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Abstract

It has been realised for several decades now, probably since Efron’s paper introducing the
concept of statistical curvature [Efr75], that most of the main concepts and methods of differ-
ential geometry are of substantial interest in connection with the theory of statistical inference.
This report describes in simple cases the links existing between the two theories. It is based
on an article introducing the topic, by R. Kass [Kas89]. The focus is on parametric statistical
models.
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Introduction

This term paper explores some connections between ideas in differential geometry and statistics.
The basic idea is to view a parametric statistical model as a manifold, whose points are particular
probability densities in the family under study. Then a particular parameterization of the family
is a coordinate system on this manifold, and it turns out that the Fisher information matrix
defines naturally a Riemannian metric on a statistical manifold. We can also study intrinsic
properties of the manifold and their statistical interpretation, such as curvature, distance, etc.
The most interesting applications of this differential geometrical view of statistical problems
come only with the introduction of more involved techniques of tensor calculus, but in this
report, we merely give a few illustrations of the geometry of some statistical procedures.

1 Elementary Differential Geometry

1.1 Manifolds

In this section we introduce (rather informally) a few concepts of differential geometry that
will be useful in the following. Differential geometry studies the properties of differentiable
manifolds. Intuitively, a manifold S is a Hausdorff topological space with coordinate systems,
i.e., homeomorphisms from S or subsets of S onto open subsets of Rn. For our purpose, we
will consider the manifolds to be connected. n is called the dimension of S. In statistics, the
elements or points of S will be probability distributions.

We call a coordinate system that has S as its domain a global coordinate system. In general
a manifold may not have a global coordinate system (for example, the surface of a sphere cannot
be homeomorphic to an open subset in Rn), but only local coordinate systems on open subsets
of S that cover S, which must be differentiably related on the intersection of their domains.
However, since in statistics the focus is usually on local properties of manifolds, in the following
we will consider only the case where there exists a global coordinate system, by considering only
the neighborhood of interest.

Let S be a manifold and φ : S → Rn be a coordinate system for S. Then φ maps each
point p of S to a vector φ(p) = [ξ1(p), . . . , ξn(p)]T = [ξ1, . . . , ξn]T of n real numbers called
the coordinates of the point p. Each ξi may be viewed as a function p 7→ ξi(p) which maps
p to its ith coordinate. We call these n functions the coordinate functions, and we shall write
the coordinate system φ as φ = [ξ1, . . . , ξn] = [ξi]. Because we want to be able to change the
coordinate systems and study properties that are invariant under coordinate transformations, we
impose some restrictions on the allowed coordinate systems. Recall that a mapping f between
open sets in a Euclidean space Rm is a C∞ diffeomorphism if f is one-to-one, and f and f−1

are infinitely differentiable (i.e., C∞).

Definition 1. Let S be a set, and A a set of coordinate systems. We call S or (S,A) an
n-dimensional C∞ differentiable manifold, or more simply, a manifold, if:

(i) each element φ of A is a homeomorphism from S to some open subset of Rn.

(ii) For each pair φ, ψ in A, the mapping ψ ◦ φ−1 is a C∞ diffeomorphism. ψ ◦ φ−1 is called
the coordinate transformation from φ to ψ.

Let f be a real-valued function on a C∞ manifold S. The function f is called a C∞ function
on S if there exist a coordinate system φ = [ξi] such that f̄ = f ◦ φ−1 is C∞ on φ(S). This
property does not depend on the choice of coordinate system. We define the partial derivatives
of f to be ∂f

∂ξ := ∂f̄
∂ξ ◦ φ (and similarly for higher order derivatives) and denote by

(
∂f
∂ξ

)
p

the

value of this function at a point p. When the coordinate variables are clear (here ξi), we will
also write ∂i := ∂

∂ξi . We will denote by F(S) or simply F the set of C∞ functions on S. Then
F is an algebra over R with the usual operations. Let S and Q be manifolds with coordinate
systems φ : S → Rn and ψ : Q → Rm. A mapping λ : S → Q is said to be C∞ or smooth if
ψ ◦ λ ◦ φ−1 is C∞.
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Note that a coordinate transformation ψ ◦ φ−1 : [ξ1, . . . , ξn] 7→ [ρ1, . . . , ρn] defines new
functions ρi(ξ1, . . . , ξn) and ξi(ρ1, . . . , ρn) which are C∞. They satisfy

n∑
j=1

∂ξi

∂ρj

∂ρj

∂ξk
=

n∑
j=1

∂ρi

∂ξj

∂ξj

∂ρk
= δi

k,

where δi
k = 1 if k = i and 0 otherwise. In the following, we will adopt Einstein’s summation

convention, which means that we omit the summation sign
∑

corresponding to indices which
are repeated in equations. Thus the previous relation could be rewritten ∂ξi

∂ρj
∂ρj

∂ξk = ∂ρi

∂ξj
∂ξj

∂ρk = δi
k.

