select the control law − 1

rB
T
(

Γx+βj

)
when tracking

ˆ̄x. By substituting the solution of (5b) in (6) and the resulting
control law in (1), we show that the mean of a generic agent
with initial condition x0

i is equal to

x̄∞ = Ex
0
i xi(t) = ΦTΠ(0, t)µ0

+

l∑
j=1

P
(
x0
i ∈ Dj(ˆ̄x)

)M
r

∫ t

0

Ψ(σ, t, σ, T )pj dσ

− q

r

∫ t

0

∫ σ

T

Ψ(σ, t, σ, τ)ˆ̄x(τ) dτdσ (11)

where µ0 is the initial population mean. Equation (11)
defines an operator G∞ that maps the tracked path ˆ̄x to the
mean x̄∞. G∞ and its fixed points if any, only depend on
the initial statistical distribution of the agents. By replacing
the probabilities in (11) by an arbitrary λ = (λ1, . . . , λl) ∈
[0, 1]l, we define a new map

Tλ(ˆ̄x) = ΦTΠ(0, t)µ0 +

l∑
j=1

λj
M

r

∫ t

0

Ψ(σ, t, σ, T )pj dσ

− q

r

∫ t

0

∫ σ

T

Ψ(σ, t, σ, τ)ˆ̄x(τ) dτdσ. (12)

Lemma 3: Consider λ = (λ1, . . . , λl) ∈ [0, 1]l. Tλ has a
unique fixed point equal to

yλ = R1(t)µ0 +R2(t)pλ (13)

where pλ =
∑l
j=1 λjpj , R̃1 = ΦTΠ(t, 0)R1(t) and R̃2 =

ΦTΠ(t, 0)R2(t) are the unique solutions of

˙̃R1 = −q
r

∫ t

T

Ψ(t, 0, t, σ)ΦTΠ(0, σ)R̃1(σ) dσ

˙̃R2 = −q
r

∫ t

T

Ψ(t, 0, t, σ)ΦTΠ(0, σ)R̃2(σ) dσ

+
M

r
Ψ(t, 0, t, T )

(14)

with initial conditions R̃1(0) = In, R̃2(0) = 0.



We now define

θ
(1)
jk =

Mq

r
(pTj − pTk )

∫ 0

T

∫ η

T

Ψ(η, T, η, σ)R1(σ) dσdη

θ
(2)
jk =

Mq

r
(pTj − pTk )

∫ 0

T

∫ η

T

Ψ(η, T, η, σ)R2(σ) dσdη.

The next theorem establishes the existence of a fixed point
of G∞. We define F∞ a map from [0, 1]l into itself such
that

F∞(λ1, . . . , λl) =
P
(

(β1j)
Tx0

i ≤ δ
(1)
1j + θ

(1)
1j µ0 + θ

(2)
1j pλ, ∀j = 1, . . . , l

)
...

P
(

(βlj)
Tx0

i ≤ δ
(1)
lj + θ

(1)
lj µ0 + θ

(2)
lj pλ, ∀j = 1, . . . , l

)

T

.

Assumption 1 : We assume that P0 is such that the
P0−measure of hyperplanes of dimension lower than n is
zero.

Theorem 4: The following statements hold:
1) ˆ̄x is a fixed point of G∞ if and only if there exists

λ = (λ1, . . . , λl) in [0, 1]l such that

F∞(λ) = λ (15)

for ˆ̄x(t) = R1(t)µ0 +R2(t)pλ.
2) F∞ has a fixed point (equivalently G∞ has a fixed

point).
In Theorem 4, the first point shows that computing the

anticipated macroscopic behaviors is equivalent to computing
all the λ’s satisfying (15) under the corresponding constraint
on ˆ̄x(t). To compute the λ satisfying (15), each agent is
assumed to know the initial statistical distribution of the
agents. Multiple λ’s may exist. Hence, an a priori agreement
on how to choose λ should exist. In that respect, agents may
implicitly assume that collectively they will opt for the λ
(assuming it is unique!) that minimizes the total expected
population cost

Ex
0
i Ji

(
u∗i (xi, ˆ̄x), ˆ̄x), x0

i

)
=

Ex
0
i min
k=1,...,l

{1

2
(x0
i )
TΓ(0)x0

i + βk(0)Tx0
i + δk(0)

}
.

The latter can be evaluated if the initial statistical distribution
of the agents is a shared information.

