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Abstract

This report considers extensions of fictitious play, a well-known model of learning in games. We

review stochastic fictitious play as introduced in [FK93] as an attempt to solve some issues associated

with standard fictitious play. Since the original paper on stochastic fictitious play, the traditional way of

studying the convergence of this algorithm is via the theory of stochastic approximation algorithms. This

leads to the study of an ODE which captures the mean dynamics of the system. For this continuous-time

system, we review some convergence results, as well as ideas from the control theory litterature aimed

at stabilizing Shapley’s game, for which it is known that standard fictitious play does not converge. We

conclude with some potential future research directions.
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1 Discrete-Time Fictitious Play and Smooth Fictitious Play

1.1 Review of Fictitious Play

In this section, we briefly review the fictitious play (FP) learning model and also introduce smooth fictitious

play to try to correct some drawbacks of pure FP. This section also fixes the notation used in the report.

In this first part, when we introduce smooth fictitious play, we consider a game with I players, playing

the strategic form game G at time k = 1, 2, . . .. Player i has a finite strategy space Si with mi possible

actions. Later on, when we study convergence issues, we focus on the case where we have only two players

(for multiplayer fictitious play, there are apparently modeling issues, see [FL99] p. 37).

Let ∆(n) denote the probability simplex in Rn, i.e.,

∆(n) =
{
s ∈ Rn|s ≥ 0 and 1T s = 1

}
,

where the inequality ≥ is meant componentwise, and 1 is always the all-one vector of appropriate dimension.

At each state, player i selects a strategy pi ∈ ∆(mi) (i.e., in general a strategy can be mixed) and receives

an expected stage payoff gi(pi, p−i). Let Mi denote the payoff matrix for player i. Then when player i selects

action ai ∈ Si = {1, . . . ,mi} according to the probability vector pi, he receives a reward

vT
ai

Miva−i
,

where vi denotes the vertex of the appropriate probability simplex whose ith coordinate equals 1 and the

remaining coordinates equal 0. Thus the expected stage payoff is

gi(pi, p−i) = pT
i Mip−i.

In the following, by abuse of notation, we will also use the notation ai instead of vai
for a deterministic

strategy vector, especially in the argument of gi. [pi]ai corresponds to the coordinate ai of pi, for ai ∈ Si.

Finally, we let ∆ = ∆(m1)× · · · ×∆(mI).

In fictitious play, players assumes at each period that their opponent is using a stationary mixed strategy.

They choose their actions to maximize that period’s expected payoff given their prediction of the distribution

of opponents’ actions, which they form according to the empirical frequency denoted here by the vector

qi(t) ∈ ∆(mi). [qi(t)]ai contains the running average frequency of player’s i aith action; player −i can form

this vector as long as he is able to observe player’s i actions, and in particular the players do not need to

know the utility functions of their opponents. We have

qi(k) =
1
k

k∑
τ=1

vai(τ),

and note that we can evaluate qi recursively as

qi(k + 1) = qi(k) +
1

k + 1
(vai(k) − qi(k)),
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where ai(k) is the action of player i at time k. We can start at a nonzero point (or fictitious past) qi(0).

Then in FP, player i chooses at time k its action ai(k) according to

ai(k) ∈ arg max
si∈Si

gi(si, q−i(k)).

Note that this means that at each stage, a player implements a pure strategy (except in some denegerate

cases where the payoff function is such that several strategies realize the maximum, in which case the player

could choose to randomize).

Recall from [FL99], chapter 2, the two main types of convergence considered for fictitious play.

1. Consider the sequence of play a(1), a(2),. . . , with a(k) = (a1(k), . . . , aI(k)). We say that the sequence

{a(k)} converges to ā if there exists T such that a(k) = ā for all t ≥ T . It is easy to see that if {a(k)}
converges to ā, then ā is a (pure) Nash Equilibrium. Moreover, for a FP path {a(k)}, if for some k,

a(k) = a∗, where a∗ is a strict NE of G, then a(τ) = a∗ for all τ > k.