1.2 Tangent Vectors and Tangent Spaces

We start by defining curves and tangent vectors of curves on manifolds. Consider a one-to-one
function γ : I → S from some interval I ⊂ R to S. By defining γi(t) := ξi(γ(t)), we may express
the point γ(t) using coordinates as γ̄(t) = [γ1(t), . . . , γn(t)]. If γ̄(t) is C∞ for t ∈ I, we call γ
a C∞ curve in S. Given a point p ∈ S, a curve γ such that γ(a) = p, and a function f ∈ F
on S, we can consider the value of f(γ(t)) on the curve and define the derivative d

dtf(γ(t)) in
the usual way. Using coordinates, we have f(γ(t)) = f̄(γ̄(t)) = f̄(γ1(t), . . . , γn(t)), and we can
rewrite the derivative using the chain rule as

d

dt
f(γ(t)) =

(
∂f̄

∂ξi

)
γ̄(t)

dγi(t)
dt

=
(
∂f

∂ξi

)
γ(t)

dγi(t)
dt

, (1)

We call this the directional derivative of f along the curve γ. Then we define the tangent
vector of γ at p to be the operator: F → R which maps f ∈ F to d

dtf(γ(t))|t=a, and define(
dγ
dt

)
p

= γ̇(a) to be this operator. We can rewrite equation (1) as:

(
dγ

dt

)
p

= γ̇(a) = γ̇i(a)
(
∂

∂ξi

)
p

, (2)

where
(

∂
∂ξi

)
p

is the operator which maps f 7→
(

∂f
∂ξi

)
p
, and γ̇i(a) = dγi

dt (a). The operator(
∂

∂ξi

)
p

is also the tangent vector at the point p of the ith coordinate curve, obtained by fixing

the values of all ξj for j 6= i and varying only the value of ξi.
Now consider all curves that pass through the point p. We denote the set of all tangent

vectors correponding to these curves by Tp or Tp(S). We see from equation (2) that

Tp(S) =

{
ci
(
∂

∂ξi

)
p

∣∣∣∣∣ [c1, . . . , cn] ∈ Rn

}
. (3)

So Tp(S) is a linear space of dimension n = dim S. It is called the tangent space of S at p and

its elements are called the tangent vectors of S at p. In addition, we call
(

∂
∂ξi

)
p

the natural

basis of Tp(S) with respect to the coordinate system [ξi].

1.3 Vector Fields

Let X : p 7→ Xp be a mapping which maps each point p in the manifold S to a tangent vector
Xp ∈ Tp(S). We call such a mapping a vector field. Given a coordinate system [ξi] and the
corresponding natural basis, for each point p there exist n real numbers [X1

p , . . . , X
n
p ] which

uniquely determine
Xp = Xi

p(∂i)p. (4)

3



Hence we may define the functions Xi : p 7→ Xi
p on S. We call these n functions {X1, . . . , Xn}

the components of X with respect to [ξi]. If the components of a vector field are C∞ with
respect to some coordinate system, then they are C∞ with respect to any other, and the vector
field is called a C∞ vector field. We shall denote these vector fields by T (S). Note that ∂i ∈ T
for i = 1, . . . , n.

1.4 Submanifolds

Definition 2. Let M and S be manifolds, where M is a subset of S. Let [ξ1, . . . , ξn] and
[u1, . . . , um] be coordinate systems for S and M , respectively, where n = dim S and m = dim M .
We call M a submanifold of S if the following conditions hold:

(i) The restriction ξi
|M of each ξ to M is a C∞ function on M .

(ii) Let Bi
a :=

(
∂ξi

|M
∂ua

)
p

and Ba := [B1
a, . . . , B

n
a ] ∈ Rn. Then for each point p in M ,

{B1, . . . , Bm} are linearly independent (hence m ≤ n).

(iii) For any open subset W of M , there exists U , an open subset of S, such that W = M ∩U .

The conditions are independent of the choice of coordinate systems. A connected open subset
of S is a manifold and also a submanifold of S. We can construct an example of a submanifold of
dimension m < n in the following way. Let [ξi] be a coordinate system of S and {cm+1, . . . , cn}
be n−m real numbers. Define

M :=
{
p ∈ S | ξi(p) = ci,m+ 1 ≤ i ≤ n

}
. (5)

(M, [ξi
|M ]) is the required submanifold, assuming it is non empty. Conversely, everym-dimensional

submanifold of S can be locally constructed this way.
Let M be a submanifold of the manifold S. For a point p ∈ M we may view Tp(M) as

a linear subspace of Tp(S). If [ξi] and [ua] are coordinate systems for S and M , we have the

equality of the differential operators: for all f ∈ F ,
(

∂f
∂ua

)
p

=
(

∂ξi

∂ua

)
p

(
∂f
∂ξi

)
p
.

1.5 Riemannian metrics

Let S be a manifold of dimension n. For each point p in S, let us assume that an inner
product 〈·, ·〉p has been defined on the tangent space Tp(S). The mapping g : p → 〈·, ·〉p,
associating points to corresponding inner products (which are positive definite bilinear forms) is
a Riemannian metric on S. Given a Riemannian metric g on S, we call S or (S, g) a Riemannian
manifold.

Let [ξi] be a coordinate system for S and let ∂i := ∂
∂ξi . At each point p of S, since (∂i)p

is a basis Tp(M), the components of a Riemannian metric with respect to [ξi] are given by a
symmetric positive definite matrix G(p) = {gij(p)}n

i,j=1 with gij(p) = 〈(∂i)p, (∂j)p〉. We require
that the functions: p 7→ gij(p) be in F(S) (or at least can be differentiated as needed). Also, if
M is a submanifold of S, g(p) naturally defines an inner product on Tp(M) which is a subspace
of Tp(S) and so we obtain a Riemannian metric on M .

