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A Multi-Agent Route Exploration Problem

Jerome Le Ny and Eric Feron

Abstract— We investigate a route exploration problem with
N agents dropped randomly on the interval [0,b] and discuss
the impact of using multiple agents to perform this task. We
consider both a discrete and a continous description of the path
to explore. Independantly, we study an exploration problem
with probabilistic agents having limited autonomy. In both
problems , multi-agent scenarios are discussed with an emphasis
on the number of agents necessary to obtain good performance.

I. I NTRODUCTION

Consider a line segment of lengthb, with coordinatex
describing a position on the segment. The endpoints arex =
0 and x = b. The coordinates can take their values in the
discrete setJ0,bK := {0,1, . . . ,b}, in which case we obtain a
line graph with(b+1) equally spaced sites, or they can take
their value in the continous interval[0,b].

We haveN agents with initial positionsxi , i = 1. . .N.
When these initial positions are realizations of the associated
random variablesXi , i = 1. . .N, we denote the corresponding
order statistics(X1:N,X2:N, . . . ,XN:N), that is, the variablesXi

arranged in increasing order:X1:N ≤ X2:N < ... < XN:N. We
assume a continuous distribution function for the random
variablesXi , and therefore we haveP(Xi = Xj) = 0 for i 6= j
(see for example [1] p.29).

The agents can move along the continous line with the
same speedv. When the line is discrete, we also discretize
the time: in that case, at each period an agent can either
move to a site that is next to its current position, or remain
at its current position.

Finally we also consider non-compliant agents, that react
probabilistically to given controls. More precisely, a non-
compliant agent demonstrates the following behavior:

• in the continuous case: each agent moves with speed
v+σWt , with σ a constant andWt 1-dimensional white
Gaussian noise with unit power spectral density.

• in the discrete case: when we tell the agent to move one
step in a given direction, it might indeed move in that
direction with probabilityp, but might go in the opposite
direction with probabilityq < p and also stay where it
is with probability 1− p−q. To a one step displacement
corresponds a random variableX: its mean is analogous
to the “speed” of the agent and therefore we writev =
p−q. Its standard deviation isσ = p+q+2pq−p2−q2.

v andσ play a similar role in the continous and the discrete
case, therefore we use the same notation in both cases. There
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Fig. 1. Problem description and notation in the case of two agents.

will not be any confusion since we consider these models
separately.

Part II and III examine how to optimally explore the line
with randomly dropped deterministic agents for a specific
cost function, and how many agents we should use. Indepen-
dantly, part IV and V discuss simple exploration strategies
for non-compliant agents as well as trade-offs appearing in
multi-agent exploration scenarios.

II. D ETERMINISTIC OPTIMAL EXPLORATION POLICY

In this part we consider the continous model, where the
agents respond deterministically to the controls. Extension
to the discrete case is straightforward. We assume a cost
proportional to the distance that each agent travels. A pos-
sible motivation includes the risk of losing agents along the
path in a hostile environment, increasing as the agents cover
a longer distance. Another example could be that we want
to minimize the amount of energy used by each agent. In
the optimization problem, we seek to minimize the sum of
the distances covered by all the agents. We haveN agents
initially at given distinct positions 0≤ x1 < x2 < .. . ... <
xN ≤ b. To agenti = 1, . . . ,N, we assign a part of the line to
explore, calledSi , and letLi = min Si andRi = maxSi . Fig. 1
describes the notation in the case of two agents. Each agent
explores its assigned region optimally by travelling a distance
di = [(Ri −Li)+min(xi −Li ,Ri −xi)], that is, it travels to the
nearest endpoint first and then to the opposite endpoint.

The problem of minimum cost exploration For N agents
becomes designing each setSi so that when each of them is
explored optimally by the corresponding agent, the sum of
the minimum distances is minimized:

minimize ∑N
i=1[(Ri −Li)+min(xi −Li ,Ri −xi)]

subject to Ri ≥ xi ≥ Li , i = 1, . . .N

Ri ≥ Li+1, i = 1, . . .N−1 (1)

min{L1, . . . ,LN}= 0

max{R1, . . . ,RN}= b
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Fig. 2. Problem reformulation in the case of identical agents. The decision
variables are theRi ’s.