2. Since the only pure-strategy profiles that FP can converge to are those that are NE, FP cannot converge

to a pure-strategy profile in a game all of whose equilibria are mixed, like for example “matching

pennies”. There is an alternative notion of convergence for FP, convergence of empirical distributions

(or in the time-average sense), which applies to mixed strategies as well. Again, we have

Proposition 1.1. If the empirical distributions qi(k) over each player’s choices converge, the strategy profile

corresponding to the product of these distributions is a Nash Equilibrium.

Here are some cases where convergence results for the empirical distributions under FP have been established:

2 player zero-sum games [Rob51], 2 × 2 games [Miy61], multiplayer games with identical player utilities

[MS96], two player games in which one player has two moves [Ber05] . . . .

Denote the time average payoffs through time k as

Uk
i =

1
k + 1

k∑
τ=0

gi(ai(τ), a−i(τ)),

and the expected payoffs at time t as

Ũk
i = max

ai∈Si

gi(ai, qi(k)).

The following proposition is a slight modification of a lemma in the course notes, and can be found in [FL99],

p. 42.

Proposition 1.2. For any initial weights there is a sequence εk → 0 such that along any infinite horizon

history Ũk
i ≥ Uk

i + εk. That is, once there are enough data to outweigh the initial weights, players believe

that their current period’s expected payoff is at least as large as their average payoff to date.

There are some issues with the ideas of FP. First, the empirical distributions need not converge. The first

counterexample, due to Shapley [Sha64], is a two player 3 move game, which is a modified version of the

“Rock-Scissors-Paper” game:

3



L M R

T 0, 0 1, 0 0, 1

M 0, 1 0, 0 1, 0

D 1, 0 0, 1 0, 0

In this game, there is a unique NE with expected payoffs 1/3 for both players. Therefore, by proposition 1.1,

if FP converges, then Ũk
1 + Ũk

2 → 2/3. Now it turns out that if the initial weights are q1(0) = (1, 0, 0) and

q2(0) = (0, 1, 0) for example, the three diagonal profiles are never played. So by proposition 1.2, the players

expect a sum of payoffs at least 1 for large k. This contradiction shows that we do not have convergence in

the time average sense in this game.

The notion of convergence in empirical distribution has also some problems, as illustrated by Fudenberg and

Kreps’ example of persistent miscoordination [FK93], an example of which is reproduced in the course notes:

A B

A 1, 1 0, 0

B 0, 0 1, 1

In this game, the empirical joint distribution on pairs of actions does not equal the product of the two

marginal distributions, so the empirical joint distribution corresponds to correlated as opposed to inde-

pendent play. Specifically here, taking q1(0) = (1/2, 0) and q2(0) = (0, 1/2), the play follows the alter-

nating sequence (A,B), (B,A), (A,B), . . ., so the empirical frequencies converge to the Nash equilibrium

((1/2, 1/2), (1/2, 1/2)), but the players never successfully coordinate. This behavior is not satisfactory since

we assume that the players believe that they play against i.i.d. draws from the long-run empirical distri-

bution of their opponents’ play, and in particular one might wonder if players would ignore cycles in their

opponents’ play.

1.2 Stochastic Fictitious Play

The traditional process of fictitious play is deterministic, i.e., for generic payoffs and fictitious past, the players

will use pure strategies in every period. We now introduce alternative models in the spirit of fictitious play,

with two main motivations. Firstly, we would like a more satisfactory explanation for convergence to mixed-

strategy equilibria: recall the miscoordination example above, where the players get a payoff considerably

less than the amount they could have guaranteed themselves by randomizing (1/2, 1/2) at each period.

Secondly, we would like to avoid the discontinuity inherent in standard fictitious play, where a small change

in the data can lead to an abrupt change in behavior.

1.2.1 Random Utility Model

Here is a possible model of learning to play mixed strategies ([Har73], [FK93], [FL99], p.105): we perturb

the original game by changing the payoffs from gi(s) to ui(s) = gi(s)+ ηi(si), where ηi is a random variable,

depending only on player i’s action (that point is not clear, [BH99] seems no to require this assumption).
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We assume that ηi has a distribution which is absolutely continuous with respect to the Lebesgue measure,

in order to ensure uniqueness of the best response: this is one nice advantage of pertubing the game, we do

not have to deal with correspondences any more. See [FK93], lemma 7.2., or [BH99], p.41. Then the best

response distribution (or best response map) for player i is the deterministic map

βi : S−i → Si

[βi(p−i)]ai
= P (ηi s.t. ai = arg max

si∈Si

ui(si, p−i))

Definition 1.1. The Nash map ν : ∆ → ∆ is defined by ν(p1, . . . , pI) = (β1(p−1), . . . , βI(p−I)).