Let X,X ′ ∈ Tp be tangent vectors at p, X = Xi(∂i)p, X ′ = X ′i(∂i)p. Then we have

〈X,X ′〉p = gij(p)XiX ′j ,

and the length ‖X‖ of the tangent vector X is given by ‖X‖ =
√
〈X,X〉. We can easily obtain

the relationships between the components gij and the components g̃kl with respect to another
coordinate system [ρk], as

g̃kl = gij

(
∂ξi

∂ρk

)(
∂ξj

∂ρl

)
and gij = g̃kl

(
∂ρk

∂ξi

)(
∂ρl

∂ξj

)
. (6)
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Now let γ : (a, b) → S be a curve in S. We define its length ‖γ‖ to be

‖γ‖ :=
∫ b

a

∥∥∥∥dγdt
∥∥∥∥ dt =

∫ b

a

√
gij γ̇iγ̇jdt. (7)

Using (6), we can show that this length does not depend on the choice of coordinate system.
Then if t0 is an arbitrary point in (a, b), we can define the arc length s on the curve by

s(t) =
∫ t

t0

‖γ̇(u)‖du.

If the tangent vector of γ is nonzero throughout the domain of γ, then s is differentiable with
nonzero derivative. By the inverse function theorem, there exist an inverse transformation
c : s((a, b)) → (a, b), and s defines a parameterization of γ ◦ c, such that γ ◦ c and γ have the
same image. In practice, we may speak of the arc length parameterization of γ when we really
mean the parameterization of the curve γ ◦ c. With this convention, we have γ̇(t) = γ̇(s) s′(t),
and since s′(t) = ‖γ̇(t)‖ 6= 0 we see that

‖γ̇(s)‖ = 1. (8)

2 Information-Metric Riemannian Geometry

2.1 Manifolds of Densities

Differential geometry emphasizes intrisic properties of manifolds, that is, properties that do not
depend on extrinsic coordinate expressions. In statistics, we can structure a parametric family of
probability densities as a smooth manifold, and consider at once all possible parameterizations
of the parameter space.

Let {Pθ, θ ∈ Θ} be a family of laws on the sample space (X,B), dominated by a σ-finite
measure ν on (X,B), with pθ(x) = p(θ, x) := dPθ

dν (x). We assume that Θ is an open subset of
Rn and that the mapping θ → pθ is injective and C∞ and that when necessary we can take
derivatives inside the integral sign (see section 2.3). Then we call S = {pθ | θ = [θ1, . . . , θn] ∈ Θ}
a statistical model, a parametric model, or simply a model on X. So S is parameterized using
n real-valued variables [θ1, . . . , θn], and we may want to consider other parameterizations. We
will also consider only families such that pθ(x) > 0, for all θ ∈ Θ and x ∈ X, and therefore S is
a subset of

P(X) :=
{
p : X → R | p(x) > 0 ∀x ∈ X,

∫
p(x)dν(x) = 1

}
.

Given a statistical model S = {pθ | θ ∈ Θ}, the mapping φ : S → Rn defined by φ(pθ) = θ
allows us to consider φ = [θi] as a coordinate system for S. There are some topological issues
involved to satisfy definition 1 (we need in particular a topology on the densities, such as the
weak topology), but here we will just assume that S can indeed be considered as a manifold,
that we may call a statistical manifold. In this case, a parameterization of S is in fact also a
coordinate system of S. This allows us to consider points in S without reference to a particular
parameterization. Then we can define the likelihood function based on x as

Lx : S → R
Lx(p) = p(x)

and the log-likelihood becomes lx(p) = log(Lx(p)). A maximum likelihood point, if one exists,
is a point p̂ for which Lx(p̂) = maxp∈S Lx(p).
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2.2 Curved Exponential Families (CEF)

Exponential families and curved exponential families (CEF), i.e., subfamilies of exponential
families, constitute important background for the ideas of information geometry. In particular,
there is a geometric characterization of exponential families and an associated computable cri-
terion, which allows us to decide exactly when a family is exponential (see [MR93], chapter 1;
we will not pursue this discussion here).

Let S = {pθ | θ ∈ Θ} be a statistical model corresponding to an exponential family in a
minimal representation, where Θ is the natural parameter space. We sometimes use the term
full exponential family to emphasize the fact that the entire parameter space Θ is considered.
Moreover, if Θ is an open subset of Rn, as it will be assumed here, the exponential family is
called regular using the terminology in [Kas89], following [BN78]. We write the densities pθ(x) =
eθ·T (x)−j(θ) with respect to a σ-finite dominating measure µ, with K(θ) = {

∫
eθ.T (x)dµ(x)} and

j(θ) = logK(θ). Recall from Theorems 2.5.5, 2.5.7 and Corollary 2.5.8 in the course notes that
Θ is a convex set, j(θ) is strictly convex on Θ, K and j have derivatives of all orders that may
be computed by differentiating under the integral sign, the moments of T of all orders exist and
the mean vector and covariance matrix of j are given by (see also equation (14)):

EθT = ∇j(θ) (9)

VθT = ∇2j(θ), (10)

where ∇2j(θ) is the Hessian matrix of j at θ. From the convexity of j we deduce immediately
that the log-likelihood function lx(θ) := log p(θ, x) is concave.

For convenience in section 3.2, we rename the random variables Y = T (X) and let the
corresponding new sample space be Y. We let µ(θ) = EθY , and call the image space of this
mapping the mean-value parameter space, denoted M . For an exponential family, a nice fact is
that the mean value can be used as a parameterization. So we may also take µ to stand for the
mean-value, when used as parameter for the family.

Theorem 3. For an exponential family, the mapping µ : θ → µ(θ) = EθY is a C∞ diffeomor-
phism.

Proof. First, it follows from the lemma below that µ is one-to-one.