Our design variables are theLi ’s andRi ’s; the constraints
make sure that the line is completely covered. The following
lemma formalizes the intuitive result that in general explo-
ration sets should not overlap.

Lemma 1:There exist an optimal solution for (1) satisfy-
ing:

L1 = 0, RN = b, Ri = Li+1, i = 1, . . .N−1.

Proof: Although this lemma is intuitively clear, due to
the fact that we are considering identical agents, it is more
tedious to prove formally. Consider an optimal solution for
(1) (an optimal solution exists because of the interpretation
of the problem, or alternatively because we are minimizing
a concave function over a bounded polyhedron). Letj be an
index such thatL j = 0. If j 6= 1, we consider a modification to
the solution such thatL j = R1 andL1 = 0. Since the agents
are identical, the fact that the leftmost part of the line is
covered by agentj or agent 1 does not change the solution.
Consequently we have an optimal solution such thatL1 = 0.
Similarly we can choose the optimal solution such thatRN =
b.

Now consider two agentsi andi +1, i ∈ J1,N−1K. If Ri >
Li+1 we consider a modification of the solution (denoted with
a ′) such thatR′i = L′i+1 = Ri−Li+1

2 . This modification implies
no change on the other variables in the original solution. The
interval [Li+1,Ri ] was previously covered at cost 2(Ri−Li+1)
in the case where the agents were not switching direction at
the endpoints; it is now covered at cost(Ri −Li+1). In the
other cases where one or two agents switch direction to travel
to their other endpoint, we verify that the cost is still divided
by two. Therefore the initial solution could not be optimal,
and the lemma is proved.

We do not have in general unicity of the optimal solution
(as it will become clear in the following, there is an optimal
solution using only one or two agents in any case). However
the lemma is useful in restricting our analysis to some natural
configurations. The problem then reduces to the following
(see Fig. 2): refering to the pointRi = Li+1 as the point
Ri , i = 1, . . .N− 1, R0 = 0, RN = b, we want to find the
positions of the pointsRi in order to minimize∑N

i=1[(Ri −
Ri−1)+min(xi −Ri−1,Ri −xi)], which is rewritten:

minimize b+
N

∑
i=1

min(xi −Ri−1,Ri −xi) (2)

subject toR0 = 0, RN = b,

xi ≤ Ri ≤ xi+1, i = 1, . . .N−1.

b
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Fig. 3. Optimal Exploration Strategy to minimize the sum of individual
distances. The two cases correspond to the leftmost interval being the
shortest interval or not. Only one agent switches direction, and only the
smallest initial interval between agents is covered twice.

Proposition 2: Let x0 = 0, xN+1 = b, and let j =
argmini=0,...,N{(xi+1−xi)}. Then we have:

• if j = 0, Ri = xi+1, i = 1, . . . ,N is optimal for (2).
• if j > 0, Ri = xi , i = 0, . . . ,( j−1) , Ri = xi+1, i = j, . . . ,N

is optimal for (2).

The cost of an optimal solution of (2) is

Zd(N) = b+ min
i=0,...,N

{(xi+1−xi)}. (3)

Fig. 3 illustrates this optimal solution, which actually
looks relatively clear. In words, we find the smallest interval
between two consecutive agents. Next we choose one of
these two agents, which will have to explore the intervals on
both sides of its initial position. All other agents will have
only one interval to explore. Again we do not have unicity
of the solution, the choice for the directions of exploration is
arbitrary for instance. It is also clear that we can perform the
task with the same cost using only one agent if the shortest
interval is at the extremities, or two agents in the other cases.
However our solution is still interesting because it leads to an
optimal solution in the discrete case as well: using only one
or two agents on the discrete line forces them to travel over
sites that are occupied by the other agents remaining idle.
Whereas in the continuous model this does not contribute to
an additional displacement cost because the agents positions
are represented by points of measure 0, the additional cost
of this policy in the discrete case appears clearly.

