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Abstract

It has been realised for several decades now, probably since Efron’s paper introducing the
concept of statistical curvature [Efr75], that most of the main concepts and methods of differ-
ential geometry are of substantial interest in connection with the theory of statistical inference.
This report describes in simple cases the links existing between the two theories. It is based
on an article introducing the topic, by R. Kass [Kas89]. The focus is on parametric statistical
models.
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Introduction

This term paper explores some connections between ideas in differential geometry and statistics.
The basic idea is to view a parametric statistical model as a manifold, whose points are particular
probability densities in the family under study. Then a particular parameterization of the family
is a coordinate system on this manifold, and it turns out that the Fisher information matrix
defines naturally a Riemannian metric on a statistical manifold. We can also study intrinsic
properties of the manifold and their statistical interpretation, such as curvature, distance, etc.
The most interesting applications of this differential geometrical view of statistical problems
come only with the introduction of more involved techniques of tensor calculus, but in this
report, we merely give a few illustrations of the geometry of some statistical procedures.

1 Elementary Differential Geometry

1.1 Manifolds

In this section we introduce (rather informally) a few concepts of differential geometry that
will be useful in the following. Differential geometry studies the properties of differentiable
manifolds. Intuitively, a manifold S is a Hausdorff topological space with coordinate systems,
i.e., homeomorphisms from S or subsets of S onto open subsets of R". For our purpose, we
will consider the manifolds to be connected. n is called the dimension of S. In statistics, the
elements or points of S will be probability distributions.

We call a coordinate system that has S as its domain a global coordinate system. In general
a manifold may not have a global coordinate system (for example, the surface of a sphere cannot
be homeomorphic to an open subset in R™), but only local coordinate systems on open subsets
of S that cover S, which must be differentiably related on the intersection of their domains.
However, since in statistics the focus is usually on local properties of manifolds, in the following
we will consider only the case where there exists a global coordinate system, by considering only
the neighborhood of interest.

Let S be a manifold and ¢ : S — R™ be a coordinate system for S. Then ¢ maps each
point p of S to a vector ¢(p) = [EL(p),...,&"(p)]T = [¢},...,€"]T of n real numbers called
the coordinates of the point p. Each & may be viewed as a function p — &¢(p) which maps
p to its i*® coordinate. We call these n functions the coordinate functions, and we shall write
the coordinate system ¢ as ¢ = [¢1,...,£"] = [€]. Because we want to be able to change the
coordinate systems and study properties that are invariant under coordinate transformations, we
impose some restrictions on the allowed coordinate systems. Recall that a mapping f between
open sets in a Euclidean space R™ is a O diffeomorphism if f is one-to-one, and f and f~!
are infinitely differentiable (i.e., C'™).

Definition 1. Let S be a set, and A a set of coordinate systems. We call S or (S, A) an
n-dimensional C'*° differentiable manifold, or more simply, a manifold, if:

(i) each element ¢ of A is a homeomorphism from S to some open subset of R™.

(ii) For each pair ¢, in A, the mapping 1 o ¢~* is a C* diffeomorphism. 1 o ¢~ is called
the coordinate transformation from ¢ to 1.

Let f be a real-valued function on a C'**° manifold S. The function f is called a C*° function
on S if there exist a coordinate system ¢ = [¢!] such that f = fo ¢~ is C> on ¢(S). This
property does not depend on the choice of coordinate system. We define the partial derivatives

of f to be g—é = g—é o ¢ (and similarly for higher order derivatives) and denote by (g—g) the

P
value of this function at a point p. When the coordinate variables are clear (here ¢'), we will
also write 0; 1= a%i' We will denote by F(S) or simply F the set of C*° functions on S. Then
F is an algebra over R with the usual operations. Let S and ) be manifolds with coordinate
systems ¢ : S — R"™ and ¢ : @ — R™. A mapping A : S — @ is said to be C* or smooth if
PYodlogtis C,



Note that a coordinate transformation ¢ o =1 : [€1,...,€"] — [p1,...,pn] defines new
functions pi(£Y, ..., €") and &(pt, ..., p") which are C°°. They satisfy

o' pl opt 98,
Zapﬂ ok Za@ op* O

where &) = 1 if k = i and 0 otherwise. In the following, we will adopt Einstein’s summation
convention, which means that we omit the summation sign > corresponding to indices which

are repeated in equations. Thus the previous relation could be rewritten gﬁ v % = gg 5 % = 51

1.2 Tangent Vectors and Tangent Spaces

We start by defining curves and tangent vectors of curves on manifolds. Consider a one-to-one
function «y : I — S from some interval I C R to S. By defining ~*(¢) := £(y(t)), we may express
the point v(t) using coordinates as ¥(t) = [y (¢),...,7"(t)]. If (t) is C= for t € I, we call v
a C* curve in S. Given a point p € S, a curve v such that v(a) = p, and a function f € F
on S, we can consider the value of f(v(t)) on the curve and define the derivative < f(v(t)) in
the usual way. Using coordinates, we have f(v(t)) = f(¥(t)) = f(4*(¢),...,7"(t)), and we can
rewrite the derivative using the chain rule as

d _(Of\ &) _[(of) ()
dtf(v(t))—<a§i>w(t) - (ae)w) o 1)