Lemma 4. For all θ, θ∗ ∈ Θ,

(θ − θ∗)T {µ(θ)− µ(θ∗)} ≥ 0

and equality holds if and only if θ = θ∗.

Proof of the lemma. Because Θ is open, we can extend define f(α) = j(αθ + (1 − α)θ∗) =
j(θ∗ + α(θ − θ∗)) for α in [−ε1, 1 + ε2], for some ε1, ε2 > 0. We have

f ′(α) =∇j(θ∗ + α(θ − θ∗))T (θ − θ∗)

f ′′(α) =(θ − θ∗)T∇2j(θ∗ + α(θ − θ∗))(θ − θ∗).

In corollary 2.5.8 in the lecture notes, it is shown that ∇2j(θ) is positive definite. Therefore
for θ 6= θ∗, we get f ′′(α) > 0 and so f ′(α) is increasing on (0, 1). In particular, we have
f ′(0) < f ′(1), which is the inequality claimed, using (9).

So from the lemma, µ(θ) = µ(θ∗) implies θ = θ∗, i.e., the mapping is one-to-one. Smoothness
was already mentioned as part of Theorem 2.5.7 in the course notes. Since Dµ(θ) = ∇2j(θ) is
positive definite, it follows from the inverse function theorem that the inverse mapping is also
smooth.
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By a curved exponential family, we mean a set of probability densities which forms a sub-
manifold within a full exponential family. [Kas89] requires an additional topological condition
to avoid inconsistencies of MLE’s, which will appear in definition 5. We can think of a sub-
family as the subset of distributions of the full exponential family for which the parameter θ is
restricted to a subspace Θ0 of Θ. A natural way of generating subfamilies, to which we will limit
our discussion, is when Θ0 is obtainable from an open subset B of Rk by a one-to-one mapping
β → θ(β), which must satisfy certain regularity conditions. We will restrict our attention to
curves (i.e., one-dimensional subfamilies) within the full parameter space.

Definition 5. [One-Parameter Curved Exponential Family] A subfamily of a full exponential
family is a one-parameter curved exponential family if B is an open interval in R and

(i) the mapping β → θ(β) is one-to-one, C∞, and ∂βθ(β) is nowhere equal to the zero vector;

(ii) writing φ : Θ0 → B for the inverse mapping, if a sequence {θn ∈ Θ0} converges to a point
θ0 ∈ Θ0, then the corresponding sequence {φ(θn) ∈ B} must converge to φ(θ0) ∈ B.

The condition that the gradient does not vanish is present to ensure the consistency of the
likelihood equations under the two different parameters. Under the conditions in the definition,
β → θ(β) is said to be an imbedding and Θ0 is imbedded in Θ.

2.3 The Fisher metric as a Riemannian Metric

Let S = {pθ | θ ∈ Θ} be a statistical model, and denote l(θ, x) := log p(θ, x). Moreover, we
assume that Θ is an open set in Rm, denote θ = (θ1, . . . , θm), and recall from the lecture notes
that the Fisher information matrix is defined as:

I(θ)ij := Eθ [∂il(θ, x) ∂j l(θ, x)] , (11)

if the partial derivatives exist and have finite variance (by definition, ∂i := ∂
∂θi

). Here is an
alternate expression for the matrix I(θ), assuming we can take derivatives under the integral
sign and that the needed derivatives exist. We have then

Eθ[∂il] =
∫
∂ip(θ, x)dν(x) = ∂i

∫
p(θ, x)dν(x) = 0.

Applying ∂j we obtain

0 =
∫
∂j [∂il(θ, x)p(θ, x)]dν(x)

=Eθ[∂j∂il(θ, x)] + Eθ[∂il(θ, x)∂j l(θ, x)]

and so
I(θ)ij = −Eθ[∂i∂j l(θ, x)]. (12)

Another useful representation is

I(θ)ij = 4
∫
∂i

√
p(θ, x) ∂j

√
p(θ, x)dν(x). (13)

Finally in the case of an exponential family, we have an explicit form of the log-likelihood
function in (11); we get I(θ) = Eθ[(T −∇j(θ))(T −∇j(θ))T ] and since EθT = ∇j(θ) we have

I(θ) = VθT = ∇2j(θ). (14)

Now the matrix I(θ) is symmetric, and in general it is positive semi-definite, since for an
m-dimensional vector cT = [c1, . . . , cm]T we have

cT I(θ)c =
∫ { m∑

i=1

ci∂il(θ, x)

}2

p(θ, x)dν(x) ≥ 0.
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We assume further that I(θ) is positive definite, for all θ in Θ. This happens for example in
the case of an exponential family, as was proved in Corollary 2.5.8 in the lecture notes. Then
I(θ) may be used to define a Riemannian metric 〈·, ·〉 on S, which is known as the Fisher metric
or information metric. Like any Riemannian metric, the information metric is invariant over
the choice of coordinate system (i.e., parameterization). Using (4), a coordinate free expression
may be written

〈., .〉 : T (S)× T (S) → R
〈Xp, Yp〉p = Ep [Xp(lx)Yp(lx)] .

Indeed, if Xp = Xi
p(∂i)p and Yp = Y j

p (∂j)p, we obtain

〈Xp, Yp〉p =
∑
i,j

Xi
pY

j
p Ep[(∂i(lx))p(∂j(lx))p] =

∑
i,j

Xi
pY

j
p I(p)ij .