Proof: We prove the following result by induction on
N: let N agents with initial positionsx1 < .. . < xN in the
interval [α,β ], 0≤ α < β ≤ b; then the optimal cost for the
exploration of this interval isβ−α +mini=0,...,N{(xi+1−xi)},
with the conventionx0 = α andxN+1 = β .

The result is trivial for one agent. Now suppose the result
true for all k ≤ N − 1, and we want to prove it forN
agents,N ≥ 2. Since we haveN + 1 intervals to explore
between the starting points, and onlyN agents, at least one
agent has to switch direction and travel toRi−1 and Ri .
Consider the agents 1, . . . ,N in increasing order, and call
p the first agent to switch direction. Agents 1, . . . , p are
exploring [α,Rp], agentsp+ 1, . . . ,N are exploring[Rp,β ],
and the second group should explore its part optimally. Thus
the induction hypothesis applies for the second group and



the total exploration cost is therefore

Rp−α +min(xp−xp−1,Rp−xp)
+β −Rp +min(xp+1−Rp,xp+2−xp+1, . . . ,β −xN).

Now if xp−xp−1 < Rp−xp, we obtain a cost of

β −α +(xp−xp−1)+min(xp+1−Rp, . . . ,β −xN)
≥ β −α +(xp−xp−1)
≥ β −α + min

i=0,...,N
{(xi+1−xi)}.

If xp − xp−1 ≥ Rp − xp, we obtain a cost ofβ − α +
Rp−xp+min(xp+1−Rp, . . . ,β −xN). Considering two cases
for the last term, where the minimimum achieved is either
(xp+1 −Rp) or not, we see readily that in any case we
obtain a cost lower bounded by an expression of the form
β −α +xi+1−xi for somei, and therefore a lower bound on
the cost is againβ −α +mini=0,...,N{(xi+1−xi)}.

Now it is also easy to see that the solution given in the
proposition achieves this lower bound, which proves the
recursion forN agents.

III. A GENTSDROPPEDRANDOMLY ON THE L INE

With the cost function considered in the previous part,
clearly there is no benefit in using multiple agents if we
have precise control on the initial position of these agents.
We obtain the best possible solution by simply placing one
agent at 0 and letting it travel to the other end of the route.
However, we are interested in the case where agents are
dropped randomly on the path. More precisely, we assume
in this part that the initial positions are realizations ofN iid
random variablesX1, . . . ,XN having uniform distribution on
the interval [0,b]. Using more agents becomes beneficial in
expectation, as we can reduce the minimum initial interval
between them, which is the only variable part in the optimal
cost (3).

As described in part I, we define the order statistics
X1:N, . . . ,XN:N, where the notation is useful to keep track
of the number of agentsN. Now denoteD1 = X1:N, Di =
Xi:N −Xi−1:N for i = 2, . . . ,N, and DN+1 = b−XN:N. The
variablesDi are referred to asspacings. We are interested in
the distribution and the expected value of mini=1,...,N+1{Di}.
The distribution of the spacings is a classical result:

Lemma 3:Let X1, . . . ,XN be iid random variables, uni-
formly distributed on[0,b]. Let c1, . . . ,cN+1 ≥ 0, such that
∑N+1

i=1 ci ≤ b. Then we have

P(D1 > c1, . . . ,DN+1 > cN+1) = (1− c1

b
− . . .− cN+1

b
)N.

Proof: For a proof of this result whenb= 1, we refer for
example to [2]. The result of the lemma follows by scaling,
i.e. dividing all the quantities byb to obtain the base case.

Takingc1 = . . . = cN+1 = x, we getP(mini=1,...,N+1{Di}>
x) = P(D1 > x, . . . ,DN+1 > x) = (1− (N+1)(x/b))N if 0 ≤
x ≤ b

N+1. So the expected value of the minimum interval
length is

E[min
i
{Di}] =

∫ b
N+1

0
P(min

i
{Di}> x)dx

E[min
i
{Di}] =

∫ b
N+1

0
(1− (N+1)

x
b
)Ndx

E[min
i
{Di}] =

b
(N+1)2 (4)

and the expected optimal cost function is

Zr(N) = b

(
1+

1
(N+1)2

)
(5)

It is clear now that we have a “saturation” effect when we
use more agents, since the cost function goes asymptotically
towardsb. If we add a penalty for using more agents, for
example we add a linear termcaN to Zr(N), we can solve
for the optimal number of agents for the task

N∗ =
(

2b
ca

) 1
3

−1 (6)

whereca represents the cost per agent. This solution has to
be adapted slightly in order forN∗ to be an integer.

