
ÉCOLE POLYTECHNIQUE DE MONTRÉAL

ELECTRICAL ENGINEERING DEPARTMENT

AUTOMATION SECTION

DESIGN OF A TRAJECTORY TRACKING
CONTROLLER FOR A NANOQUADCOPTER

Luis, C., & Le Ny, J. (August, 2016). Design of a Trajectory Tracking Controller for a

Nanoquadcopter. Technical report, Mobile Robotics and Autonomous Systems Laboratory,

Polytechnique Montreal.

Author: Supervisor:

Carlos Luis Jérôme Le Ny

Abstract

The primary purpose of this study is to investigate the system modeling of a nanoquad-

copter as well as designing position and trajectory control algorithms, with the ultimate

goal of testing the system both in simulation and on a real platform.

The open source nanoquadcopter platform named Crazyflie 2.0 was chosen for the

project. The first phase consisted in the development of a mathematical model that

describes the dynamics of the quadcopter. Secondly, a simulation environment was cre-

ated to design two different control architectures: cascaded PID position tracker and

LQT trajectory tracker. Finally, the implementation phase consisted in testing the con-

trollers on the chosen platform and comparing their performance in trajectory tracking.

Our simulations agreed with the experimental results, and further refinement of the

model is proposed as future work through closed-loop model identification techniques.

The results show that the LQT controller performed better at tracking trajectories, with

RMS errors in position up to four times smaller than those obtained with the PID. LQT

control effort was greater, but eliminated the high control peaks that induced motor

saturation in the PID controller. The LQT controller was also tested using an ultra-

wide band two-way ranging system, and comparisons with the more precise VICON

system indicate that the controller could track a trajectory in both cases despise the

difference in noise levels between the two systems.

ii

Contents

List of Figures . iv

List of Tables . vii

1. Introduction . 1

1.1 Main Objectives . 2

1.2 Secondary Objectives . 3

2. Model of the Quadcopter . 4

2.1 Coordinate Frames . 4

2.2 Dynamic Equations . 5

2.2.1 Force Equations . 7

2.2.2 Momentum Equations . 9

2.3 Physical Parameters . 12

2.4 Linearization and State Space Representation 13

2.5 Movement Decoupling . 16

2.6 Motor Characterization . 17

3. Simulation . 19

3.1 Cascaded PID Position Tracker . 19

3.1.1 On-Board Control Architecture . 20

3.1.1.1 Inner Loop: Rate Controller 21

3.1.1.2 Outer Loop: Attitude Controller 22

3.1.1.3 Control Mixer . 23

3.1.2 Off-Board Position Controller . 24

3.1.2.1 Altitude Controller . 25

3.1.2.2 X-Y Position Controller 25

3.1.2.3 Yaw Position Controller 27

3.1.2.4 Controllers Gains . 27

iii

3.1.3 Simulation Results . 28

3.2 Linear-Quadratic Tracker (LQT) . 32

3.2.1 The Optimization Problem Setup 32

3.2.2 Kalman Filter for Linear Velocity Estimation 37

3.2.3 Weight Matrices and Integral Action 43

3.2.4 Trajectory Generation . 44

3.2.5 Simulation Results . 45

4. Hardware Implementation and Experimental Results 50

4.1 PID Controller . 50

4.1.1 ROS Controller Node . 50

4.1.2 Experimental Results . 53

4.2 LQT Controller Implementation . 60

4.2.1 ROS Controller Node Modifications 62

4.2.2 MATLAB Interface Details . 63

4.2.3 Experimental Results . 64

4.3 Controller Comparisons . 68

4.3.1 Simulation vs Experimental - PID 68

4.3.2 Simulation vs Experimental - LQT 71

4.3.3 Controller Performance: PID vs LQT 73

4.4 LQT with UWB Position Estimation . 82

5. Conclusions and Future Work . 89

Bibliography . 92

Appendix A . 95

List of Figures

2.1.1 Body-fixed frame and Inertial frame. 4

2.1.2 “+” configuration at the left and “X” configuration at the right. 5

2.2.1 Euler angles in the quadcopter’s body. 6

2.2.2 Force diagram in the body-fixed frame. 7

iv

LIST OF FIGURES

2.2.3 Rotation direction of each motor, courtesy of Bitcraze “Crazyflie 2.0 user guide”. 10

3.1.1 Block Diagram of Simulation environment. 19

3.1.2 On-board control architecture, image courtesy of Bitcraze. 20

3.1.3 Rate Controller diagram. 21

3.1.4 Rate Controller diagram. 22

3.1.5 Onboard control architecture with Control mixer. 24

3.1.6 Altitude Controller. 25

3.1.7 X-Y Position Controller. 26

3.1.8 Yaw Position Controller. 27

3.1.9 Simulation results for Test #1. 28

3.1.10 3D Trajectory for Test #1. 29

3.1.11 Compound movement interference. 29

3.1.12 Simulation results for a circular trajectory. 30

3.1.13 3D Circular Trajectory. 31

3.1.14 Helical Trajectory Time response. 31

3.1.15 3D Helical Trajectory. 32

3.2.1 LQT Closed-Loop System. 36

3.2.2 Experimental validation of the Kalman Filter using the VICON system

raw data of X-Y positions. 41

3.2.3 Experimental validation of the Kalman Filter using the UWB system

raw data of X-Y positions. 42

3.2.4 Experimental validation of the Kalman Filter altitude estimation from

VICON raw data of Z position. 42

3.2.5 Trajectory generation GUI. 45

3.2.6 Simulation for steps in x, y and z positions. 46

3.2.7 Kalman Filter simulation, with VICON and UWB simulated noise. . . . 47

3.2.8 Tracking for complex trajectories. 48

3.2.9 3D Diagram for a complex trajectory. 48

3.2.10 Kalman Filter simulation for a complex trajectory. 49

4.1.1 ROS nodes and topics. 51

4.1.2 Crazyflie 2.0 with Vicon Sphere and UWB module. 51

4.1.3 Steps in vertical command zc. 54

4.1.4 3D Vertical Trajectory. 54

v

LIST OF FIGURES

4.1.5 Steps in zc and xc. 55

4.1.6 3D Diagonal Trajectory. 55

4.1.7 Steps in yc and ψc. 56

4.1.8 3D Trajectory with Y-Yaw compound movement. 57

4.1.9 Time Response for circular trajectory. 58

4.1.10 3D Circular trajectory. 58

4.1.11 Time Response for helix trajectory. 59

4.1.12 3D Helix Trajectory. 60

4.2.1 Pitch angle calibration rig. 61

4.2.2 Implementation diagram. 62

4.2.3 MATLAB Interface diagram to implement the LQT controller. 63

4.2.4 Position plots for Trajectory#1. 64

4.2.5 3D Trajectory#1. 65

4.2.6 Position plots for Trajectory#2. 65

4.2.7 3D Trajectory#2. 66

4.2.8 Position plots for Trajectory#3. 66

4.2.9 3D Trajectory#3. 67

4.2.10 Position plots for Trajectory#4. 67

4.2.11 3D Trajectory#4. 68

4.3.1 Trajectory using the PID controller to follow a Step in the X position. . 69

4.3.2 Trajectory using the PID controller to follow a Step in the Y position. . 70

4.3.3 Trajectory using the PID controller to follow a Step in the Z position. . 70

4.3.4 Trajectory using the LQT controller to follow a Step in the X position. . 71

4.3.5 Trajectory using the LQT controller to follow a Step in the Y position. . 72

4.3.6 Trajectory using the LQT controller to follow a Step in the Z position. . 72

4.3.7 X-Y Position and error comparison when following a unit step in the X

position. 74

4.3.8 Motor commands comparison when following a unit step in the X position. 75

4.3.9 X-Y Position and error comparison when following a unit step in the Y

position. 76

4.3.10 Motor commands comparison when following a unit step in the Y position. 77

4.3.11 Z Position and error comparison when following a unit step. 78

4.3.12 X-Y Position and error comparison when following a unit step in the Z

position. 78

vi

4.3.13 Motor commands comparison when following a unit step in the Z position. 79

4.3.14 X-Y Position and error comparison when following a circular trajectory. 80

4.3.15 Motor command comparison when following a circular trajectory. 81

4.4.1 Crazyflie 2.0 with UWB module exposed 82

4.4.2 X-Y Position and error comparison while hovering around a point. . . . 83

4.4.3 X-Y Position and error comparison when following Trajectory #1. . . . 84

4.4.4 Comparison of 3D Trajectory#1. 84

4.4.5 X-Y Position and error comparison when following Trajectory #2. . . . 85

4.4.6 Comparison of 3D Trajectory#2. 86

4.4.7 X-Y Position and error comparison when following Trajectory #3. . . . 87

4.4.8 Comparison of 3D Trajectory#3. 87

List of Tables

2.2.1 Notation for vectors and states. 6

2.3.1 Physical parameters for the Crazyflie 2.0. 12

3.1.1 Rate Controller’s gains. 22

3.1.2 Attitude Controller’s gains. 23

3.1.3 Gains for Off-Board Controllers. 27

4.3.1 Error comparison when following a unit step in X position. 74

4.3.2 Motor effort comparison when following a unit step in the X position. . . 75

4.3.3 Error comparison when following a unit step in Y position. 76

4.3.4 Motor effort comparison when following a unit step in the Y position. . . 77

4.3.5 Error comparison when following a unit step in Z position. 79

4.3.6 Motor effort comparison when following a unit step in the Z position. . . 79

4.3.7 Error comparison when following a circular position. 80

4.3.8 Motor effort comparison when following a circular trajectory. 81

4.4.1 Error comparison while hovering around a point. 83

4.4.2 Error comparison while following Trajectory #1. 85

4.4.3 Error comparison while following Trajectory #2. 86

vii

LIST OF TABLES

4.4.4 Error comparison while following Trajectory #3. 87

viii

Chapter 1

Introduction

In the past decade quadcopters have been studied due to their relative simple fabrica-

tion in comparison to other aerial vehicles, which turns them into ideal platforms for

modeling, simulation and implementation of control algorithms. The fact that they are

unmanned vehicles naturally invites developers to explore tasks that require a high de-

gree of autonomy.

Past works such as [17, 30] have set the base for developing quadcopter platforms from

their construction to the automation techniques necessary to control the highly non-linear

dynamics that characterize these vehicles.

The scope of the quadcopter technology has changed over the years. The cost and sizes

have been reduced, it is now a platform affordable for a broad type of public, from re-

searchers to hobbyists. But beyond the economic revenue these vehicles generate, the

manufacturers are searching for more autonomy, longer flight time, high data process-

ing capabilities and adaptation to changing environments, hence the active research on

quadcopters.

A fairly new type of quadcopters are the so called “nanoquads” that are of considerably

low size and weight, making them an ideal platform for indoor usage. The project

proposed here considers the study of a commercial platform of a nanoquadcopter called

“Crazyflie 2.0” developed by Bitcraze company [33]. Weighting only 27 grams and having

9.2 cm of length and width, this nanoquad has rapidly become one of the preferred

platforms for quadcopter research.

1

CHAPTER 1. INTRODUCTION

For indoor control of quadcopters different localization techniques can be employed, for

example the VICON motion capture system [33] is one of the preferred systems for

precise localization and it has been used widely in recent quadcopter studies [11, 26]. A

recent low-cost technology based on ultra-wide band radio modules has proven effective

for indoor localization in robotics systems and specially in quacopters [35]. Its low costs

are inviting developers to create their own implementations and the system is getting

more precise and robust. In a few words, the system measures the distance between two

ultra-wide band modules, normally called anchor and tag, by measuring the time of flight

of an electromagnetic wave. Thus, by the simple relationship between time, distance and

velocity (in this case, the speed of light), then the distance can be easily determined. By

having at least three anchors constantly calculating the distance between them and a

certain tag, a triangulation allows to calculate the position in space of the tag, knowing

beforehand the fixed position of each anchor with respect to a frame.

The UWB system can be implemented using a two-way ranging protocol or a one-way

ranging protocol. In two-way ranging, the tag communicates with each anchor individ-

ually following a sequence to go through all the anchors and calculate each distance.

On the other hand, in one-way ranging the tag constantly broadcasts messages that are

received by every anchor and by precisely synchronising the clocks of the anchors then

the distance between each of them and the tag are calculated. One-way ranging is par-

ticular useful for multi-robot localization applications as there exists no bottle-neck in

the number of tags the system can support. In particular, for this project the two-way

ranging system developed in [36] was used to test the control loop behavior using differ-

ent localization techniques. This system was developed using the decaWave DMW1000

ultra-wide band module [37] which offers an accuracy of 10-20 centimeters in distance

measurements.

1.1 Main Objectives

The main objectives of the research project were:

1. Develop the mathematical model that describes the dynamics of the Crazyflie 2.0

quadcopter.

2. Create a simulation environment for testing position and trajectory tracking control

algorithms.

2

CHAPTER 1. INTRODUCTION

3. Implement, test and compare different control architectures.

4. Evaluate the performance of a low-cost UWB-based localization system when in-

tegrated in the control loop.

1.2 Secondary Objectives

A set of small milestones were defined to help achieve the main objectives of the project:

1. Investigate past works to identify the physical and aerodynamical parameters of

the Crazyflie 2.0.

2. Linearize the quadcopter’s dynamics around hover state.

3. Study and identify the control architecture inside the Crazyflie’s firmware.

4. Design, simulate and implement an off-board position controller using data from

the VICON positioning system.

5. Conceive a second control system, from simulation to implementation, to track

more demanding trajectories.

6. Compare the performance of both controllers with in-flight data.

7. Compare the performance of the LQT controller using both the VICON and the

UWB systems.

3

Chapter 2

Model of the Quadcopter

In this section a mathematical model of the Crazyflie 2.0 is proposed. This study was

the basis on which the simulation environment was built and an important component in

the design of controllers. Thus, it was important to dedicate enough time to understand

how the system works and identify correctly some physical parameters that were relevant

for the simulation to be useful in the real case scenario.

2.1 Coordinate Frames

Before any dynamic study of the quadcopter begins, it is necessary to define the coor-

dinate frames of the body of the quadcopter (non-inertial frame) as well as the inertial

frame, also called “world frame”, which in the case of this project refers to the coordinate

frame set by the external positioning system (VICON/UWB). Following the conventions

set by the “Bitcraze” company when designing their quadcopter, as seen in Figure 2.1.1

the body-fixed frame is defined.

Figure 2.1.1: Body-fixed frame and Inertial frame.

In the aeronautic systems, a popular axes convention is to define a positive altitude

downwards, the Y axis pointing towards the east and the X axis pointing towards the

4

CHAPTER 2. MODEL OF THE QUADCOPTER

true north. These types of frames are called NED frames (North, East, Down). It was

decided to follow the convention used in the Crazyflie 2.0 firmware, meaning a positive

altitude upwards, which defines an ENU frame (East, North, Up). Another remark is

that the origin of the body-fixed frame matches with the center of gravity of the quad-

copter.

Another important remark is knowing the flight configuration of the quadcopter as there

are two of them: configuration “+” or configuration “X”. The difference between them is

the orientation of the X-Y frame in terms of the arms of the quadcopter, as shown in

Figure 2.1.2 taken from the manufacturer’s website [32] and modified accordingly.

Figure 2.1.2: “+” configuration at the left and “X” configuration at the right.

In the modern conceptions of quadcopters the “X” configuration is prefered over the

“+” configuration, mainly because in “X” it is easier to add a camera functionality as

the quadcopter’s arms will not be interfering with the images captured. By default the

Crazyflie 2.0 is in X mode, so for the rest of this project and during the mathematical

modeling it will be considered that the quadcopter is in this configuration.

2.2 Dynamic Equations

The dynamic equations of the quadcopter proposed here take into account certain phys-

ical properties that are not necessarily perfectly valid in the real platform that is being

used in this work, but they are good approximations that simplify greatly the study and

comprehension of this type of vehicles. Here are the hypothesis:

1. The quadcopter is a rigid body that cannot be deformed, thus it is possible to use

the well-known dynamic equations of a rigid body.

2. The quadcopter is symmetrical in its geometry, mass and propulsion system.

5

CHAPTER 2. MODEL OF THE QUADCOPTER

3. The mass is constant (i.e its derivative is 0).

The mechanical classic laws of motion are valid in inertial systems, so to be able to trans-

late these equations into the body frame it is necessary to define a rigid transformation

matrix from the inertial frame to the body-fixed frame, in which only the rotational part

is meaningful to the discussion and is given by three successive rotations: first a rotation

of an angle ψ around the z axis, then a rotation of an angle θ around the intermediate

y axis and finally a rotation of an angle φ around the intermediate x axis. Once these

three rotations are calculated, the resulting transformation matrix is defined as:

Rb
i =

 cos θ cosψ cos θ sinψ − sin θ

sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ

cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ

 (2.2.1)

where φ, θ and ψ represent the roll, pitch and yaw angles of the quadcopter’s body.

Figure 2.2.1 shows the direction of said angles in the Crazyflie 2.0 body-fixed frame

defined previously.

Figure 2.2.1: Euler angles in the quadcopter’s body.

The notation convention used during the mathematical analysis of the quadcopter’s

dynamics is exhibited in Table 2.2.1, where the state variables are defined.

Vector State Description
x X position of CoG in the inertial frame

pCG/o y Y position of CoG in the inertial frame

z Z position of CoG in the inertial frame

φ Roll angle

Φ θ Pitch angle

ψ Yaw angle

u X linear velocity of CoG in the body-fixed frame w.r to the inertial frame

VCG/o v Y linear velocity of CoG in the body-fixed frame w.r to the inertial frame

w Z linear velocity of CoG in the body-fixed frame w.r to the inertial frame

p Roll angular velocity in the body-fixed frame w.r to the inertial frame

ωb/o q Pitch angular velocity in the body-fixed frame w.r to the inertial frame

r Yaw angular velocity in the body-fixed frame w.r to the inertial frame
w.r = with respect.

Table 2.2.1: Notation for vectors and states.

6

CHAPTER 2. MODEL OF THE QUADCOPTER

Furthermore, a left superindex such as oV̇CG/o will indicate in what frame a derivative is

taken, while a right superindex indicate a vector coordinates into the specified frame. If

a right superindex is not specified as in the example, then the vector does not experience

any rotations after the derivative is taken.

2.2.1 Force Equations

According to Newton’s Second Law, the expression for the sum of forces is:

∑
F = moV̇CG/o (2.2.2)

The expression of this derivative of velocity can be determined using the Coriolis equa-

tion, which gives the following dynamic expression in the body-fixed frame:

∑
F = moV̇CG/o = m

(
bV̇CG/o + ωb/o × VCG/o

)
(2.2.3)

Each propeller of the quadcopter creates an aerodynamical force as shown in Figure 2.2.2

that acts upwards in the body-fixed frame.

Figure 2.2.2: Force diagram in the body-fixed frame.

In a situation where the quadcopter is parallel to the ground, meaning its roll and pitch

angles are zero, the aerodynamic forces created by the propellers will search to counteract

the effect of the weight and then make the quadcopter move upwards, downwards or stay

in a hover position. In Figure 2.2.2 the vector “mg” actually represents the projection of

the weight vector from the inertial frame to the body-fixed frame. That being said, this

qualitative analysis of how the forces work in the quadcopter’s body can be translated

7

CHAPTER 2. MODEL OF THE QUADCOPTER

into (2.2.3) as:

 0

0

Fz

−Rb
o

 0

0

mg

 = m


 u̇

v̇

ẇ

+

 p

q

r

×
 u

v

w


 (2.2.4)

From (2.2.4) it is possible to isolate the vector bV̇CG/o: u̇

v̇

ẇ

 =

 0

0

Fz/m

−Rb
o

 0

0

g

−
 p

q

r

×
 u

v

w

 (2.2.5)

This equation dictates how the velocity of the center of gravity of the quadcopter evolves

in its body-fixed frame. To determine another set of state space variables it is necessary

to project this vector in the inertial frame to calculate the velocity in this coordinate

system. Note: the matrix Rb
o is a rotation matrix, so it has the following property:(

Rb
o

)−1
=
(
Rb
o

)
T = Ro

b . Applying it, the projection is calculated:

oṗbCG/o =
(
Rb
o

)
oṗCG/o ⇐⇒ oṗCG/o = Ro

bV
b
CG/o ⇐⇒

 ẋ

ẏ

ż

 = Ro
b

 u

v

w

 (2.2.6)

By integrating (2.2.6) it is possible to know the position of the quadcopter in the inertial

frame.