Note that if x becomes a vector of N i.i.d. observations, we have a corresponding statistical
model SN = {pN

θ | θ ∈ Θ}. We know that the information matrix is simply multiplied by N (so
distances are multiplied by

√
N) and so it is not necessary to distinguish between the geometries

of SN and S, which are simply related by a scale factor of N . Also, an important property of
the information metric, and a consequence of its definition as a Riemannian metric, is that it
defines a metric on any submanifold of S. This will be implicitly used in the next section.

2.4 Example: Geometry of the Trinomial Family

We can describe some of the concepts of information-metric geometry using the case of the
trinomial family, which turns out to be a sphere in that geometry.

LetQ be the trinomial family with n = 1 trial. Let pi > 0, i ∈ {1, 2, 3}, be the probabilities of
each outcome, p1+p2+p3 = 1: the multinomial distribution with n = 1 has distribution P (X1 =
x1, X2 = x2, X3 = x3) = (p1)x1(p2)x2(p3)x3 , for xi ∈ {0, 1}, i ∈ {1, 2, 3} and x1 + x2 + x3 = 1.
It is a two-dimensional exponential family since we can rewrite

(p1)x1(p2)x2(p3)x3 = exp[x1 log(p2/p1) + x2 log(p3/p1) + log p1].

Instead of the natural parameter space, we can consider the parameterization

zi = 2
√
pi

such that to each triple (p1, p2, p3) in the simplex {(p1, p2, p3) : p1 + p2 + p3 = 1} corre-
sponds a point on the positive orthant portion of the sphere of radius 2. A one-dimensional
imbedded subfamily Q0 (see definition 5) may be represented as a curve c having compo-
nents z(β) = (z1(β), z2(β), z3(β)), β ∈ B, on the sphere. The tangent vector to the curve
c is ∂βz = (∂βz

1, ∂βz
2, ∂βz

3), and its squared length is 〈∂βz, ∂βz〉. Now we have
√
p(β, x) =

(z1/2)x1(z2/2)x2(z3/2)x3 , so we can compute the Fisher information using (13)

I(β) = 4
∑

x1+x2+x3=1

(
∂β

√
p(β, x)

)2

= (∂βz
1)2 + (∂βz

2)2 + (∂βz
3)2

=〈∂βz, ∂βz〉2, (15)

where 〈·, ·〉2 is here the standard Euclidean inner product. Thus the Euclidean length of the
tangent vector to the curve c is ‖∂βz‖2 = I(β)1/2. Consequently, from equation (7) the associ-
ated Euclidean length of the curve c between z(β) and z(β∗) corresponding to two elements Q
and Q∗ of Q is

dc(Q,Q∗) =
∫ β∗

β

‖∂βz‖2 dβ =
∫ β∗

β

I(β)1/2dβ.
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In general for a one-parameter subfamily corresponding to a curve c, we call the distance
dc(β1, β2) =

∫ β2

β1
I(β)1/2dβ between two distributions associated to β1 and β2 the information

distance. As mentioned earlier, this distance does not depend on the choice of parameterization
of the curve.

Now for the full trinomial family, we can again consider a coordinate system θ = [θ1, θ2] on
the 2-dimensional manifold Q and compute the information matrix the same way:

I(θ)ij =4
∑

x1+x2+x3=1

(
∂i

√
f(θ, x)

)(
∂j

√
f(θ, x)

)
=

3∑
k=1

(
∂iz

k
) (
∂jz

k
)

=〈∂iz, ∂jz〉2,

for i, j ∈ {1, 2}. That is, the (i, j)-component of the Fisher information matrix is the inner
product of the ith and jth coordinate tangent vectors on the surface of the sphere.

To define the information distance between two multinomial distributions Q and Q∗, we
consider all possible curves on the sphere connecting the two corresponding points. Each curve
represents a one-parameter subfamily for which the information distance between Q and Q∗ can
be defined as before. Then the information distance between Q and Q∗ as members of the full
trinomial family is defined as the minimum of the distances taken over all curves connecting the
two points. The curve that achieves this minimum is called a geodesic. In this case it is an arc
of the great circle through the points z and z∗ on the sphere. From this, we deduce that the
information distance between Q and Q∗ is the angle between z and z∗ (which is 〈z/2, z∗/2〉2)
multiplied by 2, the radius of the sphere. Therefore

d(Q,Q∗) = 2 arccos
3∑

i=1

(pip
∗
i )

1/2.

2.4.1 Information Distance, Hellinger Distance and Kullback-Leibler Infor-
mation

In this section, we use the multinomial geometry to show the link between the Hellinger distance,
the Kullback-Leibler information and the information distance defined in the previous section.

If P and Q are probability measures with densities p and q with respect to a σ-finite measure
µ, the Hellinger distance between the two is h(P,Q) defined by

h2(P,Q) =
∫

(
√
p−√

q)2 dµ = 2− 2
∫
√
pqdµ,

and the Kullback-Leibler information is

K(P,Q) =
∫
log

(
p

q

)
p dµ.

For the case of two distributions Q and Q∗ in the trinomial family, we get

h(Q,Q∗) =

(
3∑

i=1

(pi1/2 − pi∗1/2
)2
)1/2

=
1
2
‖z − z∗‖2 = 2 sin(d(Q,Q∗)/4),

where the last equality comes from the fact already mentioned that the angle between z and z∗

is d(Q,Q∗)/2. Hence as d(Q,Q∗) → 0 we have h(Q,Q∗) ∼ 1
2d(Q,Q

∗), and so the two distances
behave essentially identically.