It is interesting to note thatN∗ grows relatively slowly
with b. For example, the intuition that in order to explore a
line of length 2b we need twice the number of agents used
to explore a line of lengthb leads to a large overestimate.

IV. A GENTS WITH PROBABILISTIC BEHAVIOR:
CONTINUOUS MODEL

A. Feedback Strategy

We now turn to a situation where we have agents with
a probabilistic behavior as described in part I. First, we
consider the exploration problem with a single agent in the
continuous model. Suppose the agent initially atx0 moves
along the continuous version of the line[0,b] with speed
u(t)v+σWt , wherev is a positive constant,u(t) ∈ [−1,+1]
is the control,σ the standard deviation is a positive constant
and Wt is white Gaussian noise with unit power spectral
density. The position of the agent follows the following
stochastic differential equation:

dXt = u(t)vdt+σdBt (7)

where Bt is 1-dimensional Brownian motion. Sincev is
constant, the individual cost function can equivalently be the
time spent moving or the distance travelled.

Several strategies can be employed to explore the line
with one such agent. We first review the optimal control
result, i.e. a strategy minimizing the expected exploration
time, that can be implemented on an agent with positioning
or communication capacities.

Proposition 4: Note X(t) the position of the agent on the
line. The optimal feedback lawu(X(t)) to bring the agent in
minimum time to 0 orb is:{

u =−1 if X(t) ∈ [0, b
2]

u = +1 if X(t) ∈ (b
2,b]



The minimum expected time to hit the boundary at 0 orb
is: 

x0
v −

σ2

2v2 e
−vb
σ2

[
e

2vx0
σ2 −1

]
if x0 ≤ b

2

b−x0
v − σ2

2v2 e
−vb
σ2

[
e

2v(b−x0)
σ2 −1

]
if x0 ≥ b

2.
(8)

Proof: Let f (x, t) = minuEx{τ − t}, whereτ denotes
the first time the agent hits the boundary at 0 orb, and x
is the initial position of the agent (Ex denotes the expected
value givenX(0) = x). The dynamic programming equation
for f is [3]:

−∂ f
∂ t

(x, t) = minu∈[−1,+1]

{
1+uv

∂ f
∂x

(x, t)+
1
2

σ
2 ∂ 2 f

∂x2 (x, t)
}

It is readily seen that the minimization occurs foru =
−sign

(
∂ f
∂x (x, t)

)
, and the twice continuously differentiable

solution of the corresponding equation with boundary con-
ditions f (0, t) = f (b, t) = 0 is given in the proposition.

Proposition 4 tells us how to hit optimally the first bound-
ary. It is intuitively clear that once the first boundary has been
hit, the control should remain constant telling the agent to
travel as fast as possible to the other boundary. The process
describing the agent position then reduces to a Brownian
motion with drift between a reflecting barrier (the boundary
already hit) and an absorbing barrier (the second boundary
to reach). Here we add a lemma based on the calculations
in [4] for this process, that is useful to obtain closed-form
results in the following.

Lemma 5:Consider the agent subject to constant control,
moving towards a targeth= 0 or b. If E(τ|x0) is the expected
time for the agent to reach the target, we have:

E(τ|x0) =
|h−x0|

v
− σ2

2v2

[
e
− 2v(b−|x0−h|)

σ2 −e
− 2vb

σ2

]
(9)

Hence, using (9) and proposition 4 gives immediately the
total optimal expected timeTopt necessary to explore the line
with one agent using position feedback. For example in the
casex0 ≤ b/2 we get:

Topt =
b+x0

v
− σ2

2v2

[
1−e

−2vb
σ2 +e

− v(b−2x0)
σ2 −e

− vb
σ2

]
(10)

Note that the agent is faster than in the deterministic case.