Concerning the equations of forces and their state variables, it is necessary to specify

the form of the aerodynamical force generated by the propellers. Following the diagram

in Figure 2.2.2, the force generated by each propeller has the form:

F b
i =

 0

0

Ti

 (2.2.7)

where Ti represents the upward thrust force in Newtons generated by each propeller. It

is widely known that the thrust generated by a propeller is a function of the square of

its angular speed:

Ti = CTω
2
i (2.2.8)

CT is a thrust coefficient that will be specified in Section 2.3 and ωi is the rotation speed

of the i-th motor, in revolutions per minute. As Figure 2.2.2 suggests, each propeller

generates a thrust force following (2.2.8) and all in the same direction, which leads to a

8

CHAPTER 2. MODEL OF THE QUADCOPTER

sum of all thrust forces:

∑
F b
i =

 0

0

CT
(
ω2
1 + ω2

2 + ω2
3 + ω2

4

)
 (2.2.9)

2.2.2 Momentum Equations

These equations dictate the rotational dynamics of the quadcopter. Following the theo-

rem of angular momentum: ∑
M o = oḣ (2.2.10)

where h denotes the angular momentum around the center of gravity. Using Coriolis

equation: ∑
M o = oḣ = bḣ+ ωb/o × h (2.2.11)

It is desirable to express (2.2.11) in the body-fixed frame as the momentum equations

are more easily calculated, as explained in [31]:

∑
M b = J bω̇b/o + ωb/o × Jωb/o (2.2.12)

here J denotes the inertia matrix of the quadcopter, which in general can be expressed

as:

J =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 (2.2.13)

but from the hypothesis that the body of the quadcopter is symmetrical around all its

axes, the inertia matrix has all crossed terms equal to zero, i.e.,

J =

 Ixx 0 0

0 Iyy 0

0 0 Izz

 (2.2.14)

From equation (2.2.12) it is possible to isolate the vector bω̇b/o: ṗ

q̇

ṙ

 = (J)−1


 Mx

My

Mz

−
 p

q

r

× J
 p

q

r


 (2.2.15)

9

CHAPTER 2. MODEL OF THE QUADCOPTER

The last state equations come from the relation between ωb/o and the Euler angles

derivative Φ̇  p

q

r

 =

 1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ


 φ̇

θ̇

ψ̇

 (2.2.16)

with the inverse relation the state vector Φ̇ is isolated: φ̇

θ̇

ψ̇

 =

 1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ/ cos θ cosφ/ cos θ


 p

q

r

 for θ 6= π

2
(2.2.17)

To calculare the total momentum generated in the quadcopter system, it is imperative

to know the rotation direction of each motor. As seen in Figure 2.2.3, the manufacturer

of the Crazyflie 2.0 provides this information [32].

Figure 2.2.3: Rotation direction of each motor, courtesy of Bitcraze “Crazyflie 2.0 user guide”.

The expression for the momentum is given as:

M =
4∑
i=1

Pi × Fi +
4∑
i=1

τi (2.2.18)

where Pi represents the position of each motor in the body-fixed frame and τi represents

the induced momentum in the quadcopter’s body generated by the i-th motor. When

a rotor turns in a given direction, conservation of angular momentum dictates that the

quadcopter’s body will have a tendency to counteract the generated angular momentum,

being consistent with Newton’s third law of action and reaction. This reaction momen-

tum due to the spin of a rotor is the induced moment τi.

If d denotes the distance from the center of gravity to the center of each motor, the

10

CHAPTER 2. MODEL OF THE QUADCOPTER

position of each motor is:

P1 =

 d/
√

2

−d/
√

2

0

 , P2 =

 −d/
√

2

−d/
√

2

0

 , P3 =

 −d/
√

2

d/
√

2

0

 , P4 =

 d/
√

2

d/
√

2

0

 (2.2.19)

Then the mometum generated by the thrust force of each motor can be calculated:

P b
1 × F b

1 =


(
−CTω2

1

)
d/
√

2(
−CTω2

1

)
d/
√

2

0

 P b
2 × F b

2 =


(
−CTω2

2

)
d/
√

2(
CTω

2
2

)
d/
√

2

0



P b
3 × F b

3 =


(
CTω

2
3

)
d/
√

2(
CTω

2
3

)
d/
√

2

0

 P b
4 × F b

4 =


(
CTω

2
4

)
d/
√

2(
−CTω2

4

)
d/
√

2

0



The induced moments τi act only in the Z axis and have an opposite magnitude from

the moment generated by each propeller, due to the conservation of angular momentum.

In this particular case, given the axis convention that is being used (z axis pointing

upwards), applying the right-hand rule indicate that a clockwise spinning rotor yields

a negative momentum (one thumb points downward, in the opposite direction of the z

axis), thus the induced momentum will be positive. Then, the sum of induced moments

in the quadcopter’s body is calculated:

4∑
i=1

τ bi =

 0

0

CD
(
−ω2

1 + ω2
2 − ω2

3 + ω2
4

)
 (2.2.20)

where CD denotes the aerodynamic drag coefficient that will be specified in Section 2.3.

Finally, the total moment has the following form:

M b =

 Mx

My

Mz

 =

 dCT /
√

2
(
−ω2

1 − ω2
2 + ω2

3 + ω2
4

)
dCT /

√
2
(
−ω2

1 + ω2
2 + ω2

3 − ω2
4

)
CD

(
−ω2

1 + ω2
2 − ω2

3 + ω2
4

)
 (2.2.21)

In the total momentum equation there are certain terms that include angular acceler-

ations that have been neglected as they tend to be small compared to the other terms

of the equation. Gyroscopic moments have also been neglected using the argument that

the inertia moment of each motor tends to be small thus their contribution in the total

momentum is also small [21, 30].

11

CHAPTER 2. MODEL OF THE QUADCOPTER

2.3 Physical Parameters

The precise measurement of certain physical parameters is the key to create a simulation

environment that correctly describes the behavior of the quadcopter. In [1] a study

of said physical parameters was undertaken for the Crazyflie 2.0. The aerodynamical

coefficients were studied in [2] for the Crazyflie 1.0, but they are the same or at least

close to those of the Crazyflie 2.0 given the fact that these coefficients only depend on

the geometry of the propellers [3], which remained unchanged between the two models.

Results of both works are summarized in Table 2.3.1.

Parameter Description Value
mquad Mass of the quadcopter alone 0.27 [Kg]

muwb Mass of the UWB module 0.04 [Kg]

mvicon Mass of one VICON marker 0.02 [Kg]

m Total mass 0.33 [Kg]

d Arm length 39.73× 10−3 [m]

r Rotor radius 23.1348× 10−3 [m]

Ixx Principal Moment of Inertia around x axis 1.395× 10−5 [Kg×m2]

Iyy Principal Moment of Inertia around y axis 1.436× 10−5 [Kg×m2]

Izz Principal Moment of Inertia around z axis 2.173× 10−5 [Kg×m2]

kT Non-dimensional thrust coefficient 0.2025

kD Non-dimensional torque coefficient 0.11

Table 2.3.1: Physical parameters for the Crazyflie 2.0.

In addition, as explained in [3], the thrust generated by the propeller is often expressed

as:

T = kTρn
2D4 (2.3.1)

where kT is the non-dimensional thrust coefficient, ρ is the density of air, n is the

propeller speed in revolutions per second and D is the diameter of the rotor. As it will

be evident later, it is convenient to express the propeller speed in RPM’s. Knowing that

1 revolution per second is the same as 60 revolutions per minute, (2.3.1) becomes:

T = kTρ (ω/60)2D4 (2.3.2)

where ω is the angular speed of the propeller in RPM. Comparing the above with (2.2.8),

it is possible to determine the thrust coefficient CT as:

CT = kTρ (2r)4 /3600 (2.3.3)

12

CHAPTER 2. MODEL OF THE QUADCOPTER

taking the value of air density constant ρ = 1.225 [Kg/m3] and all the other constants

defined previously, finally this coefficient is:

CT = 3.1582× 10−10 [N/rpm2] (2.3.4)

Now for the torque coefficient, as specified in [3], the torque created by the propellers is

described by this equation:

Q = kDρn
2D5 (2.3.5)

Operating the same variable change as in (2.3.3), then:

CD = kDρ (2r)5 /3600 (2.3.6)

CD = 7.9379× 10−12 [Nm/rpm2] (2.3.7)

With the parameters specified in Table 2.3.1 and the constants calculated in (2.3.4)

and (2.3.7), all the basic physical parameters were determined. Here we use the word

“basic” as these parameters are the minimum necessary to be able to simulate the be-

havior of a quadcopter and because in most applications, this one included, are a good

approximation of the real physical system.

2.4 Linearization and State Space Representation

The state space representation of a system gives an idea of how the system evolves in

time by the following equations:{
ẋ (t) = A (t)x (t) +B (t)u (t)

y (t) = C (t)x (t) +D (t)u (t)
(2.4.1)

In general, this equation describes the evolution of a linear time-varying system, where

x (t) is the vector of states, y (t) is the output vector and u (t) is the input vector. For

the state space representation of a quadcopter it is conventional to consider the following

linear time-invariant realisation of the system, meaning that matrices A, B, C and D are

static and don’t change over time:{
∆ẋ = A∆x+B∆u

∆y = C∆x+D∆u
(2.4.2)

where the prefix ∆ means that the vector is the result of a linearisation process.

13

CHAPTER 2. MODEL OF THE QUADCOPTER

When linearizing a system the important question becomes at around which so-called

"trim" trajectory we desire to linearize, or better yet, what is the trim trajectory most

well-suited given the needs of the system. This trim trajectory has to be associated with

an equilibrium point in which the states of the system do not change over time, meaning

ẋe = 0. In the case of the quadcopter, the common trim trajectory is the hover, in

which the drone stays stationary at a certain altitude. This fact can be translated as an

equilibrium state:

xe =
[
xe ye ze ψe θe φe ue ve we re qe pe

]T
(2.4.3)

At the equilibrium point, the quadcopter’s linear position and yaw angle are indifferent

in terms of the linearization calculus, so they can be considered arbitrary constants. For

the roll and pitch angles, they need to be zero in order for the quadcopter to keep the

stationary position, and so does any linear or angular velocity. Finally the equilibrium

vector is as simple as:

xe =
[
xe ye ze ψe 0 0 0 0 0 0 0 0

]T
(2.4.4)

In order to keep the quadcopter flying in hover mode, knowing that the body is levelled

with the floor and there are no gravity components other that in the z axis, the force

generated by the propellers need to compensate exactly for the weight of the quadcopter

to stay stationary in the air, this means:

CT
(
ω2
e1 + ω2

e2 + ω2
e3 + ω2

e4

)
= mg (2.4.5)

From the hypothesis that the quadcopter’s body is perfectly symmetrical, a quick de-

duction is that all motors need to rotate with the same speed in order to maintain the

body levelled and don’t create any angular momentum, this means that in equilibrium:

ωe1 = ωe2 = ωe3 = ωe4 = ωe (2.4.6)

Combining (2.4.5) and eqrefeq:32 gives as result:

ωe =

√
mg

4CT
= 16073 [rpm] (2.4.7)

14

CHAPTER 2. MODEL OF THE QUADCOPTER

This constant specifies the required speed of each rotor in order to maintain the hover

position and so the input vector in equilibrium is:

ue =
[
ωe ωe ωe ωe

]T
(2.4.8)

After applying a Taylor’s first order expansion, and taking into account the equilibrium

state vector specified in (2.4.4), the linearized equations are:

∆Fx = m∆u̇−mg∆θ

∆Fy = m∆v̇ +mg∆φ

∆Fz = m∆ẇ

∆Mx = Ixx∆ṗ

∆My = Iyy∆q̇

∆Mz = Izz∆ṙ

(2.4.9)

The linearized forces and moments are:

∆F b =

 ∆Fx
∆Fy
∆Fz

 =

 0

0

2CTωe (∆ω1 + ∆ω2 + ∆ω3 + ∆ω4)

 (2.4.10)

∆M b =

 ∆Mx

∆My

∆Mz

 =


√

2dCTωe (−∆ω1 −∆ω2 + ∆ω3 + ∆ω4)√
2dCTωe (−∆ω1 + ∆ω2 + ∆ω3 −∆ω4)

2CDωe (−∆ω1 + ∆ω2 −∆ω3 + ∆ω4)

 (2.4.11)

In hover position the body-fixed frame coincides with the inertial frame, meaning:


∆ẋ = ∆u

∆ẏ = ∆v

∆ż = ∆w


∆φ̇ = ∆p

∆θ̇ = ∆q

∆ψ̇ = ∆r

(2.4.12)

Merging (2.4.9) to (2.4.12) allows to write the state space representation of the linearized

quadcopter:



∆ẋ

∆ẏ

∆ż

∆ψ̇

∆θ̇

∆φ̇

∆u̇

∆v̇

∆ẇ

∆ṙ

∆q̇

∆ṗ



=



0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 g 0 0 0 0 0 0 0

0 0 0 0 0 −g 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0





∆x

∆y

∆z

∆ψ

∆θ

∆φ

∆u

∆v

∆w

∆r

∆q

∆p



+ ωe



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2CT /m 2CT /m 2CT /m 2CT /m

−2CD/Izz 2CD/Izz −2CD/Izz 2CD/Izz
−
√

2dCT /Iyy
√

2dCT /Iyy
√

2dCT /Iyy −
√

2dCT /Iyy
−
√

2dCT /Ixx −
√

2dCT /Ixx
√

2dCT /Ixx
√

2dCT /Ixx




∆ω1

∆ω2

∆ω3

∆ω4



15

CHAPTER 2. MODEL OF THE QUADCOPTER

2.5 Movement Decoupling

In the state space realization of the quadcopter’s linear model, the four inputs of the

system act directly in just four states of the system. Rewriting together (2.4.10) and

(2.4.11) show how each input of the system contributes to each force and momentum.


Fz
Mx

My

Mz

 = 2ωe


CT CT CT CT

−dCT /
√

2 −dCT /
√

2 dCT /
√

2 dCT /
√

2

−dCT /
√

2 dCT /
√

2 dCT /
√

2 −dCT /
√

2

−CD CD −CD CD




∆ω1

∆ω2

∆ω3

∆ω4

 (2.5.1)

From (2.5.1) a transformation matrix can be defined between the forces acting on the

quadcopter’s body and the angular speed from the motors:

Γ = 2ωe


CT CT CT CT

−dCT /
√

2 −dCT /
√

2 dCT /
√

2 dCT /
√

2

−dCT /
√

2 dCT /
√

2 dCT /
√

2 −dCT /
√

2

−CD CD −CD CD

 (2.5.2)

If matrix Γ is invertible (i.e: Γ−1exists) that means that all four lines are independent

and thus the vertical and angular forces of the quadcopter act independently from each

other. Inverting the matrix:

Γ−1 =
1

2ωe


1/ (4CT) −

√
2/ (4dCT) −

√
2/ (4dCT) −1/ (4CD)

1/ (4CT) −
√

2/ (4dCT)
√

2/ (4dCT) 1/ (4CD)

1/ (4CT)
√

2/ (4dCT)
√

2/ (4dCT) −1/ (4CD)

1/ (4CT)
√

2/ (4dCT) −
√

2/ (4dCT) 1/ (4CD)

 (2.5.3)

Now taking the result in (2.5.3), it is possible to find the inverse relation of (2.5.1):


∆ω1

∆ω2

∆ω3

∆ω4

 = 1
2ωe


1/ (4CT) −

√
2/ (4dCT) −

√
2/ (4dCT) −1/ (4CD)

1/ (4CT) −
√

2/ (4dCT)
√

2/ (4dCT) 1/ (4CD)

1/ (4CT)
√

2/ (4dCT)
√

2/ (4dCT) −1/ (4CD)

1/ (4CT)
√

2/ (4dCT) −
√

2/ (4dCT) 1/ (4CD)




Fz
Mx

My

Mz

 (2.5.4)

Equation (2.5.4) dictates how each motor contributes to each of the forces acting on

the quadcopter’s body. This study confirms that the vertical, lateral, longitudinal and

directional (yaw) forces act independently from each other in the mathematical model

and thus the quadcopter’s dynamics are decoupled and can be studied as sub-systems.

16

CHAPTER 2. MODEL OF THE QUADCOPTER

• Vertical Subsystem

This subsystem describes the dynamics of the upward movements of the quadcopter,

following this state space equation:[
∆ẇ

∆ż

]
=

[
0 0

1 0

][
∆w

∆z

]
+

[
1/m

0

]
∆Fz (2.5.5)

• Directional Subsystem

The yaw angle and its velocity dictate the dynamics of the quadcopter direction in the

XY plane, as suggests this following state space equation:[
∆ṙ

∆ψ̇

]
=

[
0 0

1 0

][
∆r

∆ψ

]
+

[
1/Izz

0

]
∆Mz (2.5.6)

• Lateral Subsystem

The lateral dynamic governs the pitch movement of the quadcopter, as well as its Y

position in the inertial frame:


∆ṗ

∆φ̇

∆v̇

∆ẏ

 =


0 0 0 0

1 0 0 0

0 −g 0 0

0 0 1 0




∆p

∆φ

∆v

∆y

+


1/Ixx

0

0

0

∆Mx (2.5.7)

• Longitudinal Subsystem

Similar to the lateral subsystem, it rules the movement around the X axis of the body-

fixed frame of the quadcopter, and its X position and velocity in the inertial frame.


∆q̇

∆θ̇

∆u̇

∆ẋ

 =


0 0 0 0

1 0 0 0

0 g 0 0

0 0 1 0




∆q

∆θ

∆u

∆x

+


1/Iyy

0

0

0

∆Mx (2.5.8)

2.6 Motor Characterization

The inputs of the above state space realization are the angular speed of each motor in

RPM’s, but after exploring the Crazyflie’s 2.0 firmware it became evident that this is

not the real input of the system. The voltage sent to each DC motor is controlled using

a PWM signal specified as a 16 bit number, ranging from 0 to 65535, meaning that the

actual input of the system can be considered directly as this PWM signal and not the

17

CHAPTER 2. MODEL OF THE QUADCOPTER

actual voltage sent to the motors. In [2] experimental data was retrieved from the motors

to identify the relationship between the PWM signal sent to the motors and the RPM’s

generated. The experiments proved that the angular speed of the motors have a linear

relationship with the PWM input of the system, following the equation:

RPM = 0.2685× PWM + 4070.3 (2.6.1)

The characterization of a DC motor usually derives in a first order transfer function that

specifies certain response time from the motors as they do not react immediately to the

commands sent, but it is a good approximation to assume that this response time is fast

enough and that it will not cause much delays in the system, thus (2.6.1) serves as a

good approximation for the motor characterization.

18

Chapter 3

Simulation

In this section a simulation environment of the quadcopter’s dynamics is proposed with

the intention of testing and designing control schemes. Two different controllers are

proposed: in the first phase of the project a position PID tracker was considered and in

a second phase a trajectory tracker known as the Linear-Quadratic Tracker (LQT) was

studied.

3.1 Cascaded PID Position Tracker

Figure 3.1.1 presents the simulation model created for this phase of the project.

Trajectory Controller Motors

Sensor’s
Noise

Quadcopter’s
Dynamics

xc, yc, zc, ψc PWM RPM

StateState+Noise

Figure 3.1.1: Block Diagram of Simulation environment.

Now an explanation of each simulation block will be given:

1. Trajectory: this block serves as the input of the overall system, specifying a

trajectory in the x,y,z and yaw positions. As of now the commands sent by this

block are mere constants or signal inputs such as sinusoids, random signals, ramps,

etc. It serves as input commands to the controller.

19

CHAPTER 3. SIMULATION

2. Controller: takes the desired trajectory and the quadcopter’s states as inputs and

computes the necessary 16-bit PWM signal to send to the motors.

3. Motors: implements the linear relation between the 16-bit PWM signal sent to

the motors and the actual angular speed in revolutions per minutes generated by

them, as specified in Section 2.6.

4. Quadcopter’s dynamics: this block implements the dynamic equations of Sec-

tion 2.2. The vectorial form of the equations, as they were developed, is the

simplest, most common and elegant way of constructing this block. The non-linear

model was linearized using MATLAB’s command “linmod” to verify it was consis-

tent with the theoretical state space model found in the previous section.

5. Sensor’s noise: allows to add additive white Gaussian noise to specific states

of the quadcopters, to simulate the sensors that give the real states used by the

control system. This block could be modified by the user to define more complex

models, e.g., including sensor bias.