A. Computation of The Fixed Points
The map F∞ is not necessary a contraction. Hence, it

is sometimes impossible to compute its fixed points by the
simple iterative method λk+1 = F∞(λk). Moreover, the
computation of its Jacobian matrix inverse is computationally
expensive since F∞ is a vector of probabilities of some
regions delimited by hyperplanes. Hence, we use Broyden’s
method [20], a Quasi-Newton method, to find a solution
for the nonlinear equation (15). Unlike Newton’s method,
this method updates the inverse of the Jacobian, at the root
estimate, recursively. Having computed a fixed point λ, the
agents can compute the corresponding fixed point of G∞, ˆ̄x
which is equal to R1(t)µ0 +R2(t)pλ.

IV. NONUNIFORM POPULATION WITH INITIAL
PREFERENCES

In the previous section, the agents’ final decisions are
dictated by their initial positions. In the following, we
generalize the model by considering that, in addition to
their initial positions, the agents are affected by a priori
opinion. Moreover, we assume in this section that the agents
have nonuniform dynamics. We consider N agents with
nonuniform dynamics

ẋi = Aixi +Biui i = 1, . . . , N, (16)

We define the individual cost function

Ji(ui, x̄, x
0
i ) =

Ex
0
1:N

(∫ T

0

{q
2
‖xi − x̄‖2 +

r

2
‖ui‖2

}
dt

+ min
j=1,...,l

(Mij

2
‖xi(T )− pj‖2

)∣∣∣x0
i

)
. (17)

It is convenient, when considering the limiting
population, to represent the limiting sequences of
(θi)i=1,...,N = ((Ai, Bi))i=1,...,N and (Mi)i=1,...,N =
((Mi1, . . . ,Mil))i=1,...,N by two independent random
variables θ and M in compact sets Θ and W . Let
us denote the empirical measures of the sequences
θi and Mi, PNθ (A) = 1/N

∑N
i=1 1{θi∈A} and

PNM (A) = 1/N
∑N
i=1 1{Mi∈A} for all (Borel) measurable

sets A. We assume that PNθ and PNM have weak limits Pθ
and PM . For further discussions about this assumption, one
can refer to [21].

We develop the following analysis for a generic agent with
an initial position x0, dynamical parameters θ = (Aθ, Bθ)
and initial preference vector M = (M1, . . . ,Ml). Assuming
an infinite size population, we start by tracking ˆ̄x(t) a posited
deterministic although initially unknown continuous path.
We can then show that this tracking problem has a unique
optimal control function

u∗(t) = −1

r
BTθ
(
ΓMθ
j (t)xi + βMθ

j (t)
)

if x0 ∈ DMθ
j (ˆ̄x)

(18)

where ΓMθ
j , βMθ

j , δMθ
j are the unique solutions of

Γ̇Mθ
j − 1

r
ΓMθ
j BθB

T
θ ΓMθ

j + ΓMθ
j Aθ +ATθ ΓMθ

j + qIn = 0

(19a)

β̇Mθ
j =

(
1

r
ΓMθ
j BθB

T
θ −ATθ

)
βMθ
j + q ˆ̄x (19b)

δ̇Mθ
j =

1

2r
(βMθ
j )TBθB

T
θ β

Mθ
j − 1

2
q ˆ̄x
T ˆ̄x, (19c)

with the final conditions

ΓMθ
j (T ) = MjIn, βMθ

j (T ) = −Mjpj ,

δMθ
j (T ) =

1

2
Mjp

T
j pj ,



DMθ
j (ˆ̄x) =

{
x ∈ Rn such that

xTΓMθ
jk x+ xTβMθ

jk (ˆ̄x) + δMθ
jk (ˆ̄x) ≤ 0, ∀k = 1, . . . , l

}
(20)

and
ΓMθ
jk = ΓMθ

j (0)− ΓMθ
k (0)

βMθ
jk (ˆ̄x) = βMθ

j (0)− βMθ
k (0)

δMθ
jk (ˆ̄x) = δMθ

j (0)− δMθ
k (0).

(21)

The solution of Riccati equation (19a) is not the same for
all the agents and depends on the initial preference vector
M and the destination points. Hence, the basins of attraction
are now regions delimited by quadratic form surfaces in Rn.
This fact complicates the structure of the operator that maps
the tracked path to the mean as it is shown later. Thus, the
proof of the existence of a fixed point requires an abstract,
Banach space version of Brouwer’s fixed point theorem,
namely Schauder’s fixed point theorem [22]. We define

ΨMθ
j (η1, η2, η3, η4) = ΦTΠMθj

(η1, η2)BθB
T
θ ΦΠMθj

(η3, η4)

where ΠMθ
j (t) = 1

rΓMθ
j (t)BθB

T
θ −ATθ and ΦΠMθj

as in (9)
where Π is replaced by ΠMθ

j . The state of the generic agent
is then

x(t) =

l∑
j=1

1DMθj (ˆ̄x)(x
0)
{

ΦTΠMθj
(0, t)x0

+
Mj

r

∫ t

0

ΨMθ
j (σ, t, σ, T )pj dσ

− q

r

∫ t

0

∫ σ

T

ΨMθ
j (σ, t, σ, τ)ˆ̄x(τ) dτdσ

}
.