B. Open-Loop Strategy for One Non-Compliant Agent.

The implementation of the optimal policy requires that the
agent knows its exact position on the line at each instant, at
least with respect to the pointb/2. In the rest of this section,
we discuss “open-loop” strategies, assuming the agents used
do not have the capacities to receive feedback instructions
during the exploration. A straightforward approach is to see
at the beginning of the mission which is the endpoint closest
to the initial position. Next, tell the agent to move first
towards that endpoint until it reaches it, and then towards
the other endpoint until it reaches it.

With a constant control, we know that an agent will
eventually reach a given target with probability one: in the

discrete case for example, this is given by the ergodicity of
the underlying Markov chain describing the position. Again,
(9) can be used to obtain the expected timeTol necessary to
finish the exploration. In the casex0 ≤ b/2 we get:

Tol =
b+x0

v
− σ2

2v2

[
1+e

− 2v(b−x0)
σ2 −2e

− 2vb
σ2

]
. (11)

The difference withTopt is then found to be bounded in every
case as follows:

Tol −Topt ≤
σ2

2v2

(
1−e

−vb
σ2

)2

,

which tells us that we are not loosing much if we do not
implement any feedback.

Because in practice the agent has limited autonomy, it is
useful to know more about the distribution of the exploration
time. Let us describe the position of the agent by the process
Xt starting atX0 = x0, and consider the time necessary for
the agent to be absorbed at 0 with a high enough probability,
treating b as a reflecting barrier. A bound on this time is
obtained by considering an auxilliary processYt describing
the movement of an agent with the same dynamics but on
an infinite line (i.e. without barriers at 0 andb). We have

P(Xt = 0|X0 = x0)≥ P(Yt ≤ 0|Y0 = x0). (12)

The reason is simply that before hitting 0, both processes
have the same behavior; but onceXt hits 0 we know for sure
that it will remain there, whereasYt might become positive
again after it hits 0 for the first time. From this idea we get
the following proposition.

Proposition 6: Let 0< ε < 1 andα be given byΦ(α) =
1√
2π

∫
α

−∞ e−
z2
2 dz= 1− ε. Suppose without loss of generality

that the agent is initially atx0 ≤ b/2 and therefore told to
move to 0 first. The agent has reached 0 with probability at
least 1− ε for t ≥ t0, wheret0 is given by

t0 =
x0

v
+

ασ

v

(x0

v

) 1
2 +

α2σ2

v2 (13)

Proof: Write Yt = (x0 − vt) + σ
√

tχ, where χ is a
random variable with standard normal distribution. Then
we solve for P

(
χ ≤ vt−x0

σ
√

t

)
≥ 1− ε. This is obtained for

vt−x0
σ
√

t
≥ α. Solving for equality in this inequality, we obtain

for t0:

t0 =

[
ασ +

√
α2σ2 +4x0v
2v

]2

This is simplified to obtain a lower bound as follows:ασ

2v
+
(

x0

v
+

α2σ2

4v2

) 1
2

2

=
α2σ2

2v2 +
x0

v

+
ασ

v

(
x0

v
+

α2σ2

4v2

) 1
2

≤ α2σ2

v2 +
x0

v
+

ασ

v

(x0

v

) 1
2



using
√

x+y≤
√

x+
√

y for x,y≥ 0.

Remark 7:For α > 0, we have
∫ ∞

α
e−

z2
2 dz≤ 1

α
e−

α2
2 . In

particular whenα ≥ 1 and ε < 1√
2π

, we obtain a more
conservative bound which is easier to apply , choosingα

such thate−
α2
2 ≤

√
2πε i.e. α ≥

√
2ln 1√

2πε
.

Remark 8:An exact expression for the distribution of
the exploration time can be seen as a special case of the
calculations in [5]. However, our bound above is easier to
interpret and sufficient for our purpose.