For the Kullback-Leibler information, we have

K(Q,Q∗) =
3∑

i=1

pi log(pi/pi∗).

9



Now as p→ p∗, we have by Taylor expansion

log(pi∗)− log(pi) = − 1
pi

(pi∗ − pi) +
1

2pi2
(pi∗ − pi)2 +O((pi∗ − pi)3)

so that

K(Q,Q∗) =
1
2

3∑
i=1

(pi∗ − pi)2

pi
+O(‖p∗ − p‖3).

Let the point Q∗ approach Q along a curve c (assumed smooth), that we can parametrize by
the arc length s. Then

(pi(s∗)− pi(s))2 =(∂sp
i(s))2(s∗ − s)2 +O(|s∗ − s|3)

=(∂sp
i(s))2dc(Q,Q∗)2 +O(|s∗ − s|3),

the second equality being obtained by definition of arc length. Now note that

3∑
i=1

1
pi(s)

(∂sp
i(s))2 =

3∑
i=1

(∂s log pi(s))2pi(s)

=
∑

x1+x2+x3=1

(∂s log p(s, x))2 p(s, x)

=I(s)

=‖∂sz(s)‖2 by (15)
=1 by (8).

Therefore we obtain
K(Q,Q∗) =

1
2
dc(Q,Q∗)2 +O(dc(Q,Q∗)3).

In particular if c is the geodesic curve between Q and Q∗, we have K(Q,Q∗) ∼ 1
2d(Q,Q

∗)2

and we see that the Kullback-Leibler information behaves locally like the square of a distance
function (however, K(Q,Q∗) 6= K(Q∗, Q) in general).

2.4.2 Jeffreys’ Prior

Within the field of Bayesian statistics, it is natural to ask how to select a prior on the parameter
space. Let S = {pθ|θ = [θ1, . . . , θn] ∈ Θ} be a statistical model, and suppose that the volume
V :=

∫ √
det(I(θ))dθ with respect to the Fisher metric is finite (the integral is n-fold). Then

π(θ) = 1
V

√
det(I(θ)) defines a probability distribution on Θ, called Jeffreys’ prior. Since it

is invariant over the choice of the coordinate system [θi], we may consider it as a probability
distribution on the model S. We can calculate it for the trinomial family, introducing spherical
polar coordinates, and find that it is uniform on the sphere.

3 Geometry of Information Loss and Recovery

3.1 Fisher’s Measure of Information

Here we review some classical properties of the Fisher information matrix related to information
loss. Let S = {pθ | θ ∈ Θ} be a statistical model on a sample space (X,B), and let T and A be
statistics, i.e., measurable functions from X to another measurable space (Y, C). A statistic T
induces a new model ST := {qθ | θ ∈ Θ}, where qθ(y) is the density of the statistic T obtained
from pθ. Similarly to (11), we can define the Fisher information matrix IT (θ) of the induced
model. In the following theorem, for two symmetric matrices M and N , by M � N we mean
N −M is positive semi-definite. We have:
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Theorem 6. The Fisher information matrices I(θ), IT (θ) and IA(θ) of the original and induced
models satisfy:

(i) 0 � IT (θ) � I(θ).
(ii) IT (θ) = I(θ) if and only if T is sufficient.
(iii) IA(θ) = 0 if and only if the distribution of A does not depend on θ, i.e., A is ancillary.
(iv) The information loss ∆I(θ) = I(θ)−IT (θ) caused by summarizing the data x into y = T (x)

is given by
∆I(θ)ij = Eθ [Covθ[∂il(θ,X), ∂j l(θ,X) | T (X)]]

(v) IT,A(θ) = IT (θ)+IA(θ) if T and A are independent. In general IT,A(θ) = IT |A(θ)+IA(θ).

Proof. We will start by proving (iv). Let Pθ and Qθ be probability distributions with densities
pθ and qθ with respect to a σ-finite measure ν, as defined at the beginning of this section
(Qθ = Pθ ◦ T−1). We assume as before that derivation with respect to θi and integration can
be interchanged. First for all C ∈ C, we have∫

T−1(C)

∂i log(qθ ◦ T (x)) dPθ(x) =
∫

C

∂i log(qθ(y)) dQθ(y) = ∂i

∫
C

qθ(y)dν(y)

=∂i

∫
C

dQθ(y) = ∂i

∫
T−1(C)

dPθ(x)

=
∫

T−1(C)

∂i log(pθ(x))dPθ(x),

so we have
∂i log qθ(T (X)) = Eθ[∂il(θ,X)|T (X)]. (16)

Now if we define rθ(x) by
pθ(x) = rθ(x)qθ(T (x)), (17)

we have
∂il(θ, x) = ∂i log qθ(T (x)) + ∂i log rθ(x), (18)

and so by the previous equality we get Eθ[∂i log rθ(X)|T (X)] = 0. Thus it follows from [Dud03],
Theorem 10.2.9. that log rθ(X) is orthogonal to any function f(T (X)) with respect to the inner
product 〈〈Φ,Ψ〉〉θ = Eθ[Φ(X)Ψ(X)]. In particular we have

Eθ[∂i log rθ(X) ∂j log qθ(T (X))] = 0, ∀i, j. (19)

Now by definition

Covθ[∂il(θ,X), ∂j l(θ,X) | T (X)]
= Eθ [{∂il(θ,X)− Eθ[∂il(θ,X)|T (X)]} {∂j l(θ,X)− Eθ[∂j l(θ,X)|T (X)]}|T (X)]
= Eθ [∂i log rθ(X) ∂j log rθ(X)|T (X)] , by (18),(16).