We call this the directional derivative of f along the curve 7. Then we define the tangent
vector of v at p to be the operator: F — R which maps f € F to 4 f(y(t))|¢=q, and define

(?TZ) = 4(a) to be this operator. We can rewrite equation (1) as:
p

(‘f;) ~4(a) = ¥'(a) (3‘2) , @)

where (%)p is the operator which maps f — (a%fi)p’ and %(a) = dditi(a). The operator

(%)p is also the tangent vector at the point p of the i*" coordinate curve, obtained by fixing

the values of all &7 for j # i and varying only the value of £°.
Now consider all curves that pass through the point p. We denote the set of all tangent
vectors correponding to these curves by T}, or T,(S5). We see from equation (2) that

(8)= { (ai)

So T,(S) is a linear space of dimension n = dim S. It is called the tangent space of S at p and

[cl,...,c"]ER”}. (3)

its elements are called the tangent vectors of S at p. In addition, we call ( e ) the natural

basis of T,,(S) with respect to the coordinate system [¢°].

1.3 Vector Fields

Let X : p — X, be a mapping which maps each point p in the manifold S to a tangent vector
X, € T,(S). We call such a mapping a vector field. Given a coordinate system [él] and the
corresponding natural basis, for each point p there exist n real numbers [Xp7 X ”] which
uniquely determine

Xp = X,(0:)p- (4)



Hence we may define the functions X% : p +— XZ, on S. We call these n functions {X1!,... X"}
the components of X with respect to [¢!]. If the components of a vector field are C°° with
respect to some coordinate system, then they are C°° with respect to any other, and the vector
field is called a C'™ vector field. We shall denote these vector fields by 7 (S). Note that 9; € T
fori=1,...,n.

1.4 Submanifolds

Definition 2. Let M and S be manifolds, where M is a subset of S. Let [€',... &"] and

[ul,...,u™] be coordinate systems for S and M, respectively, where n = dim S and m = dim M.

We call M a submanifold of S if the following conditions hold:
(i) The restriction §|iM of each § to M is a C*° function on M.

(ii) Let B! = (ifﬁ) and B, = [BL,...,B"] € R™. Then for each point p in M,
P
{Bi,...,Bn} are linearly independent (hence m < n).
(iii) For any open subset W of M, there exists U, an open subset of S, such that W =M NU.

The conditions are independent of the choice of coordinate systems. A connected open subset
of S is a manifold and also a submanifold of S. We can construct an example of a submanifold of
dimension m < n in the following way. Let [£'] be a coordinate system of S and {c™*!, ... ¢"}
be n — m real numbers. Define

M::{p€S|§i(p):ci,m+1§i§n}. (5)

(M, "M]) is the required submanifold, assuming it is non empty. Conversely, every m-dimensional
submanifold of S can be locally constructed this way.

Let M be a submanifold of the manifold S. For a point p € M we may view T,(M) as
a linear subspace of T,(S). If [¢/] and [u?] are coordinate systems for S and M, we have the

equality of the differential operators: for all f € F, ( o/ ) = (35;) (gg:) .
P P P

ou®

1.5 Riemannian metrics

Let S be a manifold of dimension n. For each point p in S, let us assume that an inner
product (-, ->p has been defined on the tangent space T,(S). The mapping g : p — ¢, ->p,
associating points to corresponding inner products (which are positive definite bilinear forms) is
a Riemannian metric on S. Given a Riemannian metric g on S, we call S or (S, g) a Riemannian
manifold.

Let [¢] be a coordinate system for S and let 9; := 6‘;. At each point p of S, since (9;),
is a basis T),(M), the components of a Riemannian metric with respect to [€7] are given by a
symmetric positive definite matrix G(p) = {g;; (p)}zjz1 with g;;(p) = ((0:)p, (0;)p). We require
that the functions: p — g;;(p) be in F(S) (or at least can be differentiated as needed). Also, if
M is a submanifold of S, g(p) naturally defines an inner product on T,,(M) which is a subspace
of T,(S) and so we obtain a Riemannian metric on M.