From the proposition, we can immediately conclude that
for 0 < ε < 1/2 and the agent going to 0 and then tob,
the line will be completely explored with probability at least
1−2ε for t ≥ t1, where:

t1 =
b+x0

v
+

ασ

v

[(
b
v

) 1
2

+
(x0

v

) 1
2

]
+

2α2σ2

v2

Note that this simple open-loop strategy is asymptotically
optimal in the limit whereb→∞, since(b+x0)/v is the time
for a deterministic agent to explore the line. Also, at the limit
when α = 0, i.e. ε = 1/2, we obtain the same speed as in
the deterministic case, provided we can be satisfied with a
very low probability of success. In fact the bound is not tight
due to the crude use of Boole’s inequality to obtain 1−2ε

for the probability of success in the two successive travel
periods. If we look only at the travel fromx0 to 0 in the
proposition, we see that in fact we can befaster than in the
deterministic case by allowingε to be greater than 1/2, i.e.
α < 0. This appears natural as we can exploit the possibility
that the speed might take values well above its mean.

C. Agents with Limited Autonomy.

Suppose we have an infinite number of non-compliant
agents that we can use to explore the interval[0,b], all
starting fromb at the beginning of the mission. The mission
terminates when an agent reaches 0. These agents work under
the open-loop policy described in the previous paragraph,
since it was argued that in general, adding position feedback
does not increase dramatically the performance. We illustrate
in this part applications of the previous results for two multi-
agent exploration scenarios.

If every agent can only run for a timet0, the line
segment exploration problem can be seen as a Monte-Carlo
algorithm[6]; that is, the algorithm might sometimes produce
an incorrect answer but we are able to bound the probability
of that incorrect answer using (13). The running time of this
“algorithm” is guaranteed to bet0(ε) (where the notation is
showing the dependance inε explicitely) and the probability
of the result being correct is at least 1− ε. To improve the
probability of success of a Monte-Carlo algorithm, we simply
run it repetetively, trading-off running time. This means for
our task that we can send multiple agents successively, and
let each of them run fort0, until one of them finishes the
task. The expected time it takes to finish the exploration is
then upper bounded byt0(ε)/(1−ε), since the sucess event
follows a geometric distribution with parameter 1− ε.

Fig. 4. Expected exploration reward. Parameters:v= 1,σ = 2,b= 100,R=
1000,γ1 = 10−2,γ2 = 1. The optimal rewardZopt = 94 is obtained forε =
0.21.

Consider the following scenario. We assume that we col-
lect an expected reward which is a function of theexpected
time to finish the exploration. Hence, let us consider an
expected reward of the formRe(−γ1t0/(1−ε)) (more precisely,
this should be a lower bound on the expected reward that
we can achieve). There is also a linear costγ2t0 associated
to the use of agents with a greater autonomy which are more
expensive. The total expected reward is then

Z(ε) = Re
−γ1t0(ε)

1−ε − γ2t0(ε) , R,γ1,γ2 > 0 (14)

Since we can use multiple agents to finish the task, we
will not necessarily need to require a high probability for
one agent to finish correctly. There is a trade-off between the
development of better agents with a greater autonomy and
the reward that we can collect from them. Moreover, with
multiple agents we should be able to use the cases where the
random component of the speed allows a faster execution.
Therefore, the optimalε increases with the varianceσ .

Various shapes can be obtained for the functionZ(ε) for
different choices of parameters. Fig. 4 is an illustration for
specific values.

Once we have computed the optimalε, we might be
interested in knowing how many agents will actually be nec-
essary to perform the exploration in practice. As mentionned
earlier, the expected number of agents used until one of them
finishes is 1/(1− ε). Standard Chernoff arguments apply
to the corresponding geometric sequence to show that the
number of agents used will be close to this expectation with
high probability. Looking back at the example illustrated on
Fig. 4, we obtain an optimal number of agents of about
1.26. Obviously a number of different scenarios can be
studied in a similar way, but this tells us again that the cost
of using multiple agents should be included in reasonable
models, because the saturation effect already encountered in
the previous part can be dominant.



V. AGENTS WITH PROBABILISTIC BEHAVIOR: DISCRETE

MODEL

In this part we extend some results of the previous section
to the discrete model. These results would translate directly
to the discrete case, except that using the central limit
theorem to determine the bound on the expected exploration
time would only give us a result in the limitb→∞. However,
a concentration inequality allows us to obtain finite-time
bounds.