3.1.1 On-Board Control Architecture

The first steps to control the quadcopter was understanding the already implemented

controllers that came with the stock firmware of the Crazyflie 2.0 (Firmware release

2016.02). As seen in Figure 3.1.2 the manufacturers specify the control architecture

used:

Figure 3.1.2: On-board control architecture, image courtesy of Bitcraze.

A two cascaded PID control scheme was found in the Crazyflie’s firmware in order to

control the pitch and roll angles. A cascaded control structure can be analysed by

decomposing the architecture in an inner and outer control loops, in which the outer

loop regulates the inner loop, which in turn regulates the plant of the system. As a

20

CHAPTER 3. SIMULATION

common rule in cascaded structures, the inner loop needs to regulate at a faster rate

than the outer loop. It is ideal for the inner loop output to reach an steady state

value before the outer loop changes the setpoint sent to the inner loop. Synchronization

problems will occur between the two controllers if the inner loop response is not as fast

as it should, or if the outer loop is faster than it should. In implementation terms this

is easily remediable by forcing the inner loop to be, as in this case, twice as fast as the

outer loop (Attitude controller running at 250Hz and Rate controller running at 500Hz).

3.1.1.1 Inner Loop: Rate Controller

The inputs and outputs of this block are shown in Figure 3.1.3.

Rate
Controller

pc, qc, rc

p, q, r

∆φ,∆θ,∆ψ

Figure 3.1.3: Rate Controller diagram.

The goal of this controller is to calculate the input variation from the equilibrium point

of the motors in order to create the angular momentum required for the state variables

p, q and r to get the values pc, qc and rc respectively. For that, three independent

controllers are used:

• Roll Rate Proportional controller: calculates ∆φ following this equation, the

desired value pc is calculated by the outer loop attitude controller:

∆φ (t) = KP,p (pc (t)− p (t)) (3.1.1)

• Pitch Rate Proportional controller: very similar to the roll rate controller,

calculates ∆θ from the setpoint value qc:

∆θ (t) = KP,q (qc (t)− q (t)) (3.1.2)

• Yaw Rate Proportional-Integral controller: calculates the desired deviation

from the base thrust, ∆ψ, from an external setpoint rc that can be specified through

a teleoperation system or as it is going to be specified later, by an off-board con-

21

CHAPTER 3. SIMULATION

troller. The control law for this compensator is:

∆θ (t) = KP,r (rc (t)− r (t)) +KI,r

∫ t

0
(rc (τ)− r (τ)) dτ (3.1.3)

Table 3.1.1 contains the gains for each of these controllers, taken directly from the

Crazyflie’s firmware.

Controller KP KI

Roll Rate 70 -
Pitch Rate 70 -
Yaw Rate 70 16.7

Table 3.1.1: Rate Controller’s gains.

3.1.1.2 Outer Loop: Attitude Controller

The inputs and outputs of the attitude controller are as show in Figure 3.1.4.

Attitude
Controller

φc,θc

φ, θ

pc, qc

Figure 3.1.4: Rate Controller diagram.

This controller act as a regulator of the rate controller, calculating the appropriate

setpoints for the angular velocities around the X and Y axis, in order to stabilize the

quadcopter at a certain desired angular position. The attitude controller uses the pitch

and roll angles estimates from the sensor fusion algorithm, compares them to the external

commands φc and θc (coming from teleoperation, off-board controller, etc) and feeds

them to a controller that calculates the desired angular velocities pc and qc. These

controllers are as follows:

• Roll Attitude Proportional-Integral controller: computes the desired roll

rate in the body frame, pc ,using the control law:

pc (t) = KP,φ (φc (t)− φ (t)) +KI,φ

∫ t

0
(φc (τ)− φ (τ)) dτ (3.1.4)

• Pitch Attitude Proportional-Integral controller: works in the same fashion

22

CHAPTER 3. SIMULATION

as the roll controller, using the corresponding variables:

qc (t) = KP,θ (θc (t)− θ (t)) +KI,θ

∫ t

0
(θc (τ)− θ (τ)) dτ (3.1.5)

Once again, the gains for these controllers were already specified in the Crazyflie’s

firmware release 2016.02, as seen in Table 3.1.2. The same values were used during

this project as they turned out to be well tuned according to the simulations and the

tests made with the real platform.

Controller KP KI

Roll Attitude 3.5 2

Pitch Attitude 3.5 2

Table 3.1.2: Attitude Controller’s gains.

As it is evident from the gain values in Tables 3.1.1 and 3.1.2, the roll and pitch gains

for both controllers are the same, which is consistent with the initial hypothesis that the

quadcopter is a symmetrical body around all its axes.

3.1.1.3 Control Mixer

The output of the rate controller is the total input variation of the motors from the

equilibrium state required to generate a torque in the desired direction of movement.

Afterwards this input variation has to be distributed to the motors in the same fashion

as in (2.4.11), for it to move and rotate appropriately using the PWM input it received.

Given that the quadcopter is in X configuration, the motor effort has to be distributed

halfway in each motor for a desired torque around the X or Y axis. All this analysis can

be translated in the following equations that are implemented on board of the Crazyflie

2.0, thus specifying a “Control mixer” block in the simulation environment:
PWMmotor1 = Ω−∆φ/2−∆θ/2−∆ψ

PWMmotor2 = Ω + ∆φ/2−∆θ/2 + ∆ψ

PWMmotor3 = Ω + ∆φ/2 + ∆θ/2−∆ψ

PWMmotor4 = Ω−∆φ/2−∆θ/2 + ∆ψ

(3.1.6)

where Ω is the PWM base signal for maintaining a certain altitude, a value that will be

regulated from an altitude controller; ∆φ, ∆θ and ∆ψ represent the outputs of the Rate

Controller and at the same time give an idea of a deviation needed from the base thrust

in order to obtain a certain torque in the X, Y or Z axis. From (3.1.6) it is more clearly

23

CHAPTER 3. SIMULATION

how, for example, a command ∆φ > 0 will be distributed 50/50 as a reduction of the

PWM input supplied to motors 1 and 4, and an increase of the power supplied to motors

2 and 3, thus creating the appropriate angular momentum to obtain certain angle in the

pitch direction.

Figure 3.1.5 shows a complete diagram of the on-board control scheme.

Attitude
Controller

Rate
Controller

Control
Mixer

φc,θc

φ, θ

pc, qc

p, q, r

rc

∆φ,∆θ,∆ψ

Ω

PWM

Figure 3.1.5: Onboard control architecture with Control mixer.

The red inputs in this diagram represent the actual inputs that can be controlled from

outside of the firmware, as it was suggested earlier, either by a teleoperation system

or by an automated position controller. The other signals come from the sensor fusion

algorithm or are intermediate variables in the control process.

3.1.2 Off-Board Position Controller

In hopes of controlling the quadcopter by sending waypoints or trajectories in a tridi-

mensional space, it became necessary to add a position controller that in terms of the

implementation will be running off-board unlike the controller of the previous section.

The job of this controller can be divided into:

1. An altitude controller whose output is the thrust Ω required to maintain a certain

position in z.

2. An X-Y position controller whose outputs are the required roll and pitch angles

that will be regulated by the on-board controller.

3. A yaw position controller that sends the required angular velocity to the on-board

Yaw Rate Controller.

As seen in the dynamic analysis of the quadcopter, there exists a theoretical decoupling

between the vertical, lateral, longitudinal and yaw movement, meaning that each one

of these controllers can be tuned independently from each other, which simplifies the

controller design task.

24

CHAPTER 3. SIMULATION

3.1.2.1 Altitude Controller

It is common practice to add a feedforward term as in [4] that compensates the weight

of the quadcopter, in order to avoid the use of large controller gains that can lead to

saturation problems. The structure in Figure 3.1.6 was the one used for this controller.

Altitude
Controller

zc

z

∆Ω +

+

Feedforward Ωe

Ω

Figure 3.1.6: Altitude Controller.

The altitude controller is a simple PID compensator whose inputs are the desired altitude

that comes from the trajectory block, and the altitude state that in terms of simulation

comes from the quadcopter’s dynamics block. The equation that describes this PID

controller is the following:

∆Ω (t) = KP,z (zc (t)− z (t)) +KI,z

∫ t
0 (zc (τ)− z (τ)) dτ +KD,z

d
dt (zc (t)− z (t)) (3.1.7)

The output of this PID controller is the 16-bit thrust deviation from the equilibrium

point set at the hover state. That means that the feedforward term Ωe in Figure 3.1.6

is the necessary PWM 16-bit signal needed for the quad to maintain its altitude. Using

the calculations at the equilibrium, as seen in (2.4.7) and (2.6.1), the feedforward term

can be calculated as:

Ωe =
ωe − 4070.3

0.2685
= 44705 (3.1.8)

3.1.2.2 X-Y Position Controller

The objective of this controller is to regulate the on-board Attitude Controller by cal-

culating the necessary roll and pitch angles in order to move the quadcopter between

locations in the X-Y plane. The block diagram in Figure 3.1.7 shows the inputs and

outputs of this controller.

25

CHAPTER 3. SIMULATION

Error to
Body
Frame

X-Y
Position
Controller

xc,yc

ψ

x, y

xbe, y
b
e

u, v

φc,θc

Figure 3.1.7: X-Y Position Controller.

In [5] it was proven that a similar architecture as here gives a good performance in

position tracking. The first block calculates the error between the desired and actual

X-Y position and does the rotation operation needed to project this error vector in the

body frame. This operation is given as:

[
xe
ye

]b
=

[
cos (ψ) sin (ψ)

− sin (ψ) cos (ψ)

][
xe
ye

]o
(3.1.9)

doing the calculations, the error in the body frame is defined as:{
xbe = xoe cos (ψ) + yoe sin (ψ)

ybe = −xoe sin (ψ) + yoe cos (ψ)
(3.1.10)

Then the error in the body-fixed frame becomes the setpoint to the velocity in this same

frame, the logic behind this apparently odd choice of a setpoint is that the bigger the

error is, the more rapidly the quadcopter should move in order to arrive at the desired

point as quickly as possible. Otherwise, if the error is small, meaning the drone is near

the desired point, the setpoint for the velocity should be also small.

A more conventional method to do the position tracker is that the error in the body-

fixed frame dictates the setpoint of the position instead of the velocity, but in practice

it was found that in the first method proposed is easier to tune the PID gains as there

are only 2 out of 3 gains that need to be adjusted (derivative gain is not used), whereas

for the traditional tracker all three gains have to be used for a good performance. The

only disadvantage that might have the first method with respect to the second is that

in the real system the velocity in the body-fixed frame is not directly measured, thus it

is necessary to estimate this states through mathematical means.

The controllers that compute the desired attitude use the following control laws:

26

CHAPTER 3. SIMULATION

• X Position Proportional-Integral Controller:

φc (t) = KP,x

(
xbe (t)− u (t)

)
+KI,x

∫ t

0

(
xbe (τ)− u (τ)

)
dτ (3.1.11)

• Y Position Proportional-Integral Controller:

θc (t) = KP,y

(
ybe (t)− v (t)

)
+KI,y

∫ t

0

(
ybe (τ)− v (τ)

)
dτ (3.1.12)

3.1.2.3 Yaw Position Controller

The inputs and outputs of this controller are reflected in Figure 3.1.8:

Yaw
Position
Controller

ψc

ψ

rc

Figure 3.1.8: Yaw Position Controller.

The controller computes the error between the desired yaw position and the actual

position and feeds it to a proportional controller whose output is the desired yaw rate that

is regulated by the on-board rate controller. Thus the operation done by the controller

is given as:

rc (t) = KP,ψ (ψc (t)− ψ (t)) (3.1.13)

3.1.2.4 Controllers Gains

After validation both in simulation and in the real platform, the gains for each one of

the off-board controllers are summarized in Table 3.1.3.

Controller KP KI KD Output Limit
Altitude 11000 3500 9000 [−20000, 15000]

X 30 2 - ±30 [deg]
Y −30 −2 - ±30 [deg]

Yaw 3 - - ±200 [deg/s]

Table 3.1.3: Gains for Off-Board Controllers.

Note that the gains for the Y Position Controller are inverted, this is because a positive

roll angle makes the quadcopter move toward the negative Y axis, so the solution is

to invert the gains in order to send the correct attitude commands to the on-board

controller.

27

CHAPTER 3. SIMULATION

3.1.3 Simulation Results

The simulation environment was built in Simulink following the block diagram in Fig-

ure 3.1.1. The goal of said simulations was to test the control system for tracking a

desired position [xc, yc, zc, ψc] and compare the behavior of the non-linear dynamics of

the quadcopter with the linear state model.

• Linear trajectories

This first simulation tests the response of the system when demanded to follow step

functions in all 4 trajectory inputs. The setpoints for Test #1 where: xc = 1m ; yc =

1m ; zc = 1m ; ψc = 60°. Figure 3.1.9 shows the simulation of a 15 seconds flight of the

quadcopter given the desired trajectory. For the X-Y position the time response is about

3 seconds, with almost no overshoot, whereas for the Z position the response is slower at

roughly 8 seconds for a 2% error margin and with a more pronounced overshoot. With

the experimental results, this values of PID gains gave the best response after some trial

and error in gain-tuning. As for the yaw response, it has a time response of about 2

seconds with no overshoot.

0 5 10 15

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

P
o
s
it
io

n
 (

m
)

X Position

0 5 10 15

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

P
o
s
it
io

n
 (

m
)

Y Position

Linear

Non-linear

Reference

0 5 10 15

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
o
s
it
io

n
 (

m
)

Z Position

0 5 10 15

Time (s)

0

10

20

30

40

50

60

70

A
n
g
le

 (
d
e
g
)

Yaw angle

Figure 3.1.9: Simulation results for Test #1.

Comparing the behavior of the non-linear model with the linear state space model, there

are some notable differences. As shown in Figures 3.1.10a and 3.1.10b, the trajectory

followed in the two cases is not exactly the same even though it is clear that in both

28

CHAPTER 3. SIMULATION

situations the desired final position was reached. The linear system follows a perfect line

from the starting point to the desired point, meaning that all movements are decoupled.

In the non-linear system there exist no such perfect decoupling and as suggested by

the trajectory followed, the motion dynamics are intertwined and influence each other,

meaning for example that the movement in the quadcopter’s X axis has some impact in

the Y axis and vice versa, even though they are small.

0

0.5

1

1

Z
 (

m
)

1.5

3D Trajectory

Y (m)

0.5 1.210.8

X (m)

0.60.40 0.20

Linear

Non-linear

Reference

(a) Standard View.

1

0.8
0

0.6

X (m)

1 0.4
0.8

Y (m)

0.6 0.2
0.4

0.2 0
0

0.5

3D Trajectory

Z
 (

m
) 1

1.5

Linear

Non-linear

Reference

(b) Top View.

Figure 3.1.10: 3D Trajectory for Test #1.

This coupled movement is better appreciated in Figures 3.1.11a and 3.1.11b, that show

simulation results of a trajectory purely in the X axis, with a rotation of 60 degrees in the

yaw angle, in order to study the influence in the Y axis. Simulation results confirm the

theory of the interference between movements as this trajectory generates a deviation of

3 centimeters in the Y axis that then returns to zero with the controller action.

0 5 10 15

Time (s)

-0.5

0

0.5

1

1.5

P
o

s
it
io

n
 (

m
)

X Position

0 5 10 15

Time (s)

-0.01

0

0.01

0.02

0.03

P
o

s
it
io

n
 (

m
)

Y Position

Linear

Non-linear

Reference

(a) Time response.

0

0.2

0.4

0.6

0.8

1

1.2

X
 (

m
)

-0.100.10.20.30.4

Y (m)

3D Trajectory

Linear

Non-linear

Reference

(b) Top View.

Figure 3.1.11: Compound movement interference.

29

CHAPTER 3. SIMULATION

• Circular trajectories

The simulated system was also tested to track positions that change over time, as a

circular trajectory for example. This trajectory is defined as:
xc (t) = 0.5 sin (2π0.05t− π/2)

yc (t) = 0.5 sin (2π0.05t)

zc (t) = 1

ψ (t) = 50t

(3.1.14)

This trajectory specifies a circle of frequency 0.05Hz and radius of 0.5 meters, at a

constant altitude of 1 meter and a constant angular velocity in the yaw angle of 50

degrees per second. Figure 3.1.12 displays the simulation results with these commands.

0 5 10 15 20 25 30 35 40

Time (s)

-0.5

0

0.5

P
o
s
it
io

n
 (

m
)

X Position

0 5 10 15 20 25 30 35 40

Time (s)

-0.5

0

0.5

P
o
s
it
io

n
 (

m
)

Y Position

Linear

Non-linear

Reference

0 5 10 15 20 25 30 35 40

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
o
s
it
io

n
 (

m
)

Z Position

0 5 10 15 20 25 30 35 40

Time (s)

0

500

1000

1500

2000

A
n
g
le

 (
d
e
g
)

Yaw angle

Figure 3.1.12: Simulation results for a circular trajectory.

As there is no trajectory tracker in the control system, the path taken to follow the

trajectory specified in (3.1.14) never accomplishes the task of minimizing the error be-

tween the quadcopter’s trajectory and the desired trajectory. The position tracker by

itself cannot follow a time-varying trajectory when the change rate of said trajectory is

too fast. For example if the frequency of the circular trajectory is augmented, the path

following will be less precise. Figures 3.1.13a and 3.1.13b show the 3D circular trajectory

described by the quadcopter in this simulation:

30

CHAPTER 3. SIMULATION

0

1

0.5

0.5 1

Z
 (

m
)

1

3D Trajectory

0.5

Y (m)

0

X (m)

1.5

0
-0.5

-0.5
-1 -1

Linear

Non-linear

Reference

(a) Standard view.

-1 -0.5 0 0.5 1

X (m)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Y
 (

m
)

3D Trajectory

Linear

Non-linear

Reference

(b) Top View.

Figure 3.1.13: 3D Circular Trajectory.

A helical trajectory can be easily generated by making the altitude command a ramp

function, as specified in this next equation:
xc (t) = 0.5 sin (2π0.05t− π/2)

yc (t) = 0.5 sin (2π0.05t)

zc (t) = 0.05t

ψ (t) = 50t

(3.1.15)

in which the altitude command refers to a linear velocity of 5 centimeters per second

in the vertical axis. Simulation results are presented in Figures 3.1.14 and 3.1.15. The

newly added time-varying command in altitude worked as expected, following the ramp.

0 5 10 15 20 25 30 35 40

Time (s)

-0.5

0

0.5

P
o
s
it
io

n
 (

m
)

X Position

0 5 10 15 20 25 30 35 40

Time (s)

-0.5

0

0.5

P
o
s
it
io

n
 (

m
)

Y Position

Linear

Non-linear

Reference

0 5 10 15 20 25 30 35 40

Time (s)

0

0.5

1

1.5

2

2.5

P
o
s
it
io

n
 (

m
)

Z Position

0 5 10 15 20 25 30 35 40

Time (s)

0

500

1000

1500

2000

A
n
g
le

 (
d
e
g
)

Yaw angle

Figure 3.1.14: Helical Trajectory Time response.

31

CHAPTER 3. SIMULATION

0

1

0.5

0.5 1

1

Z
 (

m
)

1.5

3D Trajectory

0.5

Y (m)

0

X (m)

2

0
-0.5

-0.5
-1 -1

Linear

Non-linear

Reference

Figure 3.1.15: 3D Helical Trajectory.

The deficiencies of this control architecture to follow more complicated trajectories justify

the need to conceive a higher performance controller for the task at hand.

3.2 Linear-Quadratic Tracker (LQT)

As the previous simulation results suggested, a more refined controller is required in

order to truly track trajectories that change over time, which can be seen as a problem

of being in the appropriate place, at the appropriate time. There exists a wide variety

of controllers suited to precisely track trajectories, e.g., Model-Predictive controllers

have proven to be quite robust in the case of quadcopters [26]. But this type of non-

linear approach requires heavy calculations and often require powerful processors in

order to be effective. On the other hand, the linear-quadratic tracker has proven to be

a versatile controller method for trajectory tracking with quadcopters in previous works

as [11] and [15], with the advantages of linear controllers and their rapid prototyping

and implementation.

3.2.1 The Optimization Problem Setup

The LQT algorithm is formulated as an optimization problem to reduce a cost function

in terms of the plant’s states, inputs and certain weight functions that must be specified

by the controller designer. It is indeed a problem very much alike the well-known LQR,

but in this case the states considered for the resolution of the Algebraic Ricatti Equation

(ARE) are time-varying, which leads to gains that also vary depending on the trajectory

to follow. These characteristics make the LQT controller more appropriate than the

32

CHAPTER 3. SIMULATION

LQR when trying to accomplish more precise trajectory following, which is exactly the

feature that the previous PID architecture lacked.