Let X, X' € T, be tangent vectors at p, X = X*(9;),, X' = X""(9;),. Then we have

<Xa X/>p = gzj(p)XlX/]7
and the length || X|| of the tangent vector X is given by || X|| = 1/(X, X). We can easily obtain

the relationships between the components g;; and the components gi; with respect to another
coordinate system [p*], as

~ o'\ (o¢ _[0p"\ [0p
9kl = Gij <8p’“> (8pl> and  gi; = gri <3€i> (8@) . (6)
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Now let v : (a,b) — S be a curve in S. We define its length ||v|| to be

dry b e
dtHdt—/a \/ 9i5 V7 dt. (7)

Using (6), we can show that this length does not depend on the choice of coordinate system.
Then if ¢y is an arbitrary point in (a,b), we can define the arc length s on the curve by

b
7]l ==

a

s(t) = / 1) .

If the tangent vector of « is nonzero throughout the domain of 7, then s is differentiable with
nonzero derivative. By the inverse function theorem, there exist an inverse transformation
c¢: s((a,b)) — (a,b), and s defines a parameterization of v o ¢, such that v o ¢ and « have the
same image. In practice, we may speak of the arc length parameterization of v when we really
mean the parameterization of the curve v o c. With this convention, we have 4(t) = §(s) s'(t),
and since '(t) = ||¥(¢)|| # 0 we see that

Iy (s)ll = 1. (®)

2 Information-Metric Riemannian Geometry

2.1 Manifolds of Densities

Differential geometry emphasizes intrisic properties of manifolds, that is, properties that do not
depend on extrinsic coordinate expressions. In statistics, we can structure a parametric family of
probability densities as a smooth manifold, and consider at once all possible parameterizations
of the parameter space.

Let {Py,0 € ©} be a family of laws on the sample space (X, B), dominated by a o-finite
measure v on (X, B), with pg(xz) = p(0,z) := dd%(a:). We assume that © is an open subset of
R™ and that the mapping 6 — py is injective and C'*° and that when necessary we can take
derivatives inside the integral sign (see section 2.3). Then we call S = {pg | 0 = [0*,...,0"] € O}
a statistical model, a parametric model, or simply a model on X. So S is parameterized using
n real-valued variables [0, ...,0"], and we may want to consider other parameterizations. We
will also consider only families such that pg(z) > 0, for all § € © and x € X, and therefore S is
a subset of

P(X) := {p:XHR| p(z) >OV:C€X,/p(z)dl/(x)1}.

Given a statistical model S = {py | 6 € ©}, the mapping ¢ : S — R™ defined by ¢(pg) = 6
allows us to consider ¢ = [#] as a coordinate system for S. There are some topological issues
involved to satisfy definition 1 (we need in particular a topology on the densities, such as the
weak topology), but here we will just assume that S can indeed be considered as a manifold,
that we may call a statistical manifold. In this case, a parameterization of S is in fact also a
coordinate system of S. This allows us to consider points in S without reference to a particular
parameterization. Then we can define the likelihood function based on x as

L,:5—>R
L (p) = p(z)

and the log-likelihood becomes I, (p) = log(L,(p)). A maximum likelihood point, if one exists,
is a point p for which L, (p) = max,cs L, (p).



2.2 Curved Exponential Families (CEF)

Exponential families and curved exponential families (CEF), i.e., subfamilies of exponential
families, constitute important background for the ideas of information geometry. In particular,
there is a geometric characterization of exponential families and an associated computable cri-
terion, which allows us to decide exactly when a family is exponential (see [MR93], chapter 1;
we will not pursue this discussion here).

Let S = {po | 0 € ©} be a statistical model corresponding to an exponential family in a
minimal representation, where © is the natural parameter space. We sometimes use the term
full exponential family to emphasize the fact that the entire parameter space © is considered.
Moreover, if © is an open subset of R™, as it will be assumed here, the exponential family is
called regular using the terminology in [Kas89], following [BN78]. We write the densities pg(z) =
¥ T(@)=3(9) with respect to a o-finite dominating measure j, with K(0) = { [ ¢*7@dpu(x)} and
j(0) =log K(0). Recall from Theorems 2.5.5, 2.5.7 and Corollary 2.5.8 in the course notes that
O is a convex set, j(0) is strictly convex on ©, K and j have derivatives of all orders that may
be computed by differentiating under the integral sign, the moments of T" of all orders exist and
the mean vector and covariance matrix of j are given by (see also equation (14)):

EyT =Vj(0) 9)
VoT = V7?j(0), (10)

where V?25(6) is the Hessian matrix of j at . From the convexity of j we deduce immediately
that the log-likelihood function 1,(0) := log p(#, x) is concave.

For convenience in section 3.2, we rename the random variables Y = T(X) and let the
corresponding new sample space be Y. We let u(f) = EyY, and call the image space of this
mapping the mean-value parameter space, denoted M. For an exponential family, a nice fact is
that the mean value can be used as a parameterization. So we may also take p to stand for the
mean-value, when used as parameter for the family.

Theorem 3. For an exponential family, the mapping p: 0 — p(f) = EpY is a C* diffeomor-
phism.

Proof. First, it follows from the lemma below that p is one-to-one.