A. Optimal Closed-Loop Policy for a Single Agent

The behavior of a non-compliant agent in the discrete case
was described in part I. Remember that now we want to
explore a line graph withb+ 1 vertices. An agent moves
on the line following a controlled random walk: at a given
period, it goes in the required direction with probabilityp,
stays where it is with probability 1− p−q and goes in the
opposite direction with probabilityq. The characteristics of
the boundaries are as follows: if the agent is at 0 and told
to go left, it will remain where it is with probability 1−q
and go right with probabilityq. If told to go right, it will go
right with probability p and stay at 0 with probability 1− p
(asumep> q). The boundary atb is described symmetrically.
Suppose that a single agent is initially at sitex0 on the
discrete line, and that we want to explore the line while
minimizing the expected exploration time. To determine the
optimal policy minimizing the expected cover time for the
corresponding controlled Markov chain, we can use a stan-
dard dynamic programming approach. This is summarized
in the following proposition, which parallels the continuous
case. It can be proved using the value iteration method as
described in [7], for a stochastic shortest path problem on
a finite number of states. Under these conditions, Bellman’s
equation holds. Since the result is now intuitively clear and
the proof is straightforward but lengthy, we omit it.

Proposition 9: The optimal policy to explore the discrete
line in minimum expected time with a non-compliant agent
is to always send the agent towards the nearest still unvisited
endpoint.

Since we know the optimal policy, we can compute the
corresponding optimal expected cost (at least numerically) as
a solution of the linear system corresponding to Bellman’s
equation, where we know the result of the minimization for
each state. Solving the linear system analytically is difficult
compared to the continuous case calculation, and instead we
simply provide a lower bound result analogous to lemma 5

Lemma 10:Let E(τ|x0) be the optimal expected travel
cost for a single non-compliant agent initially at sitex0 and
moving under constant control towards 0. We have

E(τ|x0)≥
x0

1−2q
+

qb+1

(1−q)b(1−2q)2

[
1−
(

1−q
q

)x0
]
(15)

Proof: This lower bound is obtained as follows: the
dynamics of the agent follow a random walk between an

absorbing barrier (the endpoint to reach) and a reflecting
barrier (the endpoint already visited). The expected time is
obtained as a solution of the corresponding subsystem in
Bellman’s equation. For the caseq = 1− p, this system was
solved in [8], [9]. In our case however, we can havep+q< 1.
But if we consider the random walk with parametersp1,q1

such thatq1 = q and p1 = 1−q (i.e. when the agent would
remain idle in the original process, in the modified process it
moves in the right direction), we obviously reach the target in
a shorter time. The lower bound given in the proposition can
therefore be obtained from [8], for our case whereq < 1/2.

This result can be used as before to argue that adding
position feedback does not add a lot to the performance of
the agent. This is because even in the optimal case, the agent
will have to travel from the first hit boundary to the second
one, and on this phase there is no difference between open-
loop and closed-loop strategy. Using (15), we know then that
the optimal policy will have a cost of at leastb/(1− 2q).
During the first phase, we can expect from the continuous
model result that the feedback performance is also relatively
close to the open-loop performance. We do not make the
argument more formal here.

B. Open-Loop Policy

As in the continuous case, we consider simple open-loop
policies that are in practice a lot easier to implement and
should perform relatively well with respect to the optimum.
So for an agent with limited autonomy, we tell the agent
to go towards the closest endpoint for a fixed maximum
number of steps, and then to switch direction and go towards
the other endpoint again for a fixed number of steps. If the
agent has infinite autonomy, it goes in each direction until
it reaches its target, which happens with probability one.
The implementation of the policy only involves mission pre-
planning and no online re-planning.