ν is Lipschitz, Cr of analytic provided the probability distribution functions of the random vectors (or

matrices in [BH99]) ηi have the corresponding property. We require

Hypothesis 1.1. The Nash map ν is Lipschitz continuous.

In the learning model, this will mean that if a player’s assessment converges, his behavior will too, i.e., we

will avoid the miscoordination problem of standard FP. The function βi is both continuous and close to the

original best-response correspondence. For example, in the game of matching pennies, the best response

of player 1 to the strategy of player 2 is a step function (play head with probability 1 if 2 plays head

with any probability greater than 1/2); the best response distribution is a smoothed approximation of this

step function, where generally even if the opposing player is playing a pure strategy, the smoothed best

response will still be random. See [FL99], in particular about experiments in psychology, for justifications of

introducing a smoothed best-response.

The notion of Nash equilibrium is defined as usual:

Definition 1.2. We say that the profile p is a Nash distribution if for all i, pi = βi(p−i), i.e. p = ν(p).

Since we assumed ν to be continuous, the existence of a Nash distribution equilibrium follows from Brouwer’s

fixed point theorem.

1.2.2 Universal Consistency and Smooth Fictitious Play

Another explanation for smooth fictitious play besides the random utility model is that player may choose

to randomize as a sort of protection from mistakes in their model of opponents’ play. In particular, a desired

feature of the learning rule is universal consistency, which requires, regardless of the opponents’ play, that

players almost surely get at least as much utility as they could have gotten had they known the frequency

but not the order of observations in advance. In [FK93] p.118, it is argued that universal consistency can be

accomplished by a smooth fictitious play procedure in which βi is derived from maximizing a function of the

form gi(p) + τvi(pi), τ > 0, where gi is the original utility function, and vi belongs to the class of admissible

functions satisfying the following properties:

1. vi is a smooth, strictly concave differentiable function.

2. limpi→∂∆(mi) |v′i(pi)| = ∞

5



As in the random utility model, these conditions imply unicity and strict interiority of the solution to the

stage maximization problem so that every strategy is played with strictly positive probability regardless of

the frequency of opponents’ play.

An explicit example for the function vi, that will be used in the following, is the entropy function:

vi(pi) = H(pi) =
∑
ai

−[pi]ai
log[pi]ai

= −pT
i log(pi).

Then the utility functions become:

ui(pi, p−i) = pT
i Mip−i + τH(pi).

In this case, we can explicitely solve for βi : ∆(m−i) → ∆(mi), by

βi(p−i) = arg max
pi∈∆(mi)

ui(pi, p−i).

Define, for any dimension n, the “logit” or “soft-max” function

L : Rn → Int(∆(n))

(L(x))i =
exi

exi + . . . + exn
.

Then it turns out that we have

βi(p−i) = L(
Mip−i

τ
),

or in other words,

[βi(p−i)]ai
=

exp( 1
τ gi(ai, p−i))∑

si
exp( 1

τ gi(si, p−i))
.

This is a special case of stochastic fictitious play referred to as logistic fictitious play, where each strategy

is played in proportion to an exponential function of the utility it has historically yielded; it corresponds to

the logit decision model that has been extensively used in empirical work. Note finally that as τ → 0, the

probability that any strategy that is not a best response for gi is played goes to 0. The case where τ = 0

corresponds to the standard FP, and τ > 0 forces mixed strategies.

To conclude our discussion on the two ways of perturbing the original game, we note the following interesting

result

Theorem 1.3 ([HS02]). Suppose that in the random utility model, the random variables ηi have strictly

positive densities and are such that ν is continuously differentiable. Then there exists an admissible (in the

sense above) deterministic perturbation V such that

ν(p) = arg max
y∈int∆

(g(y) + V (y)).