Lemma 4. For all 0,0* € O,
(0 —0")"{u(0) — u(6")} 2 0
and equality holds if and only if § = 6*.

Proof of the lemma. Because © is open, we can extend define f(a) = j(ad + (1 — a)0*) =
J(0* + a0 — 0*)) for o in [—e1,1 + €2], for some €1, €3 > 0. We have

f'(@) =Vj(0" +a( —6%))7(0 - 6%)
(@) =(0 — 0)T'V25(0% 4 a0 — 6%))(0 — 6%).

In corollary 2.5.8 in the lecture notes, it is shown that V2j() is positive definite. Therefore
for 0 # 6%, we get f”(a) > 0 and so f'(«) is increasing on (0,1). In particular, we have
1/(0) < f/(1), which is the inequality claimed, using (9). O

So from the lemma, (0) = pu(6*) implies § = 6*, i.e., the mapping is one-to-one. Smoothness
was already mentioned as part of Theorem 2.5.7 in the course notes. Since Du(0) = V2;(9) is
positive definite, it follows from the inverse function theorem that the inverse mapping is also
smooth.

O



By a curved exponential family, we mean a set of probability densities which forms a sub-
manifold within a full exponential family. [Kas89] requires an additional topological condition
to avoid inconsistencies of MLE’s, which will appear in definition 5. We can think of a sub-
family as the subset of distributions of the full exponential family for which the parameter 6 is
restricted to a subspace ©g of ©. A natural way of generating subfamilies, to which we will limit
our discussion, is when Oy is obtainable from an open subset B of R¥ by a one-to-one mapping
B — 6(8), which must satisfy certain regularity conditions. We will restrict our attention to
curves (i.e., one-dimensional subfamilies) within the full parameter space.

Definition 5. [One-Parameter Curved Exponential Family] A subfamily of a full exponential
family is a one-parameter curved exponential family if B is an open interval in R and

(i) the mapping 8 — 6(5) is one-to-one, C°, and 030(8) is nowhere equal to the zero vector;

(i) writing ¢ : Og — B for the inverse mapping, if a sequence {6, € Og} converges to a point
0o € Og, then the corresponding sequence {p(0,) € B} must converge to ¢(0y) € B.

The condition that the gradient does not vanish is present to ensure the consistency of the
likelihood equations under the two different parameters. Under the conditions in the definition,
8 — 0(0) is said to be an imbedding and Oy is imbedded in O.

2.3 The Fisher metric as a Riemannian Metric

Let S = {pg | & € O} be a statistical model, and denote (0, z) := logp(d,x). Moreover, we
assume that © is an open set in R™, denote § = (61,...,60,,), and recall from the lecture notes
that the Fisher information matrix is defined as:

if the partial derivatives exist and have finite variance (by definition, 9; := %). Here is an

alternate expression for the matrix (), assuming we can take derivatives under the integral
sign and that the needed derivatives exist. We have then

Ep[0;l] = /(%p(@,l’)dl/(x) =0; /p(@,x)du(x) = 0.

Applying 0; we obtain

0= / 9,10,1(0, 2)p(0, 2))dv ()
=Fy [6]81l(9, Z‘)] + Ey [8ll(9, l‘)ajl(e, x)]

and so

Another useful representation is

1) =1 [ 0:/5(0,2) 0,/p(0. )i (o) (13)

Finally in the case of an exponential family, we have an explicit form of the log-likelihood
function in (11); we get I(0) = Ep[(T — Vj(0))(T — Vj(0))T] and since E,T = Vj(#) we have

1(9) = VaT = V2j(6). (14)

Now the matrix I(#) is symmetric, and in general it is positive semi-definite, since for an

m-dimensional vector ¢I' = [c!,...,c™]T we have

1) = / {Z ci('?il(&,w)} (0, x)dv(x) > 0.
i=1
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We assume further that I(6) is positive definite, for all  in ©. This happens for example in
the case of an exponential family, as was proved in Corollary 2.5.8 in the lecture notes. Then
I(0) may be used to define a Riemannian metric (-, -) on S, which is known as the Fisher metric
or information metric. Like any Riemannian metric, the information metric is invariant over
the choice of coordinate system (i.e., parameterization). Using (4), a coordinate free expression
may be written

() :T(S)xT(S) =R
(Xp, Yp)p = Ep [Xp(12) Yy (l)] -

Indeed, if X, = X/ (), and Y, = Y/ (8;),, we obtain

X:mY ZX YJE l )) j(lm))zl] = ZX;)Y;DJ I(p)zj

Note that if x becomes a vector of N i.i.d. observations, we have a corresponding statistical
model Sy = {p}’ | 0 € ©}. We know that the information matrix is simply multiplied by N (so
distances are multiplied by v N N) and so it is not necessary to distinguish between the geometries
of Sy and S, which are simply related by a scale factor of N. Also, an important property of
the information metric, and a consequence of its definition as a Riemannian metric, is that it
defines a metric on any submanifold of S. This will be implicitly used in the next section.