We can derive a result analogous to the bound on the
exploration time (13) in the continuous model. Consider
an agent travelling under constant control from its initial
positionx0 towards 0. IfXn represents the position at timen
of the agent moving between the two barriers (absorbing
at 0, reflecting atb), and Yn is the position of an agent
starting from x0 and moving on an infinite discrete line
which is an extension of our interval, with the same transition
probabilities asXn (but without barriers), we have:

P(Xn = 0|X0 = x0)≥ P(Yn ≤ 0|Y0 = x0), ∀n

Define Z1,Z2, . . . iid random variables withP(Zi = −1) =
p, P(Zi = 0) = 1− p−q, P(Zi = 1) = q. Then we have:

Y0 = x0

Yn = Y0 +
n

∑
i=1

Zi , n≥ 1

Let µ andσ be the mean and the variance ofZi .

µ =−p+q , σ = p+q+2pq− p2−q2



We assumep > q and thereforeµ < 0. Notice thatv = |µ|.
With these notations, we have:

Proposition 11: Let 0< ε < 1, andα =
√

2ln 1
ε
. Assume

without loss of generality that the non-compliant agent starts
at 0 < x0 ≤ bb

2c. Then the agent moving under constant
control towards 0 has reached 0 with probability at least
(1− ε) for n≥ n0, with

n0 =
x0

v
+

ασ

v

(x0

v

) 1
2 +

α2σ2

v2 +
1
3v

(16)

If i = 0, obviously we taken0 = 0 since it means that
we start at the absorbing barrier. Note the similarity to the
expression obtained in the continuous case, in particular
when we use the expression forα mentionned in remark 7. In
the limit wherex0 is large, we haven0 = x0

v (1+o(1)). If we
interpretv = |µ| as the mean speed of the agent, this result
says that asymptotically forx0 andb large we do not have to
wait a lot more in the stochastic case than in a deterministic
situation where we have an agent moving at speedv.

Proof: Let Sn = ∑n
i=1Zi . We will use Bernstein’s

inequality for our distribution onZi (see for example [10]
for a survey of concentration inequalities):

∀δ > 0, P(Sn−µn≥ δn)≤ exp

(
− nδ 2

2σ2 +2δ/3

)
(17)

Since µ < 0, we can choosen0 integer such thatn0µ <
−x0. Then letδ =− x0

n0
−µ, we haveδ > 0.

Now letn be an integer,n≥n0. Then we have[−x0,+∞)⊂
[−x0

n
n0

,+∞) thereforeP(Sn≥−x0)≤P(Sn≥−x0
n
n0

). More-
over, using (17) and our definition ofδ , we have

P(Sn ≥−x0
n
n0

) = P(Sn−nµ ≥ (−x0

n0
−µ)

P(Sn ≥−x0
n
n0

)≤ exp

(
−

n( x0
n0

+ µ)2

2σ2− 2
3( x0

n0
+ µ)

)

Note that with our constraint onδ , 2σ2− 2
3( x0

n0
+ µ) > 0.

Sincen≥ n0 andP(Yn≥ 0|Y0 = x0) = P(Sn≥−x0), we obtain
finally

P(Xn 6= 0|X0 = x0)≤ exp

(
− (x0 +n0µ)2

2n0σ2− 2
3(x0 +n0µ)

)
(18)

To obtainP(Xn 6= 0|X0 = x0)≤ ε for ε > 0, it is sufficient
to have

(x0 +n0µ)2

2n0σ2− 2
3(x0 +n0µ)

≥ ln
1
ε

We obtain the value forn0 given in the proposition by
considering only the solution greater thanx0/|µ|. The final
expression is simplified as in the proof of proposition 6.

Since proposition 11 is almost identical to proposition 6,
it follows that our discussion on multi-agent exploration in
the continuous model is valid for the discrete model as well.

VI. CONCLUSIONS

Two simple multi-agent line exploration problems were
considered in this paper. The optimal policy for exploring
the line with N agents seeking to minimize the sum of
their travelled distances was obtained. For agents dropped
randomly on the line, it was shown that adding a cost
proportional to the number of agents leads to an optimal
number of agents to use for the task. In a second part,
we considered an exploration problem using non-compliant
agents with limited autonomy. Again it was argued that the
number of agents used to perform a given task should be
considered as an important question. In practice using more
agents has an associated cost and might not always lead to
a dramatic increase in the final performance.
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