The proof is constructive and V appears as a Legendre transform.
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2 Continuous-Time Fictitious Play

2.1 Continuous-Time Dynamics and Stochastic Approximation Algorithms

For both standard FP (τ = 0 in the deterministic model) and smooth FP (τ > 0), we have the recursion for

the update of the empirical frequency

qi(k + 1) = qi(k) +
1

k + 1
(vai(k) − qi(k)). (1)

Then the strategy of player i at time t is given by the distribution

pi(k) = [ν(q(k))]i = βi(q−i(k)). (2)

The state of the game at time k is the vector q(k) = (q1(k), . . . , qI(k)) listing the players’ empirical frequencies

at time k. When any model of stochastic FP is followed, the state sequence q(t) is a nonstationary discrete-

time Markov process, with values in the compact set ∆. Note also that we have

pi(k) = E[vai(k) | q(k)]. (3)

From (1) and (3), we have

E[q(k + 1)− q(k) | q(k)] =
1

k + 1
( ν(q(k))− q(k) ). (4)

The game vector field is defined on ∆ as F (x) = ν(x) − x. We can view ∆ as a submanifold (with corner)

in Rd and its tangent space at every point is identified with the linear subspace

T∆ =

(y1, . . . , yI) ∈ Rm1 × . . .× RmI :
mi∑
j=1

yi
j = 0, i = 1, . . . , I

 , (5)

and then F is indeed a map from ∆ to T∆. It measures the extent to which x is not a Nash distribution

equilibrium. We also have

F (x) = (k + 1)E[q(k + 1)− q(k) | q(k) = x], (6)

in other words, if the state at time k is x, then F (x) is k + 1 times the expected change in the state. The

analysis of the convergence of stochastic FP traditionally relies on a close connection between limits of the

sample paths {q(k)} and the dynamics of the deterministic differential equation

dx

dt
= F (x), (7)

which represents the “mean” dynamics of the algorithm. From the form of the vector field (in particular

ν(x) ∈ int∆), it is easy to see that the trajectories of (7) starting in ∆ remain in ∆. Note the obvious fact:

Proposition 2.1. The zeroes of the game vector field F , i.e., the equilibrium points of (7), are the Nash

distribution equilibria.

We can rewrite the recursion for the state vector as

q(k + 1)− q(k) =
1

k + 1
[F (q(k)) + Zk+1 ],

7



where the random variable Zk+1 = (k + 1)(q(k + 1) − q(k))− F (q(k)) is a martingale difference, i.e., using

(6),

E[Zk+1 | q(k)] = 0.

Such a recursion is a particular form of a stochastic approximation algorithm (see for example [KY03]).

In the most classical form studied in the litterature, F is the negative of the gradient of a continuously

differentiable function, in which case the algorithm corresponds to a noisy version of a gradient descent; here

however, F can be quite arbitrary and this allows the algorithm to have a possibly complicated asymptotic

behavior. See for example [Ben99, KY03].

Studying the relationship between the continuous time system (7) and the discrete time system (1) seems

to be relatively hard, and in the rest of this paragraph, I merely try to give some additional motivation for

considering the continuous-time system in the following.

Given a state sequence {q(k)}k∈N resulting from infinitely repeated fictitious play, we say that a point q∗ is

a limit point of {q(k)}k∈N if limi→∞ q(ki) = q∗ for some sequence ki → ∞. The set of such limit points is

the state limit set L{q(k)} (Note that because the sequence {q(k)} is a random variable, the state limit set

is a set valued random variable).

The basic theorems in the theory of stochastic approximation algorithms ([KY03], chapters 5 and 6) guarantee

only that q(k) converges with probability one to an invariant set of the mean ODE (which is not useful here,

because ∆ itself is an invariant set). But sometimes the largest invariant set contains points to which

convergence cannot occur. The idea of chain recurrence, introduced by Benäım, can simplify the analysis in

general, since it can be shown that the convergence must be to a subset of the invariant set that is chain

recurrent. Intuitively, the chain recurrent states are those that can arise in the long run if the flow is subject

to small shocks occurring at isolated moments in time. See for example [Ben99]. Here is an important

theorem along these lines, cited here purely as a motivation for further study (compare with proposition 5.3

in [Ben99] to make the connection between attractor-free and chain recurrence).