As the name suggests, the LQT algorithm is part of the family of linear controllers,

thus it uses linear state space models (or linearized models, as in this case). The design

of this controller was done directly in the discrete-time domain as it makes easier its

implementation on the real platform. The linear state space realization obtained in

Section 2.4 was first discretized using a time step Ts = 0.01s that corresponds to a

frequency of 100 Hz. This time step was chosen as it corresponds to the frequency the

controller was going to be working on when implemented in the real system. Considering

the state vector:

∆x =

[
∆x ∆y ∆z ∆ψ ∆θ ∆φ ∆u ∆v ∆w ∆r ∆q ∆p

]T
(3.2.1)

the state space realization obtained in subsection 2.4 went through a discretization pro-

cess in MATLAB, using the zero-order hold method and sample time Ts. The discrete-

time system obeys the following dynamic equation:{
∆ẋ[k + 1] = Ad∆x[k] +Bd∆u[k]

∆y[k] = Cd∆x[k] +Dd∆u[k]
(3.2.2)

where the matrices Ad, Bd, Cd, Dd are the result of the discretization.

Following the procedure to set up the discrete-time linear quadratic tracking system

specified in [23], considering the state space system described by (3.2.2), the performance

index to be minimized Jd is defined as:

Jd =
1

2
[Cd∆x [kf]− z [kf]]

T
F [Cd∆x [kf]− z [kf]] (3.2.3)

+
1

2

kf−1∑
k=k0

{
[Cd∆x [kf]− z [kf]]

T
Q [Cd∆x [kf]− z [kf]] + ∆uT [k]R∆u [k]

}

where F and Q are state weight matrices, R is the control weight matrix and z [k] is a

12x1 vector that specifies the time-varying trajectory for each state. The final time step,

kf , is fixed and the final state value ∆x [kf] is not fixed nor specified, thus it is called in

the literature “free” state. Weight matrices have well-defined characteristics as to obtain

a stable close-loop system using the gains given by the optimization algorithm, mainly

that F and Q are both positive semidefinite symmetric n× n matrices and R is a p× p

33

CHAPTER 3. SIMULATION

positive definite symmetric matrix (in this case n = 12 and p = 4).

For simplicity in the next algorithm equations, the following matrices are defined:

E = BdR
−1BT

d ; V = CT
d QCd ; W = CT

d Q (3.2.4)

Now, using results from optimal control theory in [23] it is possible to establish a matrix

Riccati Difference Equation (RDE) as follows:

P [k] = AT
d [P [k + 1] +E]−1Ad + V (3.2.5)

this equation must be solved backwards in time using the final condition

P [kf] = CT
d FCd (3.2.6)

Also the algorithm requires to solve the following vector difference equation:

g [k] = Ad

[
I12×12 −

[
P−1 [k + 1] +E

]−1
E
]
g [k + 1] +Wz [k] (3.2.7)

The vector g [k] depends on the desired trajectory and thus contains all information

about it. This equation must also be solved backwards in time, with the final condition:

g [kf] = CT
d Fz [kf] (3.2.8)

After resolving (3.2.5) and (3.2.7), the optimal control law can be computed by:

∆u [k] = −L [k]x+Lg [k] g [k + 1] (3.2.9)

where the gain L corresponds to a state feedback gain given by the expression:

L [k] =
[
R+BT

d P [k + 1]Bd

]−1
BTP [k + 1]Ad (3.2.10)

and the gain Lg is a trajectory feedforward gain that multiplies the vector g [k] which

contains the trajectory information. This gain can be calculated from the following

equation:

Lg [k] =
[
R+BT

d P [k + 1]B
]−1

BT (3.2.11)

34

CHAPTER 3. SIMULATION

While developing the algorithm, it was noted that matrices P [k], L [k] and Lg [k] only

varied at the end to enforce the terminal condition. It was preferred to remove the final

"free state" enforcement of the algorithm as it lead to undesired behavior at the end

of the trajectory. Hence, the aforementioned matrices were considered time-invariant

by taking their constant values before the final state enforcement. Therefore, the only

factor in the optimal control law that changes over time is the feedforward vector g [k].

The versatility of this control method is that all gains can be computed offline, meaning

before the trajectory is executed.

Being a model-based algorithm, the LQT controller performance will be closely related

to the accuracy of the linear model of the quadcopter. The previous study with the PID

architecture showed that the coupling between the movements, as well as unmodeled

phenomena such as blade flapping, body and motor force asymmetry, all contribute as

model perturbations to the system. In the light of these real-life unfavorable conditions,

during the conception of the LQT controller the addition of integral action was necessary

to ensure disturbance rejection and thus a zero steady-state error in the 3D position of

the drone.

Normally the procedure dictate that an augmentation of the system should be executed

to include the state of the integral of the error, but in the LQT algorithm these states

can further complicate the task of designing the trajectory z [k] , as it will also require

to specify a trajectory for the position integral error. The first simulation trials with

this method were not satisfactory, specifying a trivial zero trajectory for the integral of

the error states did not yield good results. Instead of searching for a model that might

describe the evolution over time of the error, which is by itself a difficult task considering

that the position trajectory can take almost any form, a much more convenient solution

to resolve the disturbance rejection problem is to simply add the integral action directly

into the control vector ∆u [k], as proposed in a similar LQT formulation [27].

In addition to the integral action in the position, it was found in practice that using

integral action in the angular position improved the overall performance of the system,

by regulating the drone’s Euler angles to zero thus keeping it stable with an increased

35

CHAPTER 3. SIMULATION

level of robustness. Finally the command vector adopted the following form:

∆u′ [k] = −L [k]x+Lg [k] g [k + 1] +Kang
i

kf−1∑
k=k0

(eang [k] ∆kang) +Kpos
i

kf−1∑
k=k0

(epos [k] ∆kpos) (3.2.12)

where eang [k] is the angular error vector in regulation mode (error with respect to zero)

defined as:

eang [k] =

[
−ψ [k] −θ [k] −φ [k]

]T
(3.2.13)

and similarly epos [k] is the position error vector with respect to the desired trajectory

z [k]:

epos [k] =

[
z1 [k]− x [k] z2 [k]− y [k] z3 [k]− z [k]

]T
(3.2.14)

The coefficients ∆kang and ∆kpos are the time steps corresponding to each integral gain.

The block diagram in Figure 3.2.1 represents the closed-loop control system proposed.

quadcopter’s
Dynamics

x

L[k]

g[k + 1]

Lg[k]

u

∆u

∆u′

ue

LQT Algorithm calculated offline

∑
(eang∆kang)

Kang
i

∑
(epos∆kpos)

Kpos
i

Integral Action

++

+

+

+

−

+

Figure 3.2.1: LQT Closed-Loop System.

With a better understanding of how to setup the LQT problem, the next logical step

was to test the algorithm in the quadcopter model and study the feasibility for practical

implementation in the Crazyflie 2.0 platform.

Before testing the actual control algorithm, it became necessary to address the problem

of the observation of the states, mainly to answer the question of how to reconstruct

all 12 states of the dynamic model given the data coming from different sensors used in

the implementation. The Inertial Measurement Unit inside the Crazyflie 2.0 gives good

estimates of the Euler angles and the body-fixed frame angular velocities, by a sensor

fusion algorithm that merges data coming from the accelerometer and the gyroscope. A

36

CHAPTER 3. SIMULATION

localization system such as the VICON estimates the position of an object with respect

to a certain fixed inertial frame, but a priori these type of systems do not directly measure

nor estimate the linear velocities. Thus the need of some algorithm that can reconstruct

the missing states from a model of how they evolve over time as well from the sensors’

data.

3.2.2 Kalman Filter for Linear Velocity Estimation

With the objective of simulating as close as possible real-life scenarios, white Gaussian

noise was added to the position values coming from the quadcopter non-linear dynamics,

as to reproduce the uncertainties given by any position-fixed system such as VICON or

an ultra-wide band system. In addition, the linear velocity is not directly given by any of

these systems, thus the need for a state observer capable of filtering the noise coming from

the position estimation while correctly computing estimations for the linear velocities in

the inertial frame defined by the positioning system.

The well-known Kalman Filter is ideal for these type of tasks. Using as reference the

example found in [24], the Kalman Filter problem was stated. First a vector containing

the estimated variables must be defined:

x̂ [k] =

[
x̂ ŷ ẑ ˆ̇x ˆ̇y ˆ̇z

]T
(3.2.15)

As the estimation process only addresses the state variables for the position and linear

velocities, this reduced state vector is ideal to set-up the problem. The next step is to

describe the state space system based on the dynamics between the position and the

velocity of a given rigid body. The following equation defines the dynamics of the state

space in discrete-time: {
x̂[k + 1] = Ahatx̂[k] +Gw [k]

yhat[k] = Chatx̂[k] + v [k]
(3.2.16)

where w [k] is the process noise vector, that multiplies a certain matrix G that models

how this noise interacts within the state evolution. Then v [k] is a random variable with

certain variance that simulates the measurements noise of the position-fixed system and

yhat [k] is the noise-infected output of the reduced position-velocity system. Matrix Ahat

37

CHAPTER 3. SIMULATION

is the state transition matrix, defined as:

Ahat =



1 0 0 Ts 0 0

0 1 0 0 Ts 0

0 0 1 0 0 Ts
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(3.2.17)

then matrix G was modeled:

G =



Ts/2 0 0

0 Ts/2 0

0 0 Ts/2

1 0 0

0 1 0

0 0 1


(3.2.18)

Thus, by examining the three lower rows of matrices Ahat and G, the evolution of the

linear velocities is defined as:
˙̂x [k + 1] = ˙̂x [k] + w1 [k]
˙̂y [k + 1] = ˙̂y [k] + w2 [k]
˙̂z [k + 1] = ˙̂z [k] + w3 [k]

(3.2.19)

which describes a constant velocity model with and added random variable that accounts

for the process noise. As possible improvement, acceleration estimations in the world

frame could be added to the model, taking for example the accelerometer measurements

and the appropriate rotation estimate. Then, the position evolution was modeled starting

by the principle that the position in reality is a continuous variable and the velocity is

defined as the derivative of the position:

d

dt
x̂ = ˙̂x (3.2.20)

this relationship can be approximated in the discrete domain as:

x̂ [n+ 1]− x̂ [n]

Ts
=

˙̂x [n+ 1] + ˙̂x [n]

2
(3.2.21)

Now, the left hand side of (3.2.21) is the approximation of the derivative in discrete time,

while the right hand side describes the approximation of a constant velocity between two

time steps. Basically the model proposed works with the idea of a constant velocity and

38

CHAPTER 3. SIMULATION

the accelerations that will introduce changes to the velocity are modeled as random

variables.

Matrix Chat selects which states are truly measured by the position-fixed system, in this

particular case that corresponds to the position states, then:

Chat =

 1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 (3.2.22)

Now that the system is clearly defined, a noise characterization needs to be done in order

to get the best possible estimator. In practice that means to estimate the measurement

noise covariance from experimentally-retrieved data. This estimation gives a good ap-

proximation for the noise covariance matrix Rkal that is assumed to be diagonal from

the principle that there exists no correlation between the noises of the different positions.

Then the noise covariance matrix takes the following form:

Rkal = diag
[
σ2x σ2y σ2z

]
(3.2.23)

As for the process noise covarianceQkal, it is analytically difficult to define or estimate its

weights. In practice, the values are often found by experimentation rather than modeling

process noise as a consequence of unmodeled phenomena. As the dynamical model for

each one of the axes is the same, and theoretically decoupled, the matrix Qkal takes also

the form of a diagonal,

Qkal = diag
[
σ2w1

σ2w2
σ2w3

]
(3.2.24)

There exists an evident coupling between the position and the velocity process noises, but

this over complicates the task of a rather simple method of state observation, thus the

diagonal form was preferred over a full scale 3x3 matrix. Also note that one advantage

of using the matrix G is that it reduces the tuning parameters of the Kalman filter

algorithm, by considering a smaller dimension process covariance matrix. Normally,

without a matrix G in the model, the process covariance matrix is n× n, but if added,

a new matrix Q̄kal defined as:

Q̄kal = GQkalG
T (3.2.25)

is considered for the resolution of the Algebraic Riccati Equation associated with the

Kalman filter. Finally, the dimension of matrix Q̄kal is (n− r)× (n− r), where r is the

39

CHAPTER 3. SIMULATION

number of columns of matrix G and therefore, the dimension of the vector w [k].

In order to complete the Kalman filter design, the values for the noise matrices must be

given. Two scenarios were taken in account: one in which the data was taken from the

VICON system and another in which the position estimation came from an ultra-wide

band system.

1. VICON system: a simple test leaving the drone steady on the floor allowed the

retrieval of data during 1 minute to calculate through MATLAB the variance of

the position in each axis . The average results were:

σ2x = σ2y = σ2z = 5× 10−9[m2] (3.2.26)

Having fixed the values of the noise covariance matrix Rkal, the process covariance

matrix was hand-tuned through simulation and experimentation. These values

were:

σ2w1
= σ2w2

= σ2w3
= 8× 10−8 (3.2.27)

The fact that the process covariance matrix has low values indicates that the state

space model is good at predicting future values for the estimated state vector.

2. Ultra-wide Band system: the system was used to estimate the X and Y position

of the quadcopter, while the altitude was tracked with the VICON. The same

procedure as before was applied, giving the following noise variance values:

σ2x = σ2y = 5× 10−5[m2] ; σ2z = 5× 10−9[m2] (3.2.28)

these values suggested that the standard deviation of the UWB is around 100 times

greater that the VICON’s. Then for the process covariance matrix, the following

values were used:

σ2w1
= σ2w2

= 3× 10−5 ; σ2z = 8× 10−8 (3.2.29)

The validation of the filter was done using real data from a dummy test using the Crazyflie

2.0 and making a simulated flight by hand, just grabbing the drone and moving it around

the test area. Comparisons were made between the raw data of the position estimations

with the filter output, and for the velocity a discrete time derivative of the incoming

40

CHAPTER 3. SIMULATION

data estimations was taken to contrast it with the output of the filter.

First, while using the VICON positioning system and the values of variance in (3.2.26)

and (3.2.27), the experimental results obtained are shown in Figure 3.2.2. For the po-

sition estimation, the output of the filter superposes with the raw data as the VICON

system does already a lot of filtering and the raw data has low levels of noise, hence the

Kalman Filter algorithm output for the position is virtually the same as the raw data.

As for the velocity estimations, the Kalman filter reduces the noise levels while being

fast enough to follow the true dynamics.

0 5 10 15 20 25 30 35

Time (s)

-1.5

-1

-0.5

0

0.5

P
o
s
it
io

n
 (

m
)

X Position

0 5 10 15 20 25 30 35

Time (s)

-4

-2

0

2

4

V
e
lo

c
it
y
 (

m
/s

)

X Velocity

0 5 10 15 20 25 30 35

Time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

P
o
s
it
io

n
 (

m
)

Y Position

VICON

Kalman Filter

0 5 10 15 20 25 30 35

Time (s)

-4

-2

0

2

4

V
e
lo

c
it
y
 (

m
/s

)

Y Velocity

Discrete Derivative

Kalman Filter

Figure 3.2.2: Experimental validation of the Kalman Filter using the VICON system
raw data of X-Y positions.

Then, using the UWB system, the filter was adjusted with the appropriate variance

values for Rkal and Qkal, found in (3.2.28) and (3.2.29). The experimental results are

displayed in the time plots of Figure 3.2.3.

The position raw data is lightly filtered in order to keep low levels of lag in the estima-

tions, while the velocity estimations of the Kalman Filter are more heavily filtered and

at the same time fast enough to keep a good convergence speed.

41

CHAPTER 3. SIMULATION

0 5 10 15 20 25 30 35

Time (s)

-1.5

-1

-0.5

0

0.5

1

P
o
s
it
io

n
 (

m
)

X Position

0 5 10 15 20 25 30 35

Time (s)

-4

-2

0

2

4

V
e
lo

c
it
y
 (

m
/s

)

X Velocity

0 5 10 15 20 25 30 35

Time (s)

-1

-0.5

0

0.5

1

1.5

P
o
s
it
io

n
 (

m
)

Y Position

UWB

Kalman Filter

0 5 10 15 20 25 30 35

Time (s)

-4

-2

0

2

4

V
e
lo

c
it
y
 (

m
/s

)

Y Velocity

Discrete Derivative

Kalman Filter

Figure 3.2.3: Experimental validation of the Kalman Filter using the UWB system raw
data of X-Y positions.

The last step of the filter validation was testing the altitude estimations, which in both

cases came from the VICON system. Figure 3.2.4 displays the experimental results for

this test.

0 5 10 15 20 25 30 35

Time (s)

-0.5

0

0.5

1

1.5

P
o
s
it
io

n
 (

m
)

Z Position
VICON

Kalman Filter

0 5 10 15 20 25 30 35

Time (s)

-5

0

5

V
e
lo

c
it
y
 (

m
/s

)

Z Velocity

Discrete Derivative

Kalman Filter

Figure 3.2.4: Experimental validation of the Kalman Filter altitude estimation from
VICON raw data of Z position.

Similar as the results seen in Figure 3.2.2, the altitude estimation results confirm the

quality of the filter developed and therefore validate the conception proposed.

42

CHAPTER 3. SIMULATION

3.2.3 Weight Matrices and Integral Action

A simulation environment in MATLAB was created to test the LQT algorithm with the

non-linear dynamics of the quadcopter, the added noise to the position states and the

Kalman Filter. The LQT algorithm is calculated before the simulation runs, using the

discrete time linear model of the quadcopter and the following weight matrices:


Q = diag (2000, 2000, 4000, 4000, 4000, 4000, 20, 20, 10, 10, 10, 10)

F = Q

R = 0.00003× I4×4
(3.2.30)

It is common practice to choose state weight matrices such as Q and F to be diagonal,

that is a way of imposing individual weights to each one of the states considering that

all of them are decoupled. In the case of the quadcopter it is known the existence of

some coupling between the movements, although it is minor.

Another remark is that being a linear algorithm, the performance will hold as long as

the quadcopter stays in the vicinity of the hover point, meaning by default that the three

Euler angles will always be regulated at zero degrees. This implies that with the LQT

algorithm, as proposed in this project, specifying a trayectory for the yaw angle will not

be possible as the linearization will not longer be a valid approximation.

Continuing with the setup of the simulation environment for the LQT controller, the

angular integral action gain, the matrix Kang
i , takes the following format:

Kang
i =


−kangi −kangi −kangi

kangi kangi −kangi

−kangi kangi kangi

kangi −kangi kangi

 (3.2.31)

where kangi was a tuned parameter to compensate modeling errors and other unmodeled

phenomena. The tuning procedure is further explained in Section 4.2. The value used

both in simulation and in the experimental phase was kangi = 8660.

Similarly, the position integral action gain Kpos
i takes on the form:

43

CHAPTER 3. SIMULATION

Kpos
i =


kposi −kposi −kposi

−kposi −kposi −kposi

−kposi kposi −kposi

kposi kposi −kposi

 (3.2.32)

The value chosen for kposi was 5000, after thorough testing both in simulation and prac-

tice. The approach to find the correct weight matrices in (3.2.30) was a simple trial-

and-error method, taking in account some general knowledge about the dynamics of the

quadcopter, but most importantly through experimentation with the actual platform.

Basically the simulation served as a first good approximation to obtain decent perfor-

mance in practice and then as a tool to know which parameters to tune further to improve

the control system in the real-life scenario.

3.2.4 Trajectory Generation

A trajectory for the 12-state vector must be specified before running the LQT algorithm.

For the generation of the trajectory, a small angle approach was taken meaning that the

trajectory for angular velocities and angular positions was considered as zero throughout

the whole trajectory. As for the trajectory of the states [u, v, w], the position trajectory

was simply fed to a Kalman Filter similar as the one previously designed to obtain a

velocity profile for each axis (in this case the filter acts only as a velocity estimator).

Note that in the small angle approximation, the vector [u, v, w] coincides with the vector

[ẋ, ẏ, ż], hence a projection from the inertial frame to the body-fixed frame was not

necessary.

The generation of feasible trajectories for a quadcopter is a complex and open research

subject that has been treated before in works such as [25]. In the case of this project

these types of studies were not considered and are suggested as future work.