Therefore

Eθ [Covθ[∂il(θ,X), ∂j l(θ,X) | T (X)]] =Eθ [∂i log rθ(X) ∂j log rθ(X)]
=I(θ)ij − IT (θ)ij , by (18),(19).

This finishes the proof of (iv). Then (i) becomes obvious. The condition ∆I(θ) = 0 in (ii) is
that ∂i log rθ(x) = 0 for all θ, i, x, and this is equivalent to T being sufficient by the factorization
theorem (see (17)). (iii) is clear from the definition of IA(θ). (v) follows from the fact that if
pθ(x) = pθ,1(x1)pθ,2(x2), then the cross products in I12(θ) vanish under our assumptions:∫ ∫

∂i log pθ,1(x1)∂j log pθ,2(x2) pθ,1(x1)pθ,2(x2)dν(x) = ∂i∂j

∫ ∫
pθ(x)dν(x) = 0.
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Information loss was defined in the theorem above. Now suppose (T,A) is sufficient and A
is ancillary, then IT |A(θ) = I(θ). Thus, the information lost by an insufficient estimator T can
be recovered by conditioning on an appropriate statistic A.

Let us consider for simplicity the case where Θ ⊂ R. The information lost by an estimator
T can be quantified in terms of IT (θ)/nI1(θ) or nI1(θ)− IT (θ), where I1(θ) is the information
per observation in a sample of size n. It is easier to look only at the limiting values (as n →
∞), which is 1 for the ratio form for efficient estimators in an exponential family (see next
section). Then we can distinguish among the different estimators using nI1(θ) − IT (θ) (which
will typically tend to infinity for inefficient estimators). What Fisher called information loss is
limn→∞(nI1(θ)−IT (θ)), and he claimed that among all efficient estimators, the MLE minimizes
the information loss. There are geometric interpretations of this claim, as illustrated in the next
section.

3.2 Geometrical Interpretation of Estimation in CEF

3.2.1 Auxiliary Space Associated with an Estimator

Recall the definition of a one-parameter curved exponential family with parameter β ∈ B
(definition 5); it corresponds to a submanifold S0 in the manifold S of the full exponential
family. We have defined the mean-value parameter space M for the full exponential family, and
the submanifold S0 can be specified by a subset M0 ⊂ M . Recall also the notation introduced
before theorem 3 for exponential families. Usually an estimator is a mapping from the sample
space Y into the the parameter space B, but we will restrict the class of possible estimators T
that we consider. Suppose we have a sample of i.i.d. observations Y1, . . . , Yn, then their mean
Ȳn determines a point µ̂ in S whose µ−coordinates are Ȳn. Since Ȳn is a sufficient statistic for
S, hence also for S0, we will only consider estimators which are functions of µ̂. Now really these
estimators are mappings from S to B, such that T (µ̂) = β̂. However, since we will not deal
with advanced concepts of differential geometry, here we can identify S with the space M , and
consider the estimators to be maps from M to B, as is done in [Kas89]. This definition includes
many important estimators, and simplifies the estimation process: for any given estimator, we
do not need to consider a sequence of mappings, but rather need only examine a single mapping,
and then the geometrical interpretation becomes revealing.

Let V be an open neighborhood in M such that V ∩M0 6= ∅. An estimator T : V → B will
be called regular if T is smooth with nonzero derivative and for all β such that µ(β) ∈ V , we
have T (µ(β)) = β. Let µ0 ∈M0, W be a neighborhood of µ0 in M , C an open subset of B, and
f : C ×W → R a smooth function with f(β, ·) : W → R having everywhere a nonzero gradient,
such that f(β, µ(β)) = 0 for all β ∈ C. Then by the implicit function theorem there exists an
open neighborhood V of µ0 in W on which a regular estimator T is uniquely defined by the
equation f(T (y), y) = 0. For example, about each point µ0 in a CEF there is a neighborhood
on which the MLE is regular, the function f being given by the likelihood equation

f(β, y) = (y − µ(β))T∂βθ(β),

corresponding to the minimization of θ(β)T y − j(θ(β)), with µ(β) = ∇j(θ(β)).
Now consider the replacement of Ȳn by a sufficient statistic (T,A). From the relation

IT,A(θ) = IT (θ) + IA|T (θ), we see that the information not contained in T must be contained
in the conditional distribution of A given T . The geometrical interpretation of this is based on
the following proposition.

Proposition 7. If T is a regular estimator, then for each β0 ∈ B, there exists a neighborhood
U of µ(β0) in M and a coordinate system (TU , A) of U onto an open subset of R × Rk−1 such
that TU is the restriction of T to U and U ∩M0 = {µ ∈ U : A(µ) = 0}.

Note that it does not seem that A is ancillary in general. This proposition corresponds to
the local construction of a submanifold mentioned in (5). We will not elaborate on this point
which consists in the construction of imbedded submanifolds in differential geometry. What is
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Figure 1: Local decomposition of M near µ(β0).

important to us is that locally, the estimator T determines a decomposition of the manifold of
the full exponential family into subspaces At = {µ ∈ U : T (µ) = t} (see figure 1). At is called
the auxiliary subspace associated with the estimator T at t. Within the neighborhood U of
µ(β0), the local coordinate system maps points µ to (T (µ), A(µ)), with A(µ) = 0 for points on
the curve M0. If the true parameter of the CEF is β0, then with probability one Ȳn will fall in U
for n sufficiently large, as follows from the law of large numbers. Then (T (Ȳn), A(Ȳn)) becomes
sufficient and the amount of information lost by T is the amount contained in the distribution
of A(Ȳn) given T .