Theorem 2.2 (The Limit Set Theorem [BH99]). With probability 1, the state limit set L{q(k)} has the

following properties:

1. L{q(k)} is an invariant set for the flow of the game vector field F .

2. L{q(k)} is compact, connected and attractor-free.

This theorem in particular allows Benäım and Hirsch to prove rigorously convergence of stochastic fictitious

play for 2 × 2 games. [HS02] gives rigorous convergence results on the global stability of Nash equilibria

in stochastic FP for zero sum games, games with an interior evolutionary stable strategy, potential games,

supermodular games (see the paper for the precise results).

As a last warning for the next section that looking only at the ω-limit sets of the continuous time system

does not necessarily tell us much in terms of convergence of the discrete-time system with noise, consider

the following example.

Example 2.1 ([HS02]). Consider a flow on a circle that moves clockwise everywhere except at a single rest

point (Fig. 1). This rest point is the unique ω-limit point of the flow. Now suppose the flow represents the

8



Figure 1: ω-limit sets and chain recurrence.

expected motion of some underlying stochastic process. If the stochastic process reaches the rest point, its

expected motion is zero. Nevertheless, actual motion may occur with positive probability and in particular

the process can jump past the rest point and begin another circuit. Therefore in the long run all regions of

the circle are visited infinitely often. The long run behavior is captured by the notion of chain recurrence,

as all points on the circle are chain recurrent under the flow.

2.2 Continuous-Time Fictitious Play: Convergence Results.

From now on we consider the two player case, and we look at the mean ODE only. We call these equations

continuous-time FP : q̇1(t) = β1(q2(t))− q1(t)

q̇2(t) = β2(q1(t))− q2(t).
(8)

[SA04] proves the following theorem, in the case of logistic fictitious play.

Theorem 2.3. Consider the following cases, for the particular case of logistic fictitious play:

• M1 = −MT
2 (unpertubed game is zero sum)

• M1 = MT
2 (identical interest unperturbed game)

• m1 = m2 = 2 (2× 2 game, for generic payoffs, see the paper)

• m1 = 2 (2× n game) and there is a finite number of Nash equilibria.

Then the solutions of continuous-time FP (8) satisfy

lim
t→∞

(q1(t)− β1(q2(t))) = 0

lim
t→∞

(q2(t)− β2(q1(t))) = 0

Some comments are in order. First of all, the proofs are standard, using Lasalle’s invariance principle for

the zero sum case, Barbalat’s lemma for the next two cases, and Poincaré-Bendixson’s criterion for the last

case ([Kha02]). Second, the first three cases involve a Lyapunov function which was introduced by Hofbauer
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et al. in [HS02, HH00]. At least for the zero sum case, the proof is an exact copy of the proof contained in

[HH00], which actually proves the result in the general case of stochastic FP for any admissible cost function,

not just logistic fictitious play. Although I did not try to do it precisely, it seems that the only preperties of

the entropy function required in the proofs are those required for admissible cost functions, so it would be

interesting to recast the theorem in the general framework of stochastic fictitious play. Last, [HH00] have a

stronger result in the zero sum case than convergence to a Nash equilibrium: they show that the perturbed

game has a unique Nash equilibrium, and this fact is actually used in [HS02] to prove the convergence of the

discrete-time system. Unicity of the Nash equilibrium in a pertubed zero sum game makes sense intuitively:

in the original game, the players are actually indifferent between the Nash equilibria which all realize the

value of the game. Introducing an additional strictly concave cost function simply differentiates between

potentially multiple equilibria.