The trajectories were generated via MATLAB through a GUI interface (modified version

of function get_curve.m) that allowed the user to specify a number of waypoints in the

X-Y plane and then a cubic interpolation calculated a trajectory between each one of

the waypoints. After this first step was done, a similar window opened to specify the

trajectory in the altitude of the drone. The interpolation was done with respect to a

time vector with a fixed time step of Ts = 0.01s and a range from 0 to a fixed final time

44

CHAPTER 3. SIMULATION

in which the trajectory was to be executed. Then the interpolation function created a

position vector of the same length as the time vector, specifying a discrete time trajectory

z[k] between the waypoints chosen through the interface. The interpolation method gives

two variants to the trajectory generated:

1. “spline” does the classic piecewise cubic interpolation between the waypoints.

2. “pchip” does a shape-preserving cubic interpolation.

Figure 3.2.5 shows a series of points chosen by the user and the corresponding interpola-

tion and trajectory generated by the interface. The user must then choose between the

“spline” or “pchip” trajectories generated.

This method establishes an easy and automated way of generating trajectories, but the

feasibility of said trajectories depends mostly on the time allowed to execute them.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

When you are done, click OUTSIDE the gridded area

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Use mouse clicks to pick points INSIDE the gridded area

(a) MATLAB GUI waypoint selection

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

X (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y
 (

m
)

X-Y Trajectory Generated

Waypoints

Spline

Pchip

(b) Generated Trajectory

Figure 3.2.5: Trajectory generation GUI.

3.2.5 Simulation Results

The control system was thoroughly tested in simulation before the implementation phase,

even though the final tuning of the controller was done using and getting to know the

experimental platform. First the step response was computed for the x, y and z positions,

using simulated noise for both the VICON and UWB system. Simulation results are

appreciated in Figure 3.2.6.

45

CHAPTER 3. SIMULATION

0 5 10 15 20 25 30 35 40

Time (s)

-0.5

0

0.5

1

1.5

P
o
s
it
io

n
 (

m
)

X Position

0 5 10 15 20 25 30 35 40

Time (s)

-0.5

0

0.5

1

1.5

P
o
s
it
io

n
 (

m
)

Y Position

0 5 10 15 20 25 30 35 40

Time (s)

-0.5

0

0.5

1

1.5

P
o
s
it
io

n
 (

m
)

Z Position

UWB

VICON

Reference

Figure 3.2.6: Simulation for steps in x, y and z positions.

This first simulation of the LQT algorithm shows an interesting feature for a step re-

sponse. Instead of obtaining a classical response that starts when the step is commanded,

the quadcopter actually starts moving beforehand as to minimize the overall error of the

trajectory. This feature is only possible because the trajectory was known by the con-

troller and the algorithm calculated the appropriate feedforward gain g [k] to ensure

the “anticipatory” feature seen in simulation. Another important remark after playing

around with the simulation is that the overshoot can be reduced easily by decreasing

the integral gains Kang
i and/or Kpos

i , but due to later difficulties in the implementation

they remained with the values specified before (this subject is further discussed in Sec-

tion 4.3.2). As to the UWB vs VICON performance, the time plots suggests that both

have almost the same exact response in position.

The Kalman Filter performance in simulation to estimate the linear velocities is pre-

sented in Figure 3.2.7. The filters main job in the control system is to calculate reliable

state estimations for the linear velocities in the inertial frame, then the appropriate ro-

tation projects this estimations in the body frame thus obtaining estimates for the states

[u, v, w]. Simulation results suggests that the levels of noise in the estimations for the

UWB X-Y velocities is greater, but this was expected knowing already that the noise

has at least two order of magnitude greater standard deviation than the VICON system.

46

CHAPTER 3. SIMULATION

0 5 10 15 20 25 30 35 40

Time (s)

-1

-0.5

0

0.5

1

V
e
lo

c
it
y
 (

m
/s

)

X Velocity in body frame

0 5 10 15 20 25 30 35 40

Time (s)

-1

-0.5

0

0.5

1

V
e
lo

c
it
y
 (

m
/s

)

Y Velocity in body frame

0 5 10 15 20 25 30 35 40

Time (s)

-0.5

0

0.5

V
e
lo

c
it
y
 (

m
/s

)

Z Velocity in body frame

Kalman Filter UWB

True Dynamics

Kalman Filter VICON

True Dynamics

Figure 3.2.7: Kalman Filter simulation, with VICON and UWB simulated noise.

Nonetheless, the Kalman Filter in both cases manages a good compromise between the

filtering and the convergence speed. As seen in the plots of the X and Y velocities, the

UWB Kalman Filter introduced some delay (∼200ms) in the estimations with respect to

the true dynamics of the quadcopter. This was the cost for a more aggressive filtering

of the noise. In practice the proposed gains provided a satisfactory performance despite

the lag introduced, ultimately it was found that if the filtering was less aggressive then

too much noise entered the system and the overall performance of the tracker degraded.

To truly justify the need of using a more refined trajectory tracker, the simulated system

was subject to follow a more complex trajectory to test the tracking capabilities of the

LQT algorithm and also to evaluate the Kalman filter performance under more complex

situations. Figure 3.2.8 shows simulation results for a trajectory created by the user

interface presented in Section 3.2.4.

The LQT controller was capable of tracking the desired trajectory, with a low error even

in closed curves as suggests the 3D diagrams in Figure 3.2.9.

47

CHAPTER 3. SIMULATION

0 5 10 15 20 25 30 35 40

Time (s)

-2

-1

0

1

2

P
o
s
it
io

n
 (

m
)

X Position

0 5 10 15 20 25 30 35 40

Time (s)

-2

-1

0

1

2

P
o
s
it
io

n
 (

m
)

Y Position

0 5 10 15 20 25 30 35 40

Time (s)

0

1

2

3

P
o
s
it
io

n
 (

m
)

Z Position

UWB

VICON

Reference

Figure 3.2.8: Tracking for complex trajectories.

2
0

3D Trajectory

0.5

2

1

X (m)

0

Z
 (

m
)

1.5

1

2

Y (m)

2.5

0
-1

-2-2

UWB

VICON

Reference

(a) Standard view

-1.5 -1 -0.5 0 0.5 1 1.5 2

X (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y
 (

m
)

3D Trajectory

UWB

VICON

Reference

(b) XY Plane

Figure 3.2.9: 3D Diagram for a complex trajectory.

As for the Kalman filter estimations, Figure 3.2.10 shows that the filter performed as

expected when asked to track more complex velocity profiles as the one generated by

this trajectory.

48

CHAPTER 3. SIMULATION

0 5 10 15 20 25 30 35 40

Time (s)

-1

-0.5

0

0.5

1

V
e

lo
c
it
y
 (

m
/s

)

X Velocity in body frame

0 5 10 15 20 25 30 35 40

Time (s)

-2

-1

0

1

V
e

lo
c
it
y
 (

m
/s

)

Y Velocity in body frame

0 5 10 15 20 25 30 35 40

Time (s)

-0.4

-0.2

0

0.2

0.4

V
e

lo
c
it
y
 (

m
/s

)

Z Velocity in body frame

Kalman Filter UWB

True Dynamics

Kalman Filter VICON

True Dynamics

Figure 3.2.10: Kalman Filter simulation for a complex trajectory.

The simulation environment for the LQT control system proved to be a useful tool for

developing and understanding the mechanics of the newly adopted control technique for

trajectory tracking. Going hand by hand with the implementation phase, the simulation

proposed in this section served as a helpful guidance while fine tuning the controller in

practice, and at the same time serving as reference in terms of the performance to aim

for in the control system.

49

Chapter 4

Hardware Implementation and

Experimental Results

The implementation process was divided in two major phases: first a familiarization with

the Crazyflie 2.0 platform and implementation of a PID position controller and secondly

the implementation of a linear quadratic algorithm.

4.1 PID Controller

After a thorough analysis of the original Crazyflie 2.0 firmware it became evident that

some minor changes were needed to be made because the body-fixed frame defined in the

embedded system did not match the one adopted during the simulation phase, therefore,

for the sake of consistency with the body-fixed frame defined in Figure 2.2.3, certain lines

of the original firmware code were changed (see Appendix A: Firmware Modifications).

The first step towards the implementation was to test the on-board sensors such as

the inertial measurement unit and all its components. Even though the sensors’ data

analysis was not part of the project, it was important to at least follow the idea of how

the firmware captured said data, ran it, for example, through the sensor fusion algorithm

and estimated the states of the quadcopter that were fed to the on-board controllers.

After this familiarization phase, the research moved towards the off-board controller

implementation using ROS.

4.1.1 ROS Controller Node

Starting from the Open source ROS nodes presented in [6], the controller node was

modified to implement the equations proposed in Section 3.1.2. Figure 4.1.1 shows the

50

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

ROS nodes and topics concerning the controller implemented.

Figure 4.1.1: ROS nodes and topics.

A detailed explanation of the internal organization of each one of this nodes and inter-

actions is beyond the scope of this report, but a qualitative analysis is adequate for an

overall understanding of the system:

• Crazyflie Server: this node defines the core interaction between ROS and the

Crazyflie 2.0, through a radio communication. Its primary function in the con-

trol process is to serve as a data bridge between the Crazyflie and the off-board

controller. On the one hand, it publishes sensors’ readings coming from the quad-

copter, such as the IMU, that will serve as state estimations for the control process.

On the other hand, the node receives commands coming from the controller node

and sends them back to the Crazyflie. More specifically, the data sent in the

“/cmd_vel” topic contains the outputs of the off-board controller, that means,

messages of the form [φc θc rc Ω]. This messages will then be the inputs of

the on-board control system, as shown previously in Figure 3.1.5.

• VICON Listener: manages the communication with the VICON positioning

system. It publishes data concerning the inertial frame coordinates [x, y, z] of a

reflective sphere as seen in Figure 4.1.2, sitting on top of the Crazyflie 2.0.

Figure 4.1.2: Crazyflie 2.0 with Vicon Sphere and UWB module.

51

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

Ideally, the VICON system should be used with three or more of these spheres, in

order for the position estimations to be more resilient against other reflections in

the laboratory or even for the Euler angles estimations. However, up to this point,

all the tests were done using the configuration shown in Figure 4.1.2. and it did

not present any major drawbacks during the tests.

• Joystick: this nodes serves basically as an external emergency stop button. It is

always a nice idea to keep the security measures “software free” in case something

goes wrong during a flight, thus the preference of using a hardware stop button

instead of one, probably more elegant, implemented in software such as MATLAB.

• Goal: this is a user interactive topic created in MATLAB that lets the user choose

between a number of predefined trajectories for the quadcopter to follow. Once

the trajectory is selected, through a certain ID number that can be changed in

real-time, the MATLAB node publishes the desired waypoint [xc, yc, zc, ψc]. An

additional feature allows the user to choose whether to send position or velocity

commands to the yaw angle of the drone.

• Controller: this is naturally the core of the real-time control system. The node

takes data from the IMU of the Crazyflie and from the VICON system in order to

have an estimate of the states of the quadcopter in the control algorithm presented

in Section 3.1.2 . However this data only gives estimations of 9 states: the three

linear positions in the inertial frame, the three Euler angles and the three angu-

lar velocities coming from the gyroscope. The linear velocities in the body frame

[u, v, w] are not directly measured by any of the sensors and they need to be esti-

mated somehow as they are used in the X-Y Position Controller. Usually, in this

type of scenarios, a state observer (Luenberger’s, Kalman Filter, etc) is required to

reconstruct the missing states. However, given the fact that the position estima-

tions of the VICON system are truly precise (error<1mm), the following equations

to estimate the velocities in the body-fixed frame using a pseudo-derivative in dis-

crete time of the X-Y positions proved to be good enough for the control system

to behave adequately:

Vx[k] =

(
x[k]− x[k − 1]

∆t

)
(4.1.1)

Vy[k] =

(
y[k]− y[k − 1]

∆t

)
(4.1.2)

where Vx[k] and Vy[k] are the linear velocities estimations in the inertial frame.

52

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

The term ∆t is the time step taken between iterations in the control algorithm,

given that the controller node runs at 100 Hz, then ∆t = 0.01s. Normally to

obtain the velocities in the body-fixed frame a multiplication by the Euler matrix

Rb
o should be executed, but taking a small angle approximation for the pitch and

roll angles, then the calculation is simplified to just one rotation of the yaw angle

around the Z axis, as shown in the following equation:[
u[k]

v[k]

]
=

[
cos (ψ[k]) sin (ψ[k])

− sin (ψ[k]) cos (ψ[k])

][
Vx[k]

Vy[k]

]
(4.1.3)

Finally the linear velocities in the body-fixed frame can be expressed in terms of

the measured states: u[k] = cos (ψ[k])
(
x[k]−x[k−1]

0.01

)
+ sin (ψ[k])

(
y[k]−y[k−1]

0.01

)
v[k] = − sin (ψ[k])

(
x[k]−x[k−1]

0.01

)
+ cos (ψ[k])

(
y[k]−y[k−1]

0.01

) (4.1.4)

This approximation proved to be good enough for the control architecture proposed

to work correctly.

4.1.2 Experimental Results

The flight data was retrieved using the MATLAB node mentioned earlier, allowing for

a more analytical interpretation of the results. The following section presents a number

of these flights with the appropriate analysis.

• Linear trajectories

For this type of trajectories the tests consisted basically in a take-off, a linear movement

in one or more directions, and a landing. For the first test, steps of two different ampli-

tudes were sent in the vertical position of the drone, trying to maintain its X-Y position.

The time plots of Figure 4.1.3 present the experimental data retrieved.

The two commands were sent to maintain an altitude of either 0.68 meters or 1.18 meter,

with all other commands set to zero. The X position stayed within a 6cm margin of error

while the Y position had a more prominent error, roughly a 10 cm margin from the initial

take-off position. The fact that the drone used for these tests is not entirely symmetrical

(see Figure 4.1.2) means that the position holding in one of the axes is better than in

the other, as it was in fact the case. Figure 4.1.4 shows different 3D perspectives of the

trajectory followed by the Crazyflie during the test.

53

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

0 5 10 15 20 25 30 35 40

Time (s)

-0.04

-0.02

0

0.02

0.04

0.06

0.08

P
o
s
it
io

n
 (

m
)

X Position

0 5 10 15 20 25 30 35 40

Time (s)

-0.1

-0.05

0

0.05

0.1

0.15

P
o
s
it
io

n
 (

m
)

Y Position

0 5 10 15 20 25 30 35 40

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
o
s
it
io

n
 (

m
)

Z Position

0 5 10 15 20 25 30 35 40

Time (s)

-2

0

2

4

6

8

10

12

A
n
g
u
la

r
P

o
s
it
io

n
 (

d
e
g
)

Yaw position

PID

Reference

Figure 4.1.3: Steps in vertical command zc.

0

0.5

1

1

Z
 (

m
)

1.5

2

3D Trajectory

1

Y (m)

0.50

X (m)

0
-0.5

-1 -1

PID

Reference

(a) Standard view

-1 -0.5 0 0.5 1

X (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Z
 (

m
)

3D Trajectory

PID

Reference

(b) ZX Plane

Figure 4.1.4: 3D Vertical Trajectory.

The next test consisted in sending commands both in the X position and in the altitude,

in order to study the quadcopter’s behavior when sending mixed movements. Experi-

mental data is plotted in Figure 4.1.5, showing the in-flight response of the quadcopter.

54

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

0 5 10 15 20 25 30 35

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

P
o
s
it
io

n
 (

m
)

X Position

0 5 10 15 20 25 30 35

Time (s)

-0.1

-0.05

0

0.05

0.1

P
o
s
it
io

n
 (

m
)

Y Position

0 5 10 15 20 25 30 35

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
o
s
it
io

n
 (

m
)

Z Position

0 5 10 15 20 25 30 35

Time (s)

-5

0

5

10

15

A
n
g
u
la

r
P

o
s
it
io

n
 (

d
e
g
)

Yaw position

PID

Reference

Figure 4.1.5: Steps in zc and xc.

Similar to the simulations, the response time for a unity step in the X position was around

4 seconds, whereas for the altitude is around 7 seconds. The Y position remained in a

10 cm error margin and the yaw angle stayed well within a 3 degree margin after the

initial take off (which is represented in the peak at 3 seconds). Figure 4.1.6 shows two

different 3D perspectives of the experimental flight.

0

0.5

1

1.5

1

Z
 (

m
)

2

3D Trajectory

10.5

Y (m)

0

X (m)
0-0.5-1-1

PID

Reference

(a) Standard view.

-1 -0.5 0 0.5 1

X (m)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Y
 (

m
)

3D Trajectory

PID

Reference

(b) XY Plane.

Figure 4.1.6: 3D Diagonal Trajectory.

It remained only to test step commands in the Y axis and in the yaw position, so this

last test in the linear trajectories consisted in sending both steps simultaneously and

study the response of the system knowing the movement interference analysed during

55

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

the simulation phase of the project. Test results are showcased in Figure 4.1.7.

0 10 20 30 40 50

Time (s)

-0.2

-0.1

0

0.1

0.2

0.3
P

o
s
it
io

n
 (

m
)

X Position

0 10 20 30 40 50

Time (s)

-0.4

-0.2

0

0.2

0.4

0.6

P
o
s
it
io

n
 (

m
)

Y Position

0 10 20 30 40 50

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
o
s
it
io

n
 (

m
)

Z Position

0 10 20 30 40 50

Time (s)

-20

0

20

40

60

80

100

A
n
g
u
la

r
P

o
s
it
io

n
 (

d
e
g
)

Yaw position

PID

Reference

Figure 4.1.7: Steps in yc and ψc.

While maintaining an altitude of 1 meter and a position in X of zero, the commands sent

were yc = 0.5m and ψ = 90°. The response time for the Y position was, as in the case of

the X axis, around 4 seconds. On the other hand, the time response for a command in

yaw is much faster, about 1 second. Studying the impact these two movements had in

the other positions, for the altitude it is noted how it remained roughly within the same

level during the whole trial, meaning that those commands did not have a major impact

and the altitude controller compensated any small interference those movements could

have generated. As for the X position, aside from the initial deviation due to take-off,

the position stayed around the 10 cm error margin, but in this case the effect caused

by the movements was much more notable, as seen in the 3D perspectives of Figure 4.1.8.

The error in the X position around the initial position is more important than in the

other trajectories that were tested. Even as a qualitative analysis from the experimen-

tal observations, the simultaneous movement of the Y position and the yaw rotation

generated light deviations in the X axis while moving from point A to point B of the

trajectory.

56

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

0

-1

0.5

-0.5

1

Z
 (

m
)

0

X (m)

1.5

0.5

3D Trajectory

2

1

Y (m)

0.5
01

-0.5
-1

PID

Reference

(a) Standard view.

-1 -0.5 0 0.5 1

X (m)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Y
 (

m
)

3D Trajectory

PID

Reference

(b) XY Plane.

Figure 4.1.8: 3D Trajectory with Y-Yaw compound movement.

• Circular trajectories

The next step for testing the position controller was to generate more complicated tra-

jectories and see if the system was capable of following the desired path. To describe a

circle, the following function in discrete time was implemented:
xc[k] = x0 + sin (2π0.1k)

yc[k] = y0 + sin (2π0.1k + π/2)

zc[k] = 0.9

ψ[k] = −30k

(4.1.5)

where the values x0 and y0 represent the initial position of the drone in the X-Y plane.

The experimental data retrieved while performing the circular trajectory is presented in

Figure 4.1.9.

In the X-Y position it is observed that the amplitude of the sine waves did not reach

the value of 1m, meaning that the position controller failed to minimize the error as

a consequence of not being fast enough for more complicated trajectories. A similar

problem occurred with the simulated model and actually the explanation can be reused.

Given the fact that the controller is a position tracker, it will try to regulate at each

time step of the process the actual position with the desired position. In this case, the

rate and amplitude of the trajectory were too high for the position tracker developed to

actually make the quadcopter follow the path required.

57

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

0 10 20 30 40 50 60

Time (s)

-1

-0.5

0

0.5

1

P
o
s
it
io

n
 (

m
)

X Position

0 10 20 30 40 50 60

Time (s)

-1

-0.5

0

0.5

1

P
o
s
it
io

n
 (

m
)

Y Position

0 10 20 30 40 50 60

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

P
o
s
it
io

n
 (

m
)

Z Position

0 10 20 30 40 50 60

Time (s)

-200

-100

0

100

200

A
n
g
u
la

r
P

o
s
it
io

n
 (

d
e
g
)

Yaw position

PID

Reference

Figure 4.1.9: Time Response for circular trajectory.