Assumption 2: We assume that E‖x0‖ <∞.
The functions defined by (19a),(19b) and (19c) are contin-

uous with respect to M and θ which are defined on compact
sets. M , θ and x0 are independent. Thus, under assumption
2, the mean of the population can be computed using Fubini-
Tonelli’s theorem as follows

x̄(t) = E(M,θ)
(
Ex

0

x(t)
)

= E(M,θ)
(
x̄Mθ(t)

)
=

l∑
j=1

∫
Θ

∫
W

∫
Rn

1DMθj (ˆ̄x)(x
0)
{

ΦTΠMθj
(0, t)x0

+
Mj

r

∫ t

0

ΨMθ
j (σ, t, σ, T )pj dσ

− q

r

∫ t

0

∫ σ

T

ΨMθ
j (σ, t, σ, τ)ˆ̄x(τ) dτdσ

}
dP0dPMdPθ.

(22)

Equation (22) defines an operator Gp from the Banach space
(C([0, T ],Rn), ‖.‖∞) into itself which maps the tracked
path ˆ̄x to the corresponding mean x̄, considered as another
potential tracked path. In the next theorem, we show that Gp
has a fixed point.

Assumption 3 : We assume that P0 is such that the
P0−measure of quadratic form surfaces is zero.

Theorem 5: Gp has a fixed point.

V. NASH EQUILIBRIUM

In the previous sections, we develop fixed point based
decentralized strategies. To compute its strategy, each agent
needs to know, in the uniform without initial preferences
case, its own state and the initial distribution of the agents,
and in the nonuniform with initial preferences case, its
own state, the initial distribution of the population and the
distribution of the dynamic parameters and vector of prefer-
ences. In the next theorem we show that these decentralized
strategies are optimal in an approximate game theoretical
sense with respect to the costs (2) and (17), in that they
constitute an ε−Nash equilibrium.

Theorem 6: If E‖x0
i ‖2 <∞ then the decentralized strate-

gies u∗i for i = 1, . . . , l constitute an ε - Nash equilibrium

with respect to the costs Ji

(
xi(ui),

1
N

∑N
j=1 xj(uj), x

0
i

)
,

where ε = O(εN ) with εN converges to zero as N goes to
infinity.

VI. SIMULATION RESULTS

To illustrate the collective decision-making mechanisms
(without initial preferences), we consider 500 agents initially
drawn from a Gaussian distribution N((−10 0)T , 5I2) and
moving in R2 according to the dynamics

A =

[
0 1

0.02 −0.3

]
B =

[
0

0.3

]
.

Each agent makes a choice between the destination points
p1 = (−39.3,−10), p2 = (−27, 9.5) or p3 = (0, 40) under
a social effect of strength q (q is the coefficient that penalizes
on the deviation from the mean). We start by the case where
the social effect is negligible (q = 0). In this case, the unique
fixed point of F∞ is λ = (0, 0.25, 0.75). Accordingly, quarter
of the population go towards p2 (see Fig.1 green balls) and
the rest towards p3 (see Fig.1 yellow balls). When the social
effect increases to q = 4, some of the agents, that have
chosen p2 as a destination in the absence of a social effect,
change their decision and follow the majority (see Fig.1 blue
balls (q = 4)). In this case, we compute a fixed point of F∞
using Broyden’s method. We find λ = (0, 0.16, 0.84). When
the social effect reaches q = 6, a consensus to go towards p3

occurs. All the agents, that went towards p2 in the absence of
a social effect, change their decision and go towards p3 (see
Fig.1 Blue balls). Moreover, the mean perfectly replicates
the anticipated mean as shown in Figure 2 (q = 4).

VII. CONCLUSION

We consider in this paper a dynamic noncooperative game
model for collective choice in multi-agent systems. In the
simplest form of the game, the agents’ final decisions are
dictated by their initial positions. Subsequently, we general-
ize the model to include initial individual preferences towards
the destination points. Moreover, we consider a nonuniform
population. Using a mean field game theoretic framework,
we establish that multiple ε−Nash strategies may exist. To
compute its individual control strategy, each agent needs to
know its own state, the initial distribution of the agents,



Fig. 1. Social Effect

Fig. 2. q = 4

and in the nonuniform case with initial preferences, the
distribution of the dynamic parameters and the distribution
of the vector of preferences.
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