2.4 Example: Geometry of the Trinomial Family

We can describe some of the concepts of information-metric geometry using the case of the
trinomial family, which turns out to be a sphere in that geometry.

Let Q be the trinomial family with n = 1 trial. Let p’ > 0, i € {1,2,3}, be the probabilities of
each outcome, p!+p?+p? = 1: the multinomial distribution with n = 1 has distribution P(X; =
z1, X2 = @9, X3 = x3) = (ph)™ (p?)*2(p*)®2, for x; € {0,1}, i € {1,2,3} and 1 + 2 + 23 = 1.
It is a two-dimensional exponential family since we can rewrite

()" (p*)"* (p*)™ = expla1 log(p®/p') + w2 log(p® /p') + log p'].

Instead of the natural parameter space, we can consider the parameterization

such that to each triple (p!,p?,p®) in the simplex {(p!,p? p®) : p' + p* + p*> = 1} corre-
sponds a point on the positive orthant portion of the sphere of radius 2. A one-dimensional
imbedded subfamily Qg (see definition 5) may be represented as a curve ¢ having compo-
nents z(3) = (21(8),2%(8),2%(8)), B € B, on the sphere. The tangent vector to the curve
cis Ogz = (032',0522,052%), and its squared length is (932,95z). Now we have /p(3,z) =
(21/2)%1(2%/2)%2 (23 /2)%3, so we can compute the Fisher information using (13)

B=4 > (3@\/ B,z ) (952")% + (952°)% + (952°)°

T1+zotr3=1

=(032,03%2)2, (15)

where (-,-), is here the standard Euclidean inner product. Thus the Euclidean length of the
tangent vector to the curve c is ||9sz||2 = I(3)'/2. Consequently, from equation (7) the associ-
ated Euclidean length of the curve ¢ between z(3) and z(5*) corresponding to two elements @
and Q* of Q is

B* B*
0.(Q, Q") = /ﬂ 10522 d6 = /ﬁ 1(8)/2dp.



In general for a one-parameter subfamily corresponding to a curve ¢, we call the distance

de(B1, B2) = 512 I(B)'/?dB between two distributions associated to 3, and 5 the information
distance. As mentioned earlier, this distance does not depend on the choice of parameterization
of the curve.

Now for the full trinomial family, we can again consider a coordinate system 6 = [0, 62] on

the 2-dimensional manifold Q and compute the information matrix the same way:

10,=4 Y (a/7®0) (Wf(e,x)):fj(&z’“) (92

r1t+Tatw3=1 =1

:<6¢Z, 3j2’>2,

for 4,7 € {1,2}. That is, the (i, j)-component of the Fisher information matrix is the inner
product of the i** and j** coordinate tangent vectors on the surface of the sphere.

To define the information distance between two multinomial distributions ¢ and Q*, we
consider all possible curves on the sphere connecting the two corresponding points. Each curve
represents a one-parameter subfamily for which the information distance between @ and Q* can
be defined as before. Then the information distance between @@ and Q* as members of the full
trinomial family is defined as the minimum of the distances taken over all curves connecting the
two points. The curve that achieves this minimum is called a geodesic. In this case it is an arc
of the great circle through the points z and z* on the sphere. From this, we deduce that the
information distance between @ and Q* is the angle between z and z* (which is (z/2, 2*/2)3)
multiplied by 2, the radius of the sphere. Therefore

3
d(Q,Q*) = 2 arccos Z(pip;‘)lm.

i=1
2.4.1 Information Distance, Hellinger Distance and Kullback-Leibler Infor-
mation

In this section, we use the multinomial geometry to show the link between the Hellinger distance,
the Kullback-Leibler information and the information distance defined in the previous section.

If P and @ are probability measures with densities p and ¢ with respect to a o-finite measure
i, the Hellinger distance between the two is h(P, Q) defined by

W(PQ) = [ (Vo Vi dn =22 [ Vpadn.

and the Kullback-Leibler information is

K(P,Q) = /log (Z) p dp.

For the case of two distributions  and @Q* in the trinomial family, we get

3 1/2
hQ.Q") = (Z(p“” - 2)2) = e =1, = 25in(d(@, Q) /4)

=1

where the last equality comes from the fact already mentioned that the angle between z and z*
is d(Q,Q*)/2. Hence as d(Q,@Q*) — 0 we have h(Q, Q") ~ %d(Q, Q*), and so the two distances
behave essentially identically.