The 3D trajectories exhibited in Figure 4.1.10 show more clearly the deficiencies in the

path followed by the quadcopter.

0

0.2

1

0.4

0.6

0.5 1

Z
 (

m
)

0.8

3D Trajectory

Y (m)

1

0.50

1.2

X (m)

0
-0.5

-0.5
-1 -1

PID

Reference

(a) Standard view.

-1 -0.5 0 0.5 1

X (m)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Y
 (

m
)

3D Trajectory

PID

Reference

(b) Top view.

Figure 4.1.10: 3D Circular trajectory.

The last trajectory tested was the helix as seen during the simulation phase, the discrete

time function implemented in the controller was defined as:

58

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS


xc[k] = x0 + sin (2π0.1k)

yc[k] = y0 + sin (2π0.1k + π/2)

zc[k] = 0.9 + 0.04k

ψ[k] = −90k

(4.1.6)

meaning that in the X-Y plane it described the same circle as before, but this time

augmenting the altitude at a ratio of 4 centimeters per second. Experimental data

in Figure 4.1.11 shows the performance of the quadcopter while following the helical

trajectory.

0 5 10 15 20 25 30 35 40

Time (s)

-1

-0.5

0

0.5

1

P
o
s
it
io

n
 (

m
)

X Position

0 5 10 15 20 25 30 35 40

Time (s)

-1

-0.5

0

0.5

1

P
o
s
it
io

n
 (

m
)

Y Position

0 5 10 15 20 25 30 35 40

Time (s)

0

0.5

1

1.5

2

2.5

P
o
s
it
io

n
 (

m
)

Z Position

0 5 10 15 20 25 30 35 40

Time (s)

-200

-100

0

100

200

A
n
g
u
la

r
P

o
s
it
io

n
 (

d
e
g
)

Yaw position

PID

Reference

Figure 4.1.11: Time Response for helix trajectory.

The increase of the yaw angle velocity did not have a major impact in the performance of

the system, the Crazyflie could turn at 90 degrees per second without any complications.

The results in the Z position confirms that the altitude controller is good enough to fol-

low a time-varying function such as a straight line, even though the amplitude variation

of this trajectory was small. For the X-Y position the same phenomenon occurred as

in the case of the circular trajectory. The 3D perspectives in Figure 4.1.12 displays the

helicoidal trajectory followed.

After take-off, the quadcopter began the regulation of the desired trajectory which

presents the same deficiencies as the previous test. The landing was successful as the

data shows that the landing site was just a few centimeters away from the take-off point.

59

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

0

0.5

1

Z
 (

m
)

1.5

1

2

3D Trajectory

10.5

Y (m)

0.5

X (m)

0 0-0.5 -0.5
-1 -1

PID

Reference

(a) Standard view.

-1 -0.5 0 0.5 1

X (m)

-1

-0.5

0

0.5

1

Y
 (

m
)

3D Trajectory

PID

Reference

(b) Top view.

Figure 4.1.12: 3D Helix Trajectory.

4.2 LQT Controller Implementation

Having completed the first phase of the implementation process, a broader knowledge

of the embedded system and its limitations was gained which was vital in the task of

implementing the more delicate LQT system. The word “delicate” in this context refers

to the fact that now the design included some low level control that was not done in

the previous phase. With the PID controller, the two cascaded architecture embedded

in the drone were already designed by the manufacturer, thus the design was reduced

just to the off-board position controller. Instead, this new implementation required the

careful thought of how to implement every portion of the controller.

The design process began with the naive idea of implementing the whole 12 state feed-

back off-board using the MATLAB/ROS interface to send directly the motor commands

through the radio link communicating the computer with the Crazyflie 2.0. This ap-

proach became rapidly discarded after some failed trials, mainly due to the latency of

the radio link (around 2ms according to the manufacturer’s specifications) and to the re-

fresh rate used in the MATLAB interface (100 Hz). The low level stabilization, meaning

the angle and angular velocities, is done in almost every quadcopter inside the embedded

system and not through any external software, and there are two main reasons for it:

1. The control must be done at a high frequency rate to compensate the quick angular

dynamics of the quadcopter. These rates are seldom obtainable through wireless

communication protocols.

60

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

2. The low level control is not robust to the sort of delays introduced by wireless

links. If done within the embedded system, this latency is easily eliminated.

In order to resolve this issue, the elements of the time-invariant state feedback gain L

that corresponded to the angles and angular velocities states were implemented in the

embedded system while the elements corresponding to the position and linear velocities

of L and also the feedforward gains g [k] and Lg were implemented in MATLAB (see

Section 4.2.2).

After including the state feedback control in the Crazyflie’s firmware, the first tests of the

on-board attitude stabilizer were conducted using a calibration rig as seen in Figure 4.2.1.

Although it could only be used to test the feedback of the pitch angle, the roll angle

theoretically has similar dynamics and therefore the same tuned gains were used for both

pitch and roll.

Figure 4.2.1: Pitch angle calibration rig.

Even though there exists some non-negligible tension force induced by the cables that

attached the quadcopter’s body to the posts, this is a good first test trial to avoid

potential crashes. After tuning the gains of the roll and pitch angles the tests suggested

that integral action was needed to compensate for different sources of perturbation, such

as the asymmetry of the body and asymmetry of the motor’s power. While these effects

might also be compensated by the position integral action, the overall performance of the

control system was improved when adding the integral action to the angular positions.

The implemented architecture is exposed in the block diagram of Figure 4.2.2. On top

it shows the angular stabilization loop that runs in the embedded system at a faster rate

of 500Hz, while below is the rest of the LQT architecture running off-board at a slower

rate of 100 Hz.

61

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

Crazyflie2.0
x̂ang[k]

Lang[k]

Lpos[k]
x̂pos[k]

g[k + 1]

Lg[k]

∆uang

u

∆u

upos

ue

∑
(eang∆kang)

Kang
i

∑
(epos∆kpos)

Kpos
i

Off-Board @ 100Hz

On-Board @ 500Hz

+
+

+

−

−
+

+

+

Figure 4.2.2: Implementation diagram.

The sensor fusion algorithm calculation for the three Euler angles and the angular ve-

locities coming from the gyroscope compose the state vector x̂ang [k] in the following

manner:

x̂ang =
[
ψ̂ θ̂ φ̂ r̂ q̂ p̂

]T
(4.2.1)

The gain Lang is a 4x6 matrix that multiplies accordingly the state vector x̂ang. The

system input ∆uang is a deviation from the equilibrium point, ue, to maintain an angle

equal to zero in all three Euler angles. The on-board controller runs at 500Hz, thus the

time step ∆kang in Figure 4.2.2 is equal to 0.002s.

The off-board section of the controller computes the state feedback for the position and

linear velocities states captured by the VICON or UWB systems and the Kalman filter

developed in Section 3.2.2, therefore composing the following state vector:

x̂pos =
[
x̂ ŷ ẑ û v̂ ŵ

]T
(4.2.2)

Matrix gain Lpos is also a 4x6 matrix that multiplies the state vector x̂pos. For the

position integral action, the time step ∆kpos is equal to 0.01s

4.2.1 ROS Controller Node Modifications

For the LQT implementation, the ROS controller node presented in Section 4.1.1 that

previously implemented the PID controller was modified to only receive the incoming

commands from the MATLAB interface and send them to the Crazyflie 2.0 through the

62

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

radio link. The Crazyflie server node was then slightly modified to send the motor PWM

signals instead of the desired Euler angles as it did with the previous control system.

4.2.2 MATLAB Interface Details

The MATLAB interface was the heart of the LQT algorithm implementation. The

ROS and MATLAB communication was done using the Robotics System ToolboxTM, in

particular the Simulink blocks that implement ROS publishers and subscribers. All of

the off-board section of the controller was executed within this interface, as well as the

state vector reconstruction and flight data retrieval for further analysis. Figure 4.2.3

exhibits the structure of the interface developed.

ROS
Subscribers

Kalman
Filter

LQT
Algorithm

(Off-board Section)

Crazyflie 2.0

ROS
Publisher

VICON/
UWB

x̂ang

[x̂, ŷ, ẑ]

x̂pos upos

[u1, u2, u3, u4][ψ̂, θ̂, φ̂, r̂, q̂, p̂]

[x̂, ŷ, ẑ]

MATLAB/ROS Interface @ 100Hz

[m1,m2,m3,m4]

Figure 4.2.3: MATLAB Interface diagram to implement the LQT controller.

Now a breakdown of each block:

• VICON/UWB: block that gives the position estimations of the drone in a pre-

viously defined inertial frame.

• ROS Subscribers: these subscribers serve as bridge between MATLAB, the po-

sitioning system and the Crazyflie angle data. Four subscribers are included: one

for the VICON position estimations, one for the UWB system, another one for the

IMU data of the Crazyflie 2.0 and the last one to retrieve the PWM commands

sent to the motors.

• State observer: takes data from the position, Euler angles and angular velocities

of the quadcopter to calculate an estimation of the state vector x̂pos. This is done

through the Kalman Filter developed in Section 3.2.2.

• LQT algorithm: implements the off-board section of the LQT algorithm as sug-

gested in Figure 4.2.2.

63

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

• ROS Publisher: takes the input vector upos and decomposes in its four compo-

nents, in order to send it to the Crazyflie via radio link in the format [u1, u2, u3, u4].

• Crazyflie 2.0: the drone takes the output message of the ROS publisher and adds

it to the on-board control section of the LQT algorithm, as suggested once again

in Figure 4.2.2. The platform continuously outputs the IMU readings as well as

the total 16-bit PWM signal sent to the motors.

4.2.3 Experimental Results

A series of trajectories created using the GUI developed in Section 3.2.4 were tested

with the LQT algorithm. The RMS error between the desired trajectory and the actual

trajectory followed by the drone was used as a measure of the controller’s performance

as in past works in UAV control such as [25, 28] . Another performance index was

defined, from the basis that a 10 cm error margin from the desired position is ideal,

then it was relevant to calculate for each one of the spatial coordinates of the drone the

percentage in which each coordinate stayed within this margin of the desired position.

These performance indices will be further known as ξx, ξy and ξz.

• Trajectory #1: a simple trajectory with fixed altitude of 1 meter was commanded

for the quadcopter to follow. The time plots in Figure 4.2.4 present the test results,

while Figure 4.2.5 show different 3D perspectives of the flight.

5 10 15 20 25 30 35 40

Time (s)

-2

-1

0

1

2

P
o
s
it
io

n
 (

m
)

X Position

5 10 15 20 25 30 35 40

Time (s)

-2

-1

0

1

2

P
o
s
it
io

n
 (

m
)

Y Position

5 10 15 20 25 30 35 40

Time (s)

0

0.5

1

1.5

P
o
s
it
io

n
 (

m
)

Z Position

LQT

Reference

Figure 4.2.4: Position plots for Trajectory#1.

64

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

2

X (m)

0

3D Trajectory

-0.2

Y (m)

0

-2

0.2

2 1.5 1

0.4

0.5 0

Z
 (

m
)

-0.5 -1

0.6

-1.5

0.8

1

1.2

LQT

Reference

(a) Standard view.

-1.5 -1 -0.5 0 0.5 1 1.5

X (m)

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y
 (

m
)

3D Trajectory

LQT

Reference

(b) XY Plane.

Figure 4.2.5: 3D Trajectory#1.

For this simple trajectory the RMS errors were low, 6.2cm for the X position, 6.3cm

for the Y and 3.9cm for the altitude Z. The corresponding performance indices were

ξx = 92.65%, ξy = 90.72% and ξz = 95.87%. The tracking of these type of slow

trajectories had an outstanding level of performance.

• Trajectory #2: for this second trajectory a varying altitude was also commanded

to asses the behavior of the quadcopter while moving simultaneously in all three

spatial coordinates. The flight data is displayed in Figures 4.2.6 and 4.2.7.

5 10 15 20 25 30 35 40

Time (s)

-2

-1

0

1

P
o
s
it
io

n
 (

m
)

X Position

5 10 15 20 25 30 35 40

Time (s)

-2

-1

0

1

P
o
s
it
io

n
 (

m
)

Y Position

5 10 15 20 25 30 35 40

Time (s)

0

0.5

1

1.5

2

P
o
s
it
io

n
 (

m
)

Z Position

LQT

Reference

Figure 4.2.6: Position plots for Trajectory#2.

65

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

1

0

3D Trajectory

0

X (m)

1

0.5

1

-1

Z
 (

m
)

0

Y (m)

1.5

2

-1
-2-2

LQT

Reference

(a) Standard view.

-1.5 -1 -0.5 0 0.5 1

X (m)

-2

-1.5

-1

-0.5

0

0.5

1

Y
 (

m
)

3D Trajectory

LQT

Reference

(b) XY Plane.

Figure 4.2.7: 3D Trajectory#2.

Despise adding more difficulty to the trajectory the performance was satisfactory, with

RMS errors of 4.72cm, 7.81cm and 4.75cm respectively for the x, y and z positions. The

performance indices remained in the high end, with ξx = 93.89%, ξy = 87.30% and

ξz = 94.63%.

• Trajectory #3: a more complex trajectory is showcased in Figures 4.2.8 and 4.2.9

5 10 15 20 25 30 35 40

Time (s)

-2

-1

0

1

2

P
o
s
it
io

n
 (

m
)

X Position

5 10 15 20 25 30 35 40

Time (s)

-2

-1

0

1

2

P
o
s
it
io

n
 (

m
)

Y Position

5 10 15 20 25 30 35 40

Time (s)

0

0.5

1

1.5

2

P
o
s
it
io

n
 (

m
)

Z Position

LQT

Reference

Figure 4.2.8: Position plots for Trajectory#3.

66

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

0

0.5

-2-2

1

3D Trajectory

Z
 (

m
)

1.5

2

-1-1

X (m)Y (m)

00
11

22

LQT

Reference

(a) Standard view.

-1.5 -1 -0.5 0 0.5 1 1.5

X (m)

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 (

m
)

3D Trajectory

LQT

Reference

(b) XY Plane.

Figure 4.2.9: 3D Trajectory#3.

Even though the controller kept a good trajectory tracking, it is evident how the perfor-

mance starts degrading when adding more complexity to the trajectories. In this case

the RMS erros were of 7.51cm, 5.97cm and 7.34cm for the X, Y and Z positions. The

performance indices were lower than in the two previous trajectories, with ξx = 83.47%,

ξy = 88.49% and ξz = 85.12%.

• Trajectory #4: a complex spiral trajectory in 3D was commanded. The experi-

mental results can be appreciated in Figures 4.2.10 and 4.2.11.

5 10 15 20 25 30 35 40

Time (s)

-1

0

1

2

P
o
s
it
io

n
 (

m
)

X Position

5 10 15 20 25 30 35 40

Time (s)

-2

-1

0

1

2

P
o
s
it
io

n
 (

m
)

Y Position

5 10 15 20 25 30 35 40

Time (s)

0

0.5

1

1.5

2

P
o
s
it
io

n
 (

m
)

Z Position

LQT

Reference

Figure 4.2.10: Position plots for Trajectory#4.

67

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

0

2

0.5

1

1

Z
 (

m
)

1.5

Y (m)

0

2

3D Trajectory

-1
2

X (m)

1.510.5-2 0-0.5-1

LQT

Reference

(a) Standard view.

-1 -0.5 0 0.5 1 1.5 2

X (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 (

m
)

3D Trajectory
LQT

Reference

(b) XY Plane.

Figure 4.2.11: 3D Trajectory#4.

The RMS error incurred when following this trajectory was of 7.93cm in X, 11.79cm

in Y and 5.44cm in Z. The performance indices were ξx = 79.55%, ξy = 58.19% and

ξz = 93.12%. Even more clear than with Trajectory#3, this spiral trajectory shows a

performance degradation when the trajectories demand faster movements, closer curves

or harder brakes. For example, at the 30 second mark in the X position a sudden brake

was required but the controller was not as fast which caused an overshoot. As seen in

the simulation phase these type of overshoots are caused mainly by the integral action,

but otherwise, if lowered, in practice the position regulation would worsen.

4.3 Controller Comparisons

In this section the step response of the control system is used as a measure to compare

the performance of the two controllers synthesized in this project, as well as comparing

the simulated model and the experimental data to determine how close the simulation

predicted the actual test results. Then, to compare trajectory tracking capabilities, the

two controllers were tested on identical trials to follow sinusoidal waves.

4.3.1 Simulation vs Experimental - PID

Comparing the step response of the simulation model developed in subsection 3.1 and

the one obtained during a real flight of the drone was the chosen method to verify the

accuracy of the mathematical model of the quadcopter. Three different flights were ex-

ecuted, sending individual steps in the direction of X, Y and Z.

68

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

• Step command in the X direction

A step command of 1 meter was commanded in the X coordinate, while maintaining a

1 meter altitude and a zero position in the Y coordinate. The experimental results are

presented in Figure 4.3.1.

10 15 20 25 30 35

Time (s)

-0.5

0

0.5

1

1.5

P
o
s
it
io

n
 (

m
)

X Position

10 15 20 25 30 35

Time (s)

-0.2

-0.1

0

0.1

P
o
s
it
io

n
 (

m
)

Y Position

10 15 20 25 30 35

Time (s)

0.6

0.8

1

1.2

P
o
s
it
io

n
 (

m
)

Z Position

Simulation

Experimental

Reference

Figure 4.3.1: Trajectory using the PID controller to follow a Step in the X position.

The simulation and experimental step responses had almost identical response time of

around 3 seconds with almost to no overshoot. The simulation response shows less

damping in the response. The clear difference is in the Y response, the simulation

predicted a perfect zero which is clearly impossible in practice, nonetheless the drone

maintained a 10 centimeters error margin within the initial Y position. The movement

had little impact in the altitude.

• Step command in the Y direction

The test was conducted in a similar fashion as the previous one, but this time sending

the appropriate command to the Y coordinate. Simulation and experimental results were

plotted together as show in Figure 4.3.2.

69

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

10 15 20 25 30 35

Time (s)

-0.2

-0.1

0

0.1

P
o
s
it
io

n
 (

m
)

X Position

10 15 20 25 30 35

Time (s)

-0.5

0

0.5

1

1.5

P
o
s
it
io

n
 (

m
)

Y Position

10 15 20 25 30 35

Time (s)

0.6

0.8

1

1.2

P
o
s
it
io

n
 (

m
)

Z Position

Simulation

Experimental

Reference

Figure 4.3.2: Trajectory using the PID controller to follow a Step in the Y position.

Similar to the X step response, the dynamics for the Y direction matches up to some

extent those predicted by the simulation.

• Step command in the Z direction

Finally a step command of 1 meter in altitude was tested, as seen in Figure 4.3.3.

10 15 20 25 30 35

Time (s)

-0.15

-0.1

-0.05

0

0.05

P
o
s
it
io

n
 (

m
)

X Position

10 15 20 25 30 35

Time (s)

-0.2

-0.1

0

0.1

0.2

P
o
s
it
io

n
 (

m
)

Y Position

10 15 20 25 30 35

Time (s)

0.5

1

1.5

2

2.5

P
o
s
it
io

n
 (

m
)

Z Position

Simulation

Experimental

Reference

Figure 4.3.3: Trajectory using the PID controller to follow a Step in the Z position.

70

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

The altitude dynamics were slower in practice than in simulation and with a the exper-

imental data exposes a more pronounced overshoot.

4.3.2 Simulation vs Experimental - LQT

Similarly, with the simulation model developed in Section 3.2, the following plots show

the step response comparisons between the simulation and the experimental data.

• Step command in the X direction

Figure 4.3.4 exhibits a comparative plot between the simulation and the experimental

data.

5 10 15 20 25 30 35 40

Time (s)

-0.5

0

0.5

1

1.5

P
o
s
it
io

n
 (

m
)

X Position

5 10 15 20 25 30 35 40

Time (s)

-0.2

-0.1

0

0.1

P
o
s
it
io

n
 (

m
)

Y Position

5 10 15 20 25 30 35 40

Time (s)

0

0.5

1

1.5

P
o
s
it
io

n
 (

m
)

Z Position

Simulation

Experimental

Reference

Figure 4.3.4: Trajectory using the LQT controller to follow a Step in the X position.

The simulation scenario in the X and Z positions matches the results obtained during

the experiment. The main difference is the perturbation around the zero position of the

Y coordinate, the simulation predicted an almost perfect hold of this position while in

reality the quadcopter oscillated in a 10 cm error margin.