3 Dynamic Fictitious Play

As we have discussed, convergence of fictitious play (in discrete-time or only for the continuous-time asso-

ciated ODE) has been established for special cases, but there are counter-examples, such as Shapley’s of

Jordan’s, which show that convergence is not guaranteed. These examples exhibit the same non-convergent

behavior in stochastic fictitious play. Shamma et Arslan [SA05] cite litterature arguing that in most games,

update mechanisms that are static functions of empirical frequencies will not converge to a mixed equilibrium

(and recall that in the Shapley and Jordan examples, there is a unique Nash equilibrium, which is completely

mixed). They introduce a modification to fictitious play, called “derivative action” fictitious play, which can

lead in some cases to behaviors converging to Nash equilibria in previously nonconvergent situations. The

idea is natural from a feedback control point of view, where it is known that static output feedback need not

be stabilizing, while dynamic output feedback generally can be stabilizing.

Suppose that in addition to the empirical frequencies, all players also know the empirical frequency derivatives

q̇i(t). Now consider a mechanism where each player’s strategy is a best response to a combination of empirical

frequencies and a weighted derivative of empirical frequencies:

pi(t) = βi(q−i(t) + γq̇−i(t)).

The interpretation is that the derivative term serves as a short term prediction of the opponent’s strategy,

since

q−i(t) + γq̇−i(t) ≈ q−i(t + γ),

and thus the use of derivative action may be interpreted as using the best response to a forecasted opponent

strategy. This modification leads to the following (implicit) differential equations:

q̇1 = β1(q2 + γq̇2)− q1

q̇2 = β1(q1 + γq̇1)− q2 , (9)

which we will refer to as exact derivative action FP (DAFP). In the following, we will assume the existence

of solutions to these equations, which is not guaranteed in general. In actuality, the derivative is not directly
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measurable, but must be reconstructed from empirical frequency measurements. Toward this end, we will

consider the now well posed set of equations

ṙ1 = λ(q1 − r1)

ṙ2 = λ(q2 − r2)

q̇1 = β1(q2 + γλ(q2 − r2))− q1 = β1(q2 + γṙ2)− q1

q̇2 = β2(q2 + γλ(q1 − r1))− q2 = β2(q1 + γṙ1)− q2, (10)

which will refer to as approximate DAFP. The intention is that, as λ increases, ṙi closely tracks q̇i.

3.1 Exact DAFP with Unity Derivative Gain (γ = 1)

In this case, introducing the variables zi = qi + q̇−i, we can rewrite (9) as

z = ν(z),

i.e., exact DAFP must evolve over fixed points of ν, which are the Nash equilibria of the game. Let

Q∗ ⊂ ∆(m1)×∆(m2) be the set of Nash equilibria. Any solution of the exact DAFP dynamics satisfies the

differential inclusion (
q̇1

q̇2

)
∈

(
−q1

−q2

)
+ Q∗.

In the case of a unique Nash equilibrium Q∗ = {(q∗1 , q∗2)}, the unique solution to exact DAFP is

q̇1 = −q1 + q∗1

q̇2 = −q2 + q∗2

which converges exponentially to the unique Nash equilibrium. In the case of multiple Nash equilibria, this

result does not in itself guarantee convergence of empirical frequencies.

3.2 Approximate DAFP with General Derivative Gain γ > 0

We consider now approximate DAFP with arbitrary γ > 0, and characterize the values of γ that result in

local asymptotic stability of a Nash equilibrum for large values of λ > 0. Actually, a large part of the paper

[SA05] deals with the case where γ = 1, which at this point is still puzzling to me, and therefore I will not

discuss this case: indeed, as the next theorem taken from their paper shows, it turns out that the value

γ = 1 never leads to asymptotic stability.

Let N be an orthonormal matrix whose columns span the null space of the row vector 1T ∈ Rm (i.e., span

the tangent space T∆(m), see (5)):

1T N = 0 and NNT = I.
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Then consider a Nash equilibrium (q∗1 , q∗2), which leads to an equilibrium (q∗1 , q∗2 , q∗1 , q∗2) of approximate DAFP

(10). We can write 
q1(t)

q2(t)

r1(t)

r2(t)

 =


q∗1

q∗2

q∗1

q∗2

+


N 0 0 0

0 N 0 0

0 0 N 0

0 0 0 N

 δx(t),

or equivalently

δx(t) =


NT 0 0 0

0 NT 0 0

0 0 NT 0

0 0 0 NT





q1(t)

q2(t)

r1(t)

r2(t)

−


q∗1

q∗2

q∗1

q∗2


 .