For the Kullback-Leibler information, we have

3
K(Q,Q%)=> p'log(p'/p™).
=1

9



Now as p — p*, we have by Taylor expansion
i i 1 % i 1 % i\2 % i\3
log(p" ) —log(p') = —Z;(p —p)+ﬁ(p —p')"+0((p" - 1))
so that X
o I (" =) \
K(Q,Q") = 5 Z T +O([lp* — pl?).
i=1

Let the point @* approach @ along a curve ¢ (assumed smooth), that we can parametrize by
the arc length s. Then

(P'(s*) = p'(s))* =(8sp'())?(s* — 5)> + O(|s* — s|*)
=(050"(5))%de(Q, Q%) + O(|s* — 5]*),

the second equality being obtained by definition of arc length. Now note that

3

5 O (8 =D (0 10 () (5

=1

= Y (@logp(s.)? p(s.a)

r1+zotx3=1
=I(s)
=[0s2(s)I* by (15)
=1 by (8).

— P

1=

Therefore we obtain

K(Q@) = 50e(@.Q) +0(d.(Q. Q")°).

In particular if ¢ is the geodesic curve between @) and Q*, we have K(Q,Q*) ~ %d(é}@*)2
and we see that the Kullback-Leibler information behaves locally like the square of a distance
function (however, K(Q,Q*) # K(Q*,Q) in general).

2.4.2 Jeffreys’ Prior

Within the field of Bayesian statistics, it is natural to ask how to select a prior on the parameter
space. Let S = {py|0 = [0,...,0"] € O} be a statistical model, and suppose that the volume
V = [\/det(I())df with respect to the Fisher metric is finite (the integral is n-fold). Then
m(0) = ++/det(I(0)) defines a probability distribution on ©, called Jeffreys’ prior. Since it
is invariant over the choice of the coordinate system [#], we may consider it as a probability
distribution on the model S. We can calculate it for the trinomial family, introducing spherical
polar coordinates, and find that it is uniform on the sphere.

3 Geometry of Information Loss and Recovery

3.1 PFisher’s Measure of Information

Here we review some classical properties of the Fisher information matrix related to information
loss. Let S = {pp | 0 € ©} be a statistical model on a sample space (X, ), and let T and A be
statistics, i.e., measurable functions from X to another measurable space (Y,C). A statistic T
induces a new model Sy := {qg | 0 € O}, where gp(y) is the density of the statistic T obtained
from pg. Similarly to (11), we can define the Fisher information matrix Ir(6) of the induced
model. In the following theorem, for two symmetric matrices M and N, by M < N we mean
N — M is positive semi-definite. We have:

10



Theorem 6. The Fisher information matrices I(0), I7(0) and 14(0) of the original and induced
models satisfy:

(i) 0= I7(0) = 1(9).
(ii) I7(0) = I(0) if and only if T is sufficient.
(iii) 14(0) =0 if and only if the distribution of A does not depend on 0, i.e., A is ancillary.

(iv) The information loss AI(8) = I(0)—I7(0) caused by summarizing the data x intoy = T(x)
s given by

AI(0)i; = Ep [Covgl0;l(0, X), 0;1(0, X) | T(X)]]
(v) I1.4(0) = Ir(0) +1a(0) if T and A are independent. In general I7 A(0) = I7 a(0) +1a(0).
Proof. We will start by proving (iv). Let Py and Qg be probability distributions with densities
pe and gy with respect to a o-finite measure v, as defined at the beginning of this section

(Qo = PyoT~1'). We assume as before that derivation with respect to ¢ and integration can
be interchanged. First for all C' € C, we have

[ ontoglaro T(@) dPu(e ./i3bgq0 ) dQo(y 3£/Q9 Yy
T-1(C)

—0; /C dQo(y) = & /T e dPy(z)
- / 0 log(po(z))dPs (z),
T-1(C)

so we have

9;log qo(T(X)) = Epl0:1(8, X)|T(X)]- (16)
Now if we define r9(x) by
po(x) = ro(2)qs(T (2)), (17)
we have
0;1(0,z) = 0;log qo (T () + 0;log re(z), (18)

and so by the previous equality we get Ey[0; logr9(X)|T(X)] = 0. Thus it follows from [Dud03],
Theorem 10.2.9. that logre(X) is orthogonal to any function f(7'(X)) with respect to the inner
product ((®, ¥))p = Ep[P(X)¥(X)]. In particular we have

Eg[0;1logre(X) 0jlog qo(T(X))] =0, Vi,j. (19)
Now by definition

Covy[0;1(0,X),0;1(0, X) | T(X)]

= Ey [{0:1(0, X) — E[0;1(0, X)[T(X)]} {0;1(6, X) — Eg[0;1(0, X)|T(X)]} T(X)]

= By [0;logre(X) 0;logre(X)|T(X)], by (18),(16).
Therefore

Ey [Covg[0;1(0, X),0;1(6,X) | T(X)]] =FEp [0;logre(X) 0;logrg(X)]
=I1(0)i; — Ir(0)ij, by (18),(19).
This finishes the proof of (iv). Then (i) becomes obvious. The condition AT(#) =0 in (ii) is

that 0; logrg(x) = 0 for all 0,4, z, and this is equivalent to T being sufficient by the factorization

theorem (see (17)). (iii) is clear from the definition of I4(6). (v) follows from the fact that if
po(x) = po,1(z1)pe,2(x2), then the cross products in I12(6) vanish under our assumptions:

//amemammmmmﬂmmxmw 33//m Jdv(z) = 0.
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Information loss was defined in the theorem above. Now suppose (7', A) is sufficient and A
is ancillary, then I (0) = I(f). Thus, the information lost by an insufficient estimator 7' can
be recovered by conditioning on an appropriate statistic A.