• Step command in the Y direction

Doing a similar test, but sending a command to the Y coordinate gave the results seen

in Figure 4.3.5.

71

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

5 10 15 20 25 30 35 40

Time (s)

-0.1

0

0.1

0.2

P
o
s
it
io

n
 (

m
)

X Position

5 10 15 20 25 30 35 40

Time (s)

-1

0

1

2

P
o
s
it
io

n
 (

m
)

Y Position

5 10 15 20 25 30 35 40

Time (s)

0

0.5

1

1.5

P
o
s
it
io

n
 (

m
)

Z Position

Simulation

Experimental

Reference

Figure 4.3.5: Trajectory using the LQT controller to follow a Step in the Y position.

The dynamics were similar to those of the X step, the simulation proved once again to

be accurate in predicting the test results.

• Step command in the Z direction

The behavior in Figure 4.3.6 corresponds with a 1 meter command in the Z coordinate.

5 10 15 20 25 30 35 40

Time (s)

-0.1

0

0.1

0.2

0.3

P
o
s
it
io

n
 (

m
)

X Position

5 10 15 20 25 30 35 40

Time (s)

-0.2

-0.1

0

0.1

0.2

P
o
s
it
io

n
 (

m
)

Y Position

5 10 15 20 25 30 35 40

Time (s)

0

1

2

3

P
o
s
it
io

n
 (

m
)

Z Position

Simulation

Experimental

Reference

Figure 4.3.6: Trajectory using the LQT controller to follow a Step in the Z position.

72

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

The altitude step simulation matched almost perfectly the one obtained in practice, as

the comparison demonstrate.

After reviewing this data a few conclusions can be drawn. On the first hand, the PID

simulation is precise up to some extent at predicting the response of the system when

applying step commands, although it has some considerable differences on the altitude

estimation. On the other hand the LQT simulation proved to be more precise, giving

accurate information of how the system will behave in the real scenario. Both of these

simulations serve the common purpose of validating the mathematical model of the

quadcopter.

In the LQT simulations there is an important remark to be made before jumping to

an early conclusion about the accuracy of the mathematical model. In the X-Y step

responses there is an overshoot introduced mainly by the high integral gains Kang
i and

Kpos
i , if those gains were to be lowered at least in simulation the overshoot would be

reduced giving more pleasant results, however various experimental results suggest that

lowering these gains will worsen the overall performance of the controller in practice.

The conclusion is that the high integral gain is necessary to compensate all the model

deficiencies and future efforts should be made in refining the model in order to lower the

integral gains without loosing performance.

4.3.3 Controller Performance: PID vs LQT

One of the main goals of the project was to objectively compare the performance of the

two controllers synthesized, in terms of tracking accuracy and command effort. First

the step responses were compared and then a sinusoidal trajectory showed the tracking

capabilities of each controller. For each controller, the results presented correspond to

the flight with the best performance after performing a series of trials under the same

conditions (gains, weights, etc.). The same performance indices as in Section 4.2.3 were

used. To quantify the control effort, the two-norm is used as in [29], then the control

effort is defined as:

Ui =

k=kf∑
k=0

u2i [k] (4.3.1)

where ui [k] is the PWM signal ranging from 0-65536 sent to the i-th motor, and Ui is the

associated control effort. Also, the ratio percentage %
(
ULQT−UPID

UPID

)
is used to quantify

73

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

the increase or decrease percentage in control effort of the LQT with respect to the PID.

• Step command in the X direction

Figure 4.3.7 exhibits the experimental results for both controllers when commanded to

follow a 1 meter step in the X coordinate.

10 15 20 25 30 35

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

P
o
s
it
io

n
 (

m
)

X Position

PID

LQT

Reference

10 15 20 25 30 35

Time (s)

-1

-0.5

0

0.5

1

1.5

E
rr

o
r

(m
)

X Position Error

10 15 20 25 30 35

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

P
o
s
it
io

n
 (

m
)

Y Position

10 15 20 25 30 35

Time (s)

-0.1

-0.05

0

0.05

0.1

0.15
E

rr
o
r

(m
)

Y Position Error

Figure 4.3.7: X-Y Position and error comparison when following a unit step in the X
position.

The error terms for the LQT controller are lower, at the expenditure of a higher overshoot

than the PID. By moving before the step command, the LQT controller manages to

reduce an otherwise big error of 1 meter. Table 4.3.1 summarizes the performance for

both controllers.

RMS (ex) [cm] RMS (ey) [cm] %ξx %ξy

LQT 12.58 3.37 76.53 100

PID 24.63 6.41 74.98 95.08

Table 4.3.1: Error comparison when following a unit step in X position.

The RMS error values for the X-Y position with the LQT controller were almost half

of those obtained with the PID. The performance indices were slightly better with the

LQT controller.

74

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

The motor commands data for both trials were registered and compared as shown in

Figure 4.3.8.

10 15 20 25 30 35

Time (s)

2

3

4

5

6

7

P
W

M

×10 4 PWM Commands Motor M1

10 15 20 25 30 35

Time (s)

2.5

3

3.5

4

4.5

5

5.5

6

P
W

M

×10 4 PWM Commands Motor M2

10 15 20 25 30 35

Time (s)

2

3

4

5

6

P
W

M

×10 4 PWM Commands Motor M3

10 15 20 25 30 35

Time (s)

1

2

3

4

5

6

P
W

M

×10 4 PWM Commands Motor M4

PID

LQT

Figure 4.3.8: Motor commands comparison when following a unit step in the X position.

The control effort is overall greater with the LQT controller, but the PID has control

effort discontinuities when the step command goes into action. Around the 32 second

mark the motor M1 reached saturation using the PID controller. Furthermore, Ta-

ble 4.3.2 quantifies the motor’s command effort in both cases.

U1[×1012] U2[×1012] U3[×1012] U4[×1012]

LQT 5.26 4.66 5.86 4.40

PID 4.66 3.87 5.42 3.46

%
(
ULQT−UPID

UPID

)
12.88% 20.41% 8.12% 27.17%

Table 4.3.2: Motor effort comparison when following a unit step in the X position.

The results show a clear tendency of control effort increase while using the LQT controller

with respect to the PID controller.

• Step command in the Y direction

When commanded to follow a 1 meter step in the Y coordinate, the quadcopter behaved

as suggested in Figure 4.3.9.

75

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

10 15 20 25 30 35

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

P
o
s
it
io

n
 (

m
)

X Position

LQT

PID

Reference

10 15 20 25 30 35

Time (s)

-0.1

-0.05

0

0.05

0.1

0.15

E
rr

o
r

(m
)

X Position Error

10 15 20 25 30 35

Time (s)

-0.5

0

0.5

1

1.5

P
o
s
it
io

n
 (

m
)

Y Position

10 15 20 25 30 35

Time (s)

-1

-0.5

0

0.5

1

1.5

E
rr

o
r

(m
)

Y Position Error

Figure 4.3.9: X-Y Position and error comparison when following a unit step in the Y
position.

Similar as the last test, the anticipatory feature of the LQT controller allows to reduce

the big error the system incurs when sending step commands. The graphical evidence is

supported by the error comparison contained in Table 4.3.3.

RMS (ex) [cm] RMS (ey) [cm] %ξx %ξy

LQT 2.53 12.25 100 78.34

PID 3.50 28.39 99.68 65.69

Table 4.3.3: Error comparison when following a unit step in Y position.

Once again, the RMS error in the direction the step was send was cut by more than half

with the LQT controller. Performance indices show that the LQT was superior in terms

of reducing the tracking error.

As for the motor commands, Figure 4.3.10 show the same trend as the last test, the LQT

algorithm control outputs is overall bigger than the control outputs of the PID system,

while this last one displays discontinuities in the commands sent as a consequence of the

step demanded.

76

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

10 15 20 25 30 35

Time (s)

2.5

3

3.5

4

4.5

5

5.5

P
W

M

×10 4 PWM Commands Motor M1

10 15 20 25 30 35

Time (s)

2.5

3

3.5

4

4.5

5

P
W

M

×10 4 PWM Commands Motor M2

10 15 20 25 30 35

Time (s)

2

3

4

5

6

P
W

M

×10 4 PWM Commands Motor M3

10 15 20 25 30 35

Time (s)

0

1

2

3

4

5

P
W

M

×10 4 PWM Commands Motor M4

PID

LQT

Figure 4.3.10: Motor commands comparison when following a unit step in the Y position.

The data presented in Table 4.3.4 indicate that the control effort increment of the LQT

algorithm with respect to the PID controller can get up to more than a 50%.

U1[×1012] U2[×1012] U3[×1012] U4[×1012]

LQT 5.66 5.13 6.35 4.88

PID 4.89 3.71 5.49 3.23

%
(
ULQT−UPID

UPID

)
15.75% 38.28% 15.66% 51.08%

Table 4.3.4: Motor effort comparison when following a unit step in the Y position.

• Step command in the Z direction

The last comparison for the linear trajectories was done sending a 1 meter step command

in the Z coordinate. The test result flight data is exposed in Figures 4.3.11 and 4.3.12,

where all three coordinate comparisons between the two controllers are illustrated.

The LQT algorithm outperforms by a good margin the PID, by greatly reducing the

overshoot and the response time in the Z position. The LQT also kept a more precise

X-Y position, both at a constant altitude and when applying the command to ascend 1

meter.

77

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

10 15 20 25 30 35

Time (s)

0.5

1

1.5

2

2.5

P
o

s
it
io

n
 (

m
)

Z Position

PID

LQT

Reference

10 15 20 25 30 35

Time (s)

-2

-1

0

1

2

E
rr

o
r

(m
)

Z Position Error

Figure 4.3.11: Z Position and error comparison when following a unit step.

10 15 20 25 30 35

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

P
o
s
it
io

n
 (

m
)

X Position

PID

LQT

Reference

10 15 20 25 30 35

Time (s)

-0.1

-0.05

0

0.05

0.1

0.15

E
rr

o
r

(m
)

X Position Error

10 15 20 25 30 35

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

P
o
s
it
io

n
 (

m
)

Y Position

10 15 20 25 30 35

Time (s)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

E
rr

o
r

(m
)

Y Position Error

Figure 4.3.12: X-Y Position and error comparison when following a unit step in the Z
position.

The analysis of the results is summarized in Table 4.3.5. The error comparison confirms

the superiority of the LQT with respect to the PID, with reduced RMS values of error

and better performance indices.

78

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

RMS (ex) [cm] RMS (ey) [cm] RMS (ez) [cm] %ξx %ξy %ξz

LQT 2.82 4.35 13.38 100 99.48 81.48

PID 6.13 5.46 28.59 86.43 91.83 52.68

Table 4.3.5: Error comparison when following a unit step in Z position.

The control commands of the motors are visualized in Figure 4.3.13. As in all the other

tests, the LQT control effort remained greater than that of the PID. However the LQT

plots do not present evident command peaks as the PID when sending the altitude

command.

10 15 20 25 30 35

Time (s)

2.5

3

3.5

4

4.5

5

5.5

P
W

M

×10 4 PWM Commands Motor M1

10 15 20 25 30 35

Time (s)

3

3.5

4

4.5

5

5.5

P
W

M

×10 4 PWM Commands Motor M2

10 15 20 25 30 35

Time (s)

3

3.5

4

4.5

5

5.5

P
W

M

×10 4 PWM Commands Motor M3

10 15 20 25 30 35

Time (s)

3

3.5

4

4.5

5

P
W

M

×10 4 PWM Commands Motor M4

PID

LQT

Figure 4.3.13: Motor commands comparison when following a unit step in the Z position.

The increase in control effort is exposed by the results in Table 4.3.6. The numbers

reveal a maximum increase of around 31% in control effort in one of the motors with the

LQT controller with respect to the PID.

U1[×1012] U2[×1012] U3[×1012] U4[×1012]

LQT 5.32 4.42 5.78 4.13

PID 4.05 4.18 4.98 3.73

%
(
ULQT−UPID

UPID

)
31.36% 5.74% 16.06% 10.72%

Table 4.3.6: Motor effort comparison when following a unit step in the Z position.

79

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

• Circular trajectory

A circular trajectory composing a circle in the X-Y plane was conducted with both

controllers to test the tracking of rapidly varying trajectories. The time plot comparisons

of the X-Y positions are displayed in Figure 4.3.14.

5 10 15 20 25 30 35 40 45 50 55

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

P
o
s
it
io

n
 (

m
)

X Position

PID

LQT

Reference

5 10 15 20 25 30 35 40 45 50 55

Time (s)

-1

-0.5

0

0.5

1

E
rr

o
r

(m
)

X Position Error

5 10 15 20 25 30 35 40 45 50 55

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

P
o
s
it
io

n
 (

m
)

Y Position

5 10 15 20 25 30 35 40 45 50 55

Time (s)

-1

-0.5

0

0.5

1

1.5

E
rr

o
r

(m
)

Y Position Error

Figure 4.3.14: X-Y Position and error comparison when following a circular trajectory.

The LQT controller manages to track and stay in phase with the sinusoidal waves, while

the PID controller was not capable of such feat nor of obtaining the desired 1 meter

amplitude. The error plots expose the improvement in trajectory tracking of the LQT

controller with respect to the PID, and are validated by the data shown in Table 4.3.7.

RMS (ex) [cm] RMS (ey) [cm] %ξx %ξy

LQT 10.32 16.69 55.74 55.00

PID 46.05 47.28 14.72 17.68

Table 4.3.7: Error comparison when following a circular position.

The RMS error is about 4 times greater with the PID controller than with the LQT algo-

rithm, clearly showing the superiority of the latter in tracking more complex trajectories.

The motors’ 16-bit PWM signals of both controllers are compared in Figure 4.3.15.

80

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

10 15 20 25 30 35 40 45 50 55

Time (s)

2.5

3

3.5

4

4.5

5

5.5

6

P
W

M

×10 4 PWM Commands Motor M1

10 15 20 25 30 35 40 45 50 55

Time (s)

2.5

3

3.5

4

4.5

5

5.5

6

P
W

M

×10 4 PWM Commands Motor M2

10 15 20 25 30 35 40 45 50 55

Time (s)

2

3

4

5

6

7

P
W

M

×10 4 PWM Commands Motor M3

10 15 20 25 30 35 40 45 50 55

Time (s)

1

2

3

4

5

6

P
W

M

×10 4 PWM Commands Motor M4

PID

LQT

Figure 4.3.15: Motor command comparison when following a circular trajectory.

The tendency of a greater command effort for the LQT algorithm compared to the

PID remained as before, also confirmed by the values in Table 4.3.8. Note that for

this trajectory there are important control spikes with the PID controller exactly in the

points where the error reached its maximum points in Figure 4.3.14, causing for instance

a motor saturation at the 28 second mark in motor M3.

U1[×1012] U2[×1012] U3[×1012] U4[×1012]

LQT 11.68 10.20 12.50 9.65

PID 8.82 7.69 10.28 6.88

%
(
ULQT−UPID

UPID

)
32.43% 32.64% 21.60% 40.26%

Table 4.3.8: Motor effort comparison when following a circular trajectory.

The comparison between the PID and LQT control systems gave insightful data to draw

conclusions about their advantages and disadvantages. Starting with the overall perfor-

mance in position and trajectory tracking, the LQT was superior at keeping low levels

of error with respect to the desired position. The goal of improving the tracking perfor-

mance of the PID controller was achieved with the LQT algorithm.

As for the command effort of the motors, even though the LQT algorithm does an

optimization process to minimize it, the experimental data exposed that the PID used less

81

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

effort in every trial. The explanation for this phenomenon are the elevated integral gains

and weighting factors used with the LQT algorithm to obtain the desired performance.

It is intuitive to think that the correct tracking of more demanding trajectories leads to a

greater control effort, as for most control systems design this ends up being a compromise

issue, in this case between performance and motor power. This increase in control effort

translated in a shorter battery life-time while using the LQT controller with respect to

the PID.

4.4 LQT with UWB Position Estimation

Using the two-way ranging ultra-wide band system developed in [36], four base stations

were placed forming a 7x4m rectangle at 2.5m of height from the floor. Figure 4.4.1

displays how the tag was incorporated to the quadcopter’s body.

Figure 4.4.1: Crazyflie 2.0 with UWB module exposed

A series of trajectories were followed using the VICON and then the UWB system to

test the LQT controller. In both cases the flight data was compared using the VICON

measurements as the ground truth in order to study the tracking performance. The

UWB estimations were used only for the X and Y position, while the altitude came

from the VICON system. The analysis was focused to the tracking in the X-Y plane,

while keeping a 1 meter altitude. With each system a certain amount of flights were

executed and the one with best performance is the one showcased in this section, so the

comparisons were made in the best-case scenario with each localization system. Note:

while using the UWB system it was decided to lower the position integral gains as it

improved the performance.

82

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

• Hover

The first test was a simple hover to asses the controller’s capability of keeping a fixed

position. Figure 4.4.2 presents the experimental results for the hover test.

5 10 15 20 25 30 35 40

Time (s)

-0.4

-0.2

0

0.2

P
o
s
it
io

n
 (

m
)

X Position

5 10 15 20 25 30 35 40

Time (s)

-0.4

-0.2

0

0.2

P
o
s
it
io

n
 (

m
)

Y Position

UWB

VICON

Reference

Figure 4.4.2: X-Y Position and error comparison while hovering around a point.

Although in both cases the controller performed similarly, with the UWB system there

were more oscillations, specially in the take-off and landing stages at the beginning and

end of the time plot. Table 4.4.1 quantifies the error values of the hover flight.

RMS (ex) [cm] RMS (ey) [cm] %ξx %ξy

VICON 4.67 5.03 93.74 94.78

UWB 5.90 6.42 92.15 90.27

Table 4.4.1: Error comparison while hovering around a point.

Both hover flights were solid, although the RMS errors and performance indices suggests

that with the VICON system the drone hold more precisely its position.

• Trajectory #1

The results for the first trajectory are displayed in Figure 4.4.3.

83

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

5 10 15 20 25 30 35 40

Time (s)

-1

-0.5

0

0.5

1

1.5

P
o
s
it
io

n
 (

m
)

X Position

5 10 15 20 25 30 35 40

Time (s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

E
rr

o
r

(m
)

X Position Error

5 10 15 20 25 30 35 40

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

P
o
s
it
io

n
 (

m
)

Y Position

UWB

VICON

Reference

5 10 15 20 25 30 35 40

Time (s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

E
rr

o
r

(m
)

Y Position Error

Figure 4.4.3: X-Y Position and error comparison when following Trajectory #1.

Once again, the overall performance in both cases in terms of the errors was similar, but

the greater levels of noise of the UWB system with respect to the VICON is translated

into more oscillations in the position. The 3D perspectives in Figure 4.4.4 show the

smoothness of the system with the VICON with respect to the more oscillating trajectory

with the UWB.

2-0.2

0

2

0.2

3D Trajectory

0.4

1

0.6

Z
 (

m
)

1

0.8

X (m)

1

Y (m)

1.2

0 0
-1

-1-2

UWB

VICON

Reference

(a) Standard view.

-1 -0.5 0 0.5 1 1.5

X (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 (

m
)

3D Trajectory

UWB

VICON

Reference

(b) XY Plane.

Figure 4.4.4: Comparison of 3D Trajectory#1.

As for the performance, the summary in Table 4.4.2 indicates that the overall perfor-

mance with the VICON system is better, but nonetheless with the UWB system the

84

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

controller manages to follow the trajectory with RMS errors around 10 centimeters.

RMS (ex) [cm] RMS (ey) [cm] %ξx %ξy

VICON 9.16 7.55 73.69 86.39

UWB 10.22 7.82 63.44 79.85

Table 4.4.2: Error comparison while following Trajectory #1.

• Trajectory #2

While following a second trajectory, similar in complexity as the first one, the results

presented in Figure 4.4.5 illustrate the tracking capabilities of the LQT controller in

both cases, despite the higher levels of noise when using the UWB system. The error

plots compare the smooth lines in the VICON flight with the more oscillating ones of

the UWB.

5 10 15 20 25 30 35 40

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
o
s
it
io

n
 (

m
)

X Position

5 10 15 20 25 30 35 40

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

E
rr

o
r

(m
)

X Position Error

5 10 15 20 25 30 35 40

Time (s)

-2

-1

0

1

2

P
o
s
it
io

n
 (

m
)

Y Position

UWB

VICON

Reference

5 10 15 20 25 30 35 40

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

E
rr

o
r

(m
)

Y Position Error

Figure 4.4.5: X-Y Position and error comparison when following Trajectory #2.