3.2.2 Efficiency

First we consider the relationship of the Fisher information matrices for exponential families in
terms of parameterization by the natural parameter θ and by µ, and show that they are inverses
of each other. This is a straightforward application of the change of variable formula (6). Let
ly(µ) = log(p(y, θ(µ))) be the log likelihood on M .

Proposition 8. In an exponential family, the Fisher information matrices I(θ) and I(µ) satisfy

I(θ) =Dµ(θ) = ∇2j(θ),

I(µ) =Dθ(µ) = I(θ(µ))−1.

Proof. The first relations are immediate from (9) and (14). The chain rule (6) can be written

I(µ) = Dθ(µ)I(θ(µ))Dθ(µ)T . (20)

A consequence of Theorem 3 and the inverse function theorem is

Dθ(µ) = Dµ(θ)−1. (21)

Now we can combine (20), (21) and the first relations to finish the proof.

As a consequence of the Delta method, and of the fact that I(θ) = ∇2j(θ) = Vθ(nȲn) for an
exponential family, we have the following theorem:

Theorem 9. For a regular estimator T that is consistent for a parameter β of a CEF,

avarβ(T )−1/2
√
n(T (Ȳn)− β) → N(0, 1) in distribution

where avarβ(T ) = [∇µT (µ(β))]T I(µ(β))−1[∇µT (µ(β))] is called the asymptotic variance of T .
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We define the efficiency of a regular estimator T to be the ratio I(β)−1/avarβ(T ). We
can interpret avarβ(T ) geometrically and see that its minimum value is I(β)−1. Suppose T is
defined by an estimating equation f(T (ȳ), ȳ) = 0, with f : R × Rk → R. If we denote the
partial derivatives of f with respect to its two arguments by D1f and D2f (D1f is a scalar),
by differentiating f(T (µ), µ) = 0 with respect to µ we get

0 = D1f(∇µT (µ)) +D2f,

and so ∇µT (µ) = −(D1f)−1(D2f). Then we can rewrite

avarβ(T ) = (D2f)T I(µ(β))−1(D2f)(D1f)−2. (22)

By definition the auxiliary space at β is given by Aβ = {µ : f(β, µ) = 0}. Now D2f is the
gradient of f(β, ·) and so it is normal to Aβ with respect to the Euclidean inner product.
Denoting as before 〈·, ·〉µ(β) the inner product associated to the Fisher information matrix at
µ(β), we have then for any vector v tangent to Aβ :

0 =vT (D2f(β, µ(β))) = vT I(µ(β))[I(µ(β))−1D2f(β, µ(β))]
0 =〈v, nβ〉µ(β),

where nβ = I(µ(β))−1D2f(β, µ(β)), which is thus seen to be normal to Aβ at µ(β) with respect
to the 〈·, ·〉µ(β) inner product. This will be useful in the proof of the following theorem.

Theorem 10. The efficiency of a regular estimator T based on i.i.d. observations from a CEF
is given by

I(β)−1

avarβ(T )
= sin2(φ),

where φ is the angle between M0 and Aβ (i.e., between ∂βµ(β) and Aβ), with respect to 〈·, ·〉µ(β).

Proof. We begin with
〈nβ , nβ〉µ(β) = (D2f)T I(µ(β))−1(D2f).

Next we rewrite D1f by differentiating f(β, µ(β)) = 0 with respect to β:

0 = D1f + (D2f)T (∂βµ(β))

and so
−D1f = 〈nβ , ∂βµ(β)〉µ(β).

We use these expressions in (22) to obtain

avarβ(T ) = 〈nβ , nβ〉µ(β) (〈nβ , ∂βµ(β)〉µ(β))−2 .

Now we also have I(β) = 〈∂βµ(β), ∂βµ(β)〉µ(β), as in (20), and so we get

I(β)−1

avarβ(T )
=

(〈nβ , ∂βµ(β)〉µ(β))2

〈nβ , nβ〉µ(β) 〈∂βµ(β), ∂βµ(β)〉µ(β)
.

The right-hand side is the squared cosine of the angle between nβ and ∂βµ(β) with respect to
〈, 〉µ(β), which is (π/2)− φ. This proves the theorem using cos(π/2− φ) = sin(φ).

Finally in the case of the MLE, from the likelihood equations,

0 = f(β, Ȳn) = (Ȳn − µ(β))T (∂βθ)

we get using proposition 8

D2f = ∂βθ = Dθ(µ) ∂βµ = I(µ(θ)) ∂βµ,

and thus nβ = ∂βµ. Thus the angle between M0 and Aθ is π/2, which maximizes sin2 φ. So
from Theorem 10, we have a geometric interpretation that the MLE minimizes the asymptotic
variance, i.e., is efficient: in this case the auxiliary space associated with the MLE and the CEF
are orthogonal. Efficiency of maximum likelihood estimators is proved more generally in section
3.9 of the course notes.
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Conclusion

We have given examples of geometrical arguments that can provide insight into some statistical
procedures. A drawback is that in general, this requires strong regularity conditions, but the
motivation is that geometrical understanding can then be used as a basis for other proofs.
Moreover, it appears that more advanced concepts of differential geometry than those presented
here, in particular involving covariant differentiation and some affine connections introduced by
Amari actually provide results that would be difficult to obtain otherwise (see [AN00] for an
introduction).
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