Let us consider for simplicity the case where ©® C R. The information lost by an estimator
T can be quantified in terms of I7(0)/nl;(0) or nly(6) — I7(0), where I(0) is the information
per observation in a sample of size n. It is easier to look only at the limiting values (as n —
o0), which is 1 for the ratio form for efficient estimators in an exponential family (see next
section). Then we can distinguish among the different estimators using nl;(6) — I7(0) (which
will typically tend to infinity for inefficient estimators). What Fisher called information loss is
lim,, oo (n11(0) — I7(0)), and he claimed that among all efficient estimators, the MLE minimizes
the information loss. There are geometric interpretations of this claim, as illustrated in the next
section.

3.2 Geometrical Interpretation of Estimation in CEF

3.2.1 Auxiliary Space Associated with an Estimator

Recall the definition of a one-parameter curved exponential family with parameter 0 € B
(definition 5); it corresponds to a submanifold Sy in the manifold S of the full exponential
family. We have defined the mean-value parameter space M for the full exponential family, and
the submanifold Sy can be specified by a subset My C M. Recall also the notation introduced
before theorem 3 for exponential families. Usually an estimator is a mapping from the sample
space Y into the the parameter space B, but we will restrict the class of possible estimators T’
that we consider. Suppose we have a sample of i.i.d. observations Y7i,...,Y,,, then their mean
Y,, determines a point /i in S whose p—coordinates are Y,,. Since Y,, is a sufficient statistic for
S, hence also for Sy, we will only consider estimators which are functions of fi. Now really these
estimators are mappings from S to B, such that T'(4i) = B However, since we will not deal
with advanced concepts of differential geometry, here we can identify S with the space M, and
consider the estimators to be maps from M to B, as is done in [Kas89]. This definition includes
many important estimators, and simplifies the estimation process: for any given estimator, we
do not need to consider a sequence of mappings, but rather need only examine a single mapping,
and then the geometrical interpretation becomes revealing.

Let V' be an open neighborhood in M such that V N My # (. An estimator T : V — B will
be called regular if T' is smooth with nonzero derivative and for all 5 such that u(g8) € V, we
have T'(u(8)) = . Let o € My, W be a neighborhood of py in M, C' an open subset of B, and
f:CxW — R asmooth function with f(3,-) : W — R having everywhere a nonzero gradient,
such that f(8,u(8)) = 0 for all 8 € C. Then by the implicit function theorem there exists an
open neighborhood V' of pg in W on which a regular estimator 7' is uniquely defined by the
equation f(T'(y),y) = 0. For example, about each point g in a CEF there is a neighborhood
on which the MLE is regular, the function f being given by the likelihood equation

F(B,y) = (y — w(B)) " 950(8),

corresponding to the minimization of 8(3)Ty — j(6(3)), with u(8) = V5 (0(8)).

Now consider the replacement of Y,, by a sufficient statistic (7, 4). From the relation
I A(0) = I7(0) + L4)7(0), we see that the information not contained in 7' must be contained
in the conditional distribution of A given T. The geometrical interpretation of this is based on

the following proposition.

Proposition 7. If T is a reqular estimator, then for each By € B, there exists a neighborhood
U of u(Bo) in M and a coordinate system (Tyr, A) of U onto an open subset of R x R¥~1 such
that Ty is the restriction of T to U and UN My ={pu €U : A(n) =0}.

Note that it does not seem that A is ancillary in general. This proposition corresponds to
the local construction of a submanifold mentioned in (5). We will not elaborate on this point
which consists in the construction of imbedded submanifolds in differential geometry. What is

12



H(Bo)

Figure 1: Local decomposition of M near p(fp).

important to us is that locally, the estimator T determines a decomposition of the manifold of
the full exponential family into subspaces A, = {p € U : T'(n) = t} (see figure 1). A, is called
the auxiliary subspace associated with the estimator 7' at ¢t. Within the neighborhood U of
1(Bo), the local coordinate system maps points p to (T(u), A(p)), with A(p) = 0 for points on
the curve My. If the true parameter of the CEF is 3y, then with probability one Y,, will fall in U
for n sufficiently large, as follows from the law of large numbers. Then (T'(Y;,), A(Y,,)) becomes
sufficient and the amount of information lost by 1" is the amount contained in the distribution

of A(Y,,) given T.