The 3D perspectives in Figure 4.4.6 illustrate the trajectory followed by the quadcopter

in both cases, and specially the X-Y plane view shows the main difference between the

two flights: the smoothness and stability with which the quadcopter managed to follow

the desired trajectory.

85

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

2

3D Trajectory

-0.2

X (m)

0

0

2

0.2

0.4

1

Z
 (

m
) 0.6

Y (m)

0.8

0

1

1.2

-1 -2-2

UWB

VICON

Reference

(a) Standard view.

-1.5 -1 -0.5 0 0.5 1 1.5 2

X (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y
 (

m
)

3D Trajectory

UWB

VICON

Reference

(b) XY Plane.

Figure 4.4.6: Comparison of 3D Trajectory#2.

Table 4.4.3 summarizes the performance in trajectory tracking. The UWB system in-

curred in a greater RMS error than the VICON, around 3.4cm more for the X position

and 0.6cm for the Y position. The performance indices ξx and ξy were inferior while

using the UWB system, but still close enough to be acceptable.

RMS (ex) [cm] RMS (ey) [cm] %ξx %ξy

VICON 7.71 9.50 82.08 73.17

UWB 11.16 10.15 71.04 70.32

Table 4.4.3: Error comparison while following Trajectory #2.

• Trajectory #3

The third trajectory time plots and 3D path are exposed in figures Figures 4.4.7 and 4.4.8.

A similar behavior as before is appreciated, both flights had some level of success in fol-

lowing the commanded trajectory, but the error plots suggests a greater noise in the

position while using the UWB system. Nonetheless, the top view in Figure 4.4.8b illus-

trate the trajectory tracking capability in both flights.

The position errors reflected in Table 4.4.4 suggest a similar performance in the X po-

sition, with a more pronounced discrepancy in the Y position, in both cases being the

VICON was the more precise system.

86

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

5 10 15 20 25 30 35 40

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

P
o
s
it
io

n
 (

m
)

X Position

5 10 15 20 25 30 35 40

Time (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

E
rr

o
r

(m
)

X Position Error

5 10 15 20 25 30 35 40

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

P
o
s
it
io

n
 (

m
)

Y Position

UWB

VICON

Reference

5 10 15 20 25 30 35 40

Time (s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

E
rr

o
r

(m
)

Y Position Error

Figure 4.4.7: X-Y Position and error comparison when following Trajectory #3.

-0.2

0

2 2

0.2

0.4

0.6

Z
 (

m
)

3D Trajectory

0.8

1 1

1

1.2

Y (m) X (m)

0 0
-1 -1

-2 -2

UWB

VICON

Reference

(a) Standard view.

-1.5 -1 -0.5 0 0.5 1 1.5

X (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 (

m
)

3D Trajectory

UWB

VICON

Reference

(b) XY Plane.

Figure 4.4.8: Comparison of 3D Trajectory#3.

RMS (ex) [cm] RMS (ey) [cm] %ξx %ξy

VICON 7.56 7.29 84.69 83.00

UWB 9.43 8.11 74.68 78.66

Table 4.4.4: Error comparison while following Trajectory #3.

The experimental data confirms the robustness of the control system while using a po-

sitioning system with around 100 times greater standard deviation noise than the initial

87

CHAPTER 4. HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS

system. The tuning of the Kalman Filter to adapt to this new source of noise was vital

to ensure a good compromise between filtering and precision in the estimations. Even

though there is a clear advantage on using more precise technology, such as the VICON,

the system could still track the desired trajectories with an acceptable degree of precision

while using a more cheaper system such as the UWB.

The fact that the position integral gains for the X and Y positions had to be lowered

while using the UWB system, was a necessary compromise to ensure less oscillations

while following the desired trajectory. Such a compromise did not arise while using the

VICON system, with which the quadcopter remained stable and followed smoothly the

trajectories for a wide range of gain values.

If the control system could only use the UWB system, then a more detailed study of how

to compensate the different sources of noise and biases should be made. For instance,

the UWB system looses precision when the tag is close to one of the anchors, or if the

tag is facing away from one of the anchors. All this subtleties, if taken in account while

designing the control system, could lead to a better performance than the one obtained

and presented in this work.

Finally, the video found in [38] shows a summary of the project’s simulation and exper-

imental results.

88

Chapter 5

Conclusions and Future Work

The study was set out to explore the dynamics of an open source nanoquadcopter named

Crazyflie 2.0, as well as creating a simulation environment for control design and then

testing it in the real platform. This type of unmanned aerial vehicles is becoming the

preferred platform for testing control algorithms of diverse natures, thus the inherent

importance of conceiving a mathematical model of the vehicle that can predict, up to

some extent, how the system will evolve over time. Hence, the project started by a

modeling of the nanoquadcopter and an identification of certain physical parameters,

based in previous work. Working in parallel with the literature and the quadcopter’s

embedded firmware was the main key in describing the system behavior just as it is in

the real platform, an important milestone for future work as the dynamics of a system

is the heart of every simulation environment.

The second phase of the project was building the simulation that served as the first test-

bench of the control architectures proposed. Using both the non-linear dynamics and the

linearised state space realisation of the system, the simulation created is a solid testing

environment to conceive all types of control systems. It was incredibly useful during the

first stages of the project to get a better understanding of how the system worked. In

addition, the simulation was used for designing both the PID position controller and the

LQT trajectory tracker.

An important conclusion is that the initial belief that all dynamics were decoupled as

suggested during the linear modeling was not entirely true in the non-linear system. As

observed in the simulations, there exists some interference between movements that, for

instance, does not allow the quadcopter to describe a perfectly straight line trajectory

89

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

when there are more than one movement involved (a yaw rotation for example).

The position PID tracker was tested for time-varying trajectories, such as circles and

helices. Even though the system could described these trajectories, there were some

drawbacks and performance issues, for example not getting fast enough to the desired

points which lead to errors in the desired trajectory. The fact that the task at hand was

managed by a position tracker and not a trajectory tracker was the main reason of these

discrepancies. To address the deficiencies of the PID controller, a new control system

was conceived using the LQT algorithm, which proved to have interesting characteristics

while following step responses, mainly that it started moving before the command was

asked in order to reduce the tracking error. The feature was possible thanks to the

off-line calculation of the algorithm and the knowledge of the trajectory beforehand.

The comparisons between the PID and the LQT controller indicate a clear superiority

of the LQT in terms of reducing the trajectory tracking error, specially in the more

demanding trajectories, in which the LQT algorithm reduced up to 4 times the RMS

errors obtained with the PID controller. Directly related to the better tracking, the

LQT incurred in higher levels of control effort than the PID, but it also eliminated the

great command peaks seen in the motor time plots of the PID, thus getting rid of the

undesired motor saturations that could lead to unstable states.

There are two main drawbacks of the LQT algorithm with respect to the PID: the first

one is the inability to specify trajectories for the heading (yaw angle) and the second

one is the need to know the trajectory before its execution. Taking in account these

shortcomings, it is proposed as future work for this research to incorporate a method to

control the yaw angle while keeping the good performance in the LQT algorithm, the

author proposes a gain-scheduling method being the yaw angle the scheduling variable

as a possible solution for this problem. As for the second drawback of the LQT algo-

rithm, more research should be directed towards an on-line implementation thus making

the controller useful in more complex tasks such as planning and execution missions in

real-time.

The GUI created for trajectory generation proved to be a valuable asset to quickly test

different types of trajectories, with varying difficulty. But the tool can be improved by

90

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

adding physical constraints to the trajectory generation, as to assure the trajectory is

feasible for the quadcopter to follow. Future work in this area should explore feasible

trajectory generation as proposed in works such as [25].

The simulation versus experimental comparative time plots show that the simulation

environment developed in this project was accurate to some extent, serving its purpose

as a useful design tool for the controllers synthesized, but it had its limitations mainly

due to unmodeled phenomena, which lead to the need of introducing high integral gains

in the controllers to compensate the model errors and other perturbations of the system.

As future work, it is suggested a more thorough model identification for the quadcopter,

for example using numerical methods such as the closed-loop "black box" identification

proposed in [11].

The Kalman Filter approach for estimating the linear velocities from the position data

proved to be successful using both the VICON and the UWB, specially with the latter in

which the data had 100 times greater standard deviation noise. The VICON versus UWB

experiments suggest that in both cases the LQT tracked the desired position, but with

obvious different levels of smoothness and precision. Even though both performances

were satisfactory in terms of the scope of this work, future research into improving the

control system while using the UWB position system would be ideal. Starting from an

identification of different sources of added noise and biases of the UWB system, upto

different filtering techniques that are more appropriate than the classic Kalman filter

proposed in this project are the author’s recommendations to improve the control sys-

tem performance.

This work represents a solid base for future research using this platform, with enough

explanation in the calculus for newcomers in the area to understand the basic functioning

of the system. The simulation environment was developed in a fashion that corresponds

exactly with the equations shown in the mathematical model, which helps in the quick

understanding of how everything works and saves time in comprehending an otherwise

complex system, plus it is easily customizable for future users to develop their own con-

trollers. The project successfully fulfilled its ultimate goal of characterizing the provided

quadcopter platform and doing all the steps needed to develop an efficient control system

for trajectory tracking.

91

Bibliography

[1] Hanna, W. (2014). Modelling and control of an unmanned aerial vehicle (B.Eng
Thesis, Charles Darwin University).

[2] Subramanian, G. P. (2015). Nonlinear control strategies for quadrotors and CubeSats
(M.S. Thesis, University of Illinois at Urbana-Champaign).

[3] Greitzer, E. M., Spakovszky, Z. S., & Waitz, I. A. (2006). Thermodynamics and
propulsion. Mechanical Engineering, MIT.

[4] Corke, P. (2011). Robotics, vision and control: fundamental algorithms in MATLAB
(Vol. 73). Springer.

[5] Hartman, D., Landis, K., Mehrer, M., Moreno, S., & Kim, J.(2014) Quadcopter
Dynamic Modeling and Simulation (Quadsim) v1.00 (Senior Design project, Drexel
University)

[6] Hoenig, W., Milanes, C., Scaria, L., Phan, T., Bolas, M., & Ayanian, N.
(2015). Mixed reality for robotics. In Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on (pp. 5382-5387). IEEE

[7] Elruby, A. Y., El-Khatib, M. M., El-Amary, N. H., & Hashad, A. I. (2012). Dynamic
modeling and control of quadrotor vehicle. In Fifteenth International Conference on
Applied Mechanics and Mechanical Engineering, AMME (Vol. 15).

[8] Karwoski, K. (2011). Quadrocopter Control Design and Flight Operation. (Internship
Final Report, NASA USRP)

[9] Sonnevend, I. (2010). Analysis and model based control of a quadrotor helicopter.
(BSc Diploma work, Péter Pázmány Catholic University, Faculty of Information
Technology, Budapest, Hungary (supervisor: G. Szederkényi))

[10] Habib, M. K., Abdelaal, W. G. A., & Saad, M. S. (2014). Dynamic modeling and
control of a Quadrotor using linear and nonlinear approaches. (M.S. Thesis, The
American University in Cairo).

[11] Landry, B. (2015). Planning and control for quadrotor flight through cluttered envi-
ronments (Master’s Degree Thesis, Massachusetts Institute of Technology).

[12] Dunkley, O., Engel, J., Sturm, J., & Cremers, D. (2014). Visual-inertial naviga-
tion for a camera-equipped 25g nano-quadrotor. In IROS2014 Aerial Open Source
Robotics Workshop.

[13] Xu, D., Wang, L., Li, G., & Guo, L. (2012, August). Modeling and Trajectory
Tracking Control of a Quad-rotor UAV. In Proceedings of the 2012 International
Conference on Computer Application and System Modeling. Atlantis Press.

92

[14] Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., & Von Stryk, O. (2012).
Comprehensive simulation of quadrotor uavs using ros and gazebo. In Simulation,
Modeling, and Programming for Autonomous Robots (pp. 400-411). Springer Berlin
Heidelberg.

[15] Suiçmez, E. C. (2014). Trajectory Tracking of a quadrotor unmanned aerial vehi-
cle (UAV) via attitude and position control (Master’s Degree Thesis, Middle East
Technical University).

[16] Oh, S. M. (2012). Modeling and Control of a Quad-rotor Helicopter. (M.S. Thesis,
University of Florida)

[17] Pounds, P. E. I. (2007). Design, construction and control of a large quadrotor micro
air vehicle. (Doctoral dissertation, Australian National University.)

[18] Tamami, N., Pitowarno, E., & Astawa, I. G. P. (2014). Proportional Derivative
Active Force Control for “X” Configuration Quadcopter. Journal of Mechatronics,
Electrical Power, and Vehicular Technology, 5(2), 67-74.

[19] Roo, M. (2015). Optimal Event Handling by Multiple UAVs. (M.S. Report, Univer-
sity of Twente)

[20] Lehnert, C., & Corke, P. (2013). µAV-Design and implementation of an open source
micro quadrotor. AC on Robotics and Automation, Eds.

[21] Sabatino, F.(2015). Quadrotor control: modeling, nonlinear control design, and sim-
ulation. (Master’s Degree Project, KTH Royal Institute of Technology).

[22] Kader, S. A., El-henawy, A. E., & Oda, A. N. (2014). Quadcopter System Model-
ing and Autopilot Synthesis. In International Journal of Engineering Research and
Technology (Vol. 3, No. 11 (November-2014)). ESRSA Publications.

[23] Naidu, D. S. (2002).Optimal control systems. CRC press.

[24] Mathworks®(2015).State Estimation Using Time-Varying
Kalman Filter. Retrieved May 16, 2016, from
http://www.mathworks.com/help/control/getstart/estimating-states-of-time-
varying-systems-using-kalman-filters.html

[25] Hoffmann, G. M., Waslander, S. L., & Tomlin, C. J. (2008).Quadrotor helicopter
trajectory tracking control. In AIAA guidance, navigation and control conference
and exhibit (pp. 1-14).

[26] Mueller, M. W., & D’Andrea, R. (2013).A model predictive controller for quadro-
copter state interception. In European Control Conference (pp. 1383-1389).

[27] Mu, S., Zeng, Y., & Wu, P. (2008).Multivariable control of anaerobic reactor by
using external recirculation and bypass ratio. Journal of chemical technology and
biotechnology, 83(6), 892-903.

[28] Huang, H., Hoffmann, G. M., Waslander, S. L., & Tomlin, C. J. (2009).Aerodynam-
ics and control of autonomous quadrotor helicopters in aggressive maneuvering. In
Robotics and Automation, 2009. ICRA’09. IEEE International Conference on (pp.
3277-3282). IEEE.

[29] Sujit, P. B., Saripalli, S., & Sousa, J. B. (2014).Unmanned aerial vehicle path follow-
ing: A survey and analysis of algorithms for fixed-wing unmanned aerial vehicles.
IEEE Control Systems, 34(1), 42-59.

93

[30] Bouabdallah, S., Noth, A., & Siegwart, R. (2004).PID vs LQ control techniques
applied to an indoor micro quadrotor. In Intelligent Robots and Systems, 2004.(IROS
2004). Proceedings. 2004 IEEE/RSJ International Conference on (Vol. 3, pp. 2451-
2456). IEEE.

[31] Peraire, J., & Widnall, S. (2009) Lecture L28 - 3D Rigid Body Dynamics. MIT
OpenCourseWare, Dynamics Fall 2009. Available online: http://ocw.mit.edu.

[32] Bitcraze®(2015). Crazyflie 2.0 assembly instructions. Retrieved August 3, 2016,
from https://wiki.bitcraze.io/projects:crazyflie2:userguide:assembly

[33] Bitcraze®(2015). Crazyflie 2.0 Main Page. Retrieved August 5, 2016. from
https://www.bitcraze.io/crazyflie-2/

[34] ©Vicon Motion Systems (2015). VICON Motion Capture System Main Page. Re-
trieved August 5, from https://www.vicon.com/

[35] Mueller, M. W., Hamer, M., & D’Andrea, R. (2015). Fusing ultra-wideband range
measurements with accelerometers and rate gyroscopes for quadrocopter state estima-
tion. In 2015 IEEE International Conference on Robotics and Automation (ICRA)
(pp. 1730-1736). IEEE.

[36] Rafrafi, W., & Le Ny, J. (2016). Intégration d’un système radio à bande ultra-large
pour la navigation de robots mobiles. (Master’s Degree Thesis, École Polytechnique
de Montréal).

[37] ©decaWave(2015). ScenSor DWM1000 Module Product Page. Retrieved August 11,
from http://www.decawave.com/products/dwm1000-module

[38] Luis, C. (2016). Trajectory Tracking of a Crazyflie 2.0 Nanoquadcopter [Video File].
Retrieved August 13, from https://youtu.be/c-SXovCyhJQ

94

Appendix A: Firmware
Modifications

The firmware used during this project was “Release 2016.02” found in https://github.
com/bitcraze/crazyflie-release/releases, with the following changes:

• power_distribution_stock.c lines 58-64

#ifdef QUAD_FORMATION_X
int16_t r = contro l−>r o l l / 2 . 0 f ;
int16_t p = contro l−>pi tch / 2 .0 f ;
motorPower .m1 = l imi tThrus t (cont ro l−>thrus t − r − p − cont ro l−>yaw) ;
motorPower .m2 = l imi tThrus t (cont ro l−>thrus t − r + p + contro l−>yaw) ;
motorPower .m3 = l imi tThrus t (contro l−>thrus t + r + p − cont ro l−>yaw) ;
motorPower .m4 = l imi tThrus t (contro l−>thrus t + r − p + contro l−>yaw) ;

• controller_pid.c lines 64-84

at t i tudeContro l l e rCor rec tAtt i tudePID (state−>at t i t ude . r o l l , −s tate−>at t i t ude . pitch , s tate−>at t i t ude . yaw ,
se tpo int−>at t i t ude . r o l l , s e tpo int−>at t i t ude . pitch , a t t i tudeDes i r ed . yaw ,
&rateDes i r ed . r o l l , &ra teDes i r ed . pitch , &rateDes i r ed . yaw) ;

// B y p a s s A t t i t u d e c o n t r o l l e r if R a t e m o d e a c t i v e
if (s e tpo int−>mode . r o l l == modeVelocity) {

ra t eDes i r ed . r o l l = setpo int−>att i tudeRate . r o l l ;
}
if (s e tpo int−>mode . p i t ch == modeVelocity) {

ra t eDes i r ed . p i t ch = setpo int−>att i tudeRate . p i t ch ;
}
if (s e tpo int−>mode . yaw == modeVelocity) {

ra t eDes i r ed . yaw = setpo int−>att i tudeRate . yaw ;
}

att i tudeContro l l e rCorrectRatePID (sensors−>gyro . x , sensors−>gyro . y , sensors−>gyro . z ,
r a t eDes i r ed . r o l l , r a t eDes i r ed . pitch , ra t eDes i r ed . yaw) ;

att i tudeContro l l e rGetActuatorOutput (&contro l−>ro l l ,
&contro l−>pitch ,
&contro l−>yaw) ;

95

https://github.com/bitcraze/crazyflie-release/releases
https://github.com/bitcraze/crazyflie-release/releases

	Contents
	List of Figures
	List of Tables
	Introduction
	Main Objectives
	Secondary Objectives

	Model of the Quadcopter
	Coordinate Frames
	Dynamic Equations
	Force Equations
	Momentum Equations

	Physical Parameters
	Linearization and State Space Representation
	Movement Decoupling
	Motor Characterization

	Simulation
	Cascaded PID Position Tracker
	On-Board Control Architecture
	Inner Loop: Rate Controller
	Outer Loop: Attitude Controller
	Control Mixer

	Off-Board Position Controller
	Altitude Controller
	X-Y Position Controller
	Yaw Position Controller
	Controllers Gains

	Simulation Results

	Linear-Quadratic Tracker (LQT)
	The Optimization Problem Setup
	Kalman Filter for Linear Velocity Estimation
	Weight Matrices and Integral Action
	Trajectory Generation
	Simulation Results

	Hardware Implementation and Experimental Results
	PID Controller
	ROS Controller Node
	Experimental Results

	LQT Controller Implementation
	ROS Controller Node Modifications
	MATLAB Interface Details
	Experimental Results

	Controller Comparisons
	Simulation vs Experimental - PID
	Simulation vs Experimental - LQT
	Controller Performance: PID vs LQT

	LQT with UWB Position Estimation

	Conclusions and Future Work
	Bibliography
	Appendix A