Linearizing (10) around (q∗1 , q∗2 , q∗1 , q∗2), we obtain

d

dt
δx =


−I (1 + γλ)D1 0 −γλD1

(1 + γλ)D2 −I −γλD2 0

λI 0 −λI 0

0 λI 0 −λI

 δx, (11)

with

Di =
1
τ

NT∇σ

(
Miq

∗
−i

τ

)
MiN.

Define

D =

(
0 D1

D2 0

)
, (12)

and rewrite the linearization above as

d

dt
δx =

(
−I + (1 + γλ)D −γλD

λI −λI

)
δx.

The following theorem characterizes local asymptotic stability of approximate DAFP and establishes that

derivative action FP can be locally convergent with a suitable derivative gain when standard FP is not

convergent. The local asymptotic stability from linearization is also called the second method of Lyapunov

in the control litterature [Kha02].

Theorem 3.1. Consider a two-player game under approximate DAFP (10), in the particular case of the

logit model, with a Nash equilibrium (q∗1 , q∗2). Assume that −I + D in (12) is nonsingular, and let ai + jbi

denote the eigenvalues of −I +D. The linearization (11) with γ > 0 is asymptotically stable for large λ > 0

if and only if

max
i

ai <
1− γ

γ
, if max

i
ai < 0,

max
i

ai

a2
i + b2

i

<
γ

1− γ
<

1
maxi ai

, if max
i

ai ≥ 0.
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Figure 2: Oscillations in Shapley’s game with stochastic FP.

Since −I + D is the Jacobian matrix of the linearization of standard stochastic FP, theorem 3.1 relates

the potential stability of approximate DAFP to the eigenvalues of standard stochastic FP. In particular,

the theorem implies that the linearization of approximate DAFP is asymptotically stable whenever the

linearization of standard stochastic FP is asymptotically stable (case maxi ai < 0, we can take γ = 1). It

also implies that approximate DAFP may have a stable linearization in situations where standard stochastic

FP does not. Note also from the theorem that γ = 1 does not stabilize an unstable case of fictitious play.

Remark 3.1. As before, it would be interesting to go through the proofs in more details to know if we can

generalize the result to stochastic FP with a general admissible cost function. Again at first glance, it seems

that the proofs do not use the particular form of logistic fictitious play explicitely.

3.3 Simulations: DAFP for Shapley’s Game

When we apply theorem 3.1 to the Shapley example, we obtain as a condition for local stability

0.0413 <
γ

1− γ
< 0.0638.

In particular, using γ = 0.05 leads to local asymptotic stability of approximate DAFP.

Fig. 2 and 3 show oscillations of standard stochastic FP in Shapley’s game and convergence with approximate

DAFP. The convergence seems to be global from the simulations. Also the discrete time system associated

to approximate DAFP apparently converges as well.

4 Conclusion

It seems at this point that we still do not have a clear picture of the convergence results for the various forms

of fictitious play (which is only one possible model of learning proposed in the litterature). Among possible

research directions, we can mention:

1. In the case of standard fictitious play (not stochastic FP), could we use a variant of the Lyapunov

function introduced by Hofbauer and al. for stochastic continuous time FP in order to give unifying

13



Figure 3: Convergence in a modified Shapley game with approximate DAFP.

proofs of convergence of the (deterministic) discrete-time system? Indeed, the current proofs do not

seem to be particularly insightful (idea suggested by Prof. Ozdaglar).

2. Settle the question of the generalization of the proofs of Shamma et al. to the general version of

stochastic FP.

3. [SA04] proves convergence of the continuous time system in the case of identical interests and 2 × n

games: it seems that the rigorous results of convergence of discrete-time stochastic FP in these two

cases have not yet appeared (convergence in zero-sum and 2 × 2 games for stochastic FP was proved

rigorously earlier).

4. For dynamic FP, a lot remains to be done: extension to general stochastic FP, studying the global

convergence of the continuous time system as opposed to the current local result, and stating a clear

and rigorous result about the convergence of the discrete-time system, in particular: does it stabilize

Shapley’s game with probability one?
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