3.2.2 Efficiency

First we consider the relationship of the Fisher information matrices for exponential families in
terms of parameterization by the natural parameter 6 and by p, and show that they are inverses
of each other. This is a straightforward application of the change of variable formula (6). Let
1, (1) = log(p(y, 8(1))) be the log likelihood on M.

Proposition 8. In an exponential family, the Fisher information matrices I(0) and I(u) satisfy

1(9) =Dp(9) = V2j(9),
=D0 I(0(p) "

)
I(p) =DO(p) =
Proof. The first relations are immediate from (9) and (14). The chain rule (6) can be written
I(p) = DO(u)I(0(1)) DO ()" (20)

A consequence of Theorem 3 and the inverse function theorem is
DO(u) = Dp(6) ™" (21)
Now we can combine (20), (21) and the first relations to finish the proof. O

As a consequence of the Delta method, and of the fact that 1(0) = V2j(6) = Vy(nY,,) for an
exponential family, we have the following theorem:

Theorem 9. For a reqular estimator T that is consistent for a parameter B of a CEF,
avarﬁ(T)_l/Z\/ﬁ(T(Yn) — ) — N(0,1) in distribution

where avarg(T) = [V, T (BN I(w(B)) LV, T(1(B))] is called the asymptotic variance of T.
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We define the efficiency of a regular estimator T to be the ratio I(3)~!/avarg(T). We
can interpret avarg(T') geometrically and see that its minimum value is I(8)~!. Suppose T is
defined by an estimating equation f(T(y),7) = 0, with f : R x R — R. If we denote the
partial derivatives of f with respect to its two arguments by D;f and Dof (D1f is a scalar),
by differentiating f(T(u), ) = 0 with respect to u we get

0=Dif(VuT(p)) + D2f,
and so V, T(u) = —(D1 f)"*(D2f). Then we can rewrite

avarg(T) = (D2 f)" I(1(8)) " (D2 f )(D1f) 2. (22)

By definition the auxiliary space at § is given by Ag = {u : f(8,1) = 0}. Now Dsf is the
gradient of f(8,-) and so it is normal to Ag with respect to the Euclidean inner product.
Denoting as before (-, -) u(p) the inner product associated to the Fisher information matrix at
w(B), we have then for any vector v tangent to Ag:

0 =0T (D2 f (8, u(B))) = v I(u(B)I(1(B8)) " D2 (8, u(B))]
0 =(v,n8)u(p),

where ng = I(u(3)) "' D2 f(3, u(B)), which is thus seen to be normal to Ag at u(3) with respect
to the (-, '>#(ﬁ) inner product. This will be useful in the proof of the following theorem.

Theorem 10. The efficiency of a reqular estimator T based on i.i.d. observations from a CEF
s given by
1(p)~!

— «in2
avarg(T) sin(4),

where ¢ is the angle between My and Ag (i.e., between Ogp(B) and Ag), with respect to (-, '>u(ﬁ)'

Proof. We begin with
(ng,18) w5y = (D2f) 1(1(B)) " (D2f).
Next we rewrite Dy f by differentiating f (53, u(8)) = 0 with respect to g:
0= D1 f+ (Dof )T (9p1(8))
and so
—D1f = (np, 051(83)) u(8)-
We use these expressions in (22) to obtain
avarg(T) = (ng, n5)u(s) (05, 9s1(B)) u(s)) >
Now we also have I(3) = (9au(f3), 0s1s(8)) sy, as in (20), and so we get
18" _ ({3, 9p1(B)) u(s))?
avarg(T')  (ng,np)u(s) (Op1(B), Ip1i(B))up)

The right-hand side is the squared cosine of the angle between ng and dgu(5) with respect to
(,)u(3), which is (7/2) — ¢. This proves the theorem using cos(m/2 — ¢) = sin(¢). O

Finally in the case of the MLE, from the likelihood equations,
0= f(8,Yn) = (Yo = 1(8))" (950)
we get using proposition 8
Dy f = 0560 = DO(p) O = 1(11(6)) O,

and thus ng = dgu. Thus the angle between M, and Ay is 7/2, which maximizes sin? ¢. So
from Theorem 10, we have a geometric interpretation that the MLE minimizes the asymptotic
variance, i.e., is efficient: in this case the auxiliary space associated with the MLE and the CEF
are orthogonal. Efficiency of maximum likelihood estimators is proved more generally in section
3.9 of the course notes.
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Conclusion

We have given examples of geometrical arguments that can provide insight into some statistical
procedures. A drawback is that in general, this requires strong regularity conditions, but the
motivation is that geometrical understanding can then be used as a basis for other proofs.
Moreover, it appears that more advanced concepts of differential geometry than those presented
here, in particular involving covariant differentiation and some affine connections introduced by
Amari actually provide results that would be difficult to obtain otherwise (see [AN0O] for an
introduction).
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