
Rounding Techniques for Semidefinite Relaxations
6-856 Randomized algorithms

Jerome Le Ny

May 11, 2005

Abstract

This report reviews some approximation algorithms for combinatorial optimization problems, based
on a semidefinite relaxation followed by randomized rounding.

Contents

Introduction 1

1 Preliminaries 3

2 Rounding via Random Hyperplane Partitions and Improvements 4
2.1 Random Hyperplane Partition [GW96] . 4
2.2 Vector Projection [KMS98] . 5
2.3 Outward Rotations [Zwi99] . 7
2.4 Random Projection + Randomized Rounding (RPR2) [FL01] 8
2.5 Semidefinite Relaxations with More Information [FG95, LLZ02] 10

3 Algorithms Based on Results from Functional Analysis [AN04] 12
3.1 Approximating the Cut-Norm of a Matrix . 12
3.2 Averaging with a Gaussian Measure . 13
3.3 Constructing New Vectors . 14

Conclusion 17

Introduction

In a now celebrated paper[GW96], Goemans and Williamson introduced the use of semidefinite program-
ming for the design of approximation algorithms for NP-hard problems. Their idea inspired a great deal
of research activity, since it had the potential to generalize the standard methods based on linear pro-
gramming to a broader class of problems as well as to improve known approximation ratios dramatically.
As with linear programming relaxations, one needs to have a way to round the solution obtained from
the semidefinite program. Goemans and Williamson showed that this could be done by separating the
solution vectors using random hyperplanes. Their algorithm was subsequently derandomized in [MR99].
As we will see, the hyperplane separation is quite powerful, and has been the basis for a number of
improvements and generalizations. Part 2 will review some of this work, in increasing order of generality.
In part 3, I discuss a recent paper of Alon and Naor [AN04]. They present three algorithms: two of
them are randomized and do not really depart from the random hyperplane rounding, but their analysis
is more powerful and show that we can handle more general problems. Quite remarkably, they estab-
lish the connection between the probabilistic point of view (choosing a random hyperplane and taking

1

expectation), and techniques useful in functional analysis (averaging with a Gaussian measure). The
important link between semidefinite relaxations of integer quadratic programs and functional analysis
lies in Grothendieck’s inequality.

2

1 Preliminaries

In this part, I review some notions and notation that will be useful in the following. This report
is concerned with NP -hard maximization problems, for which we are interested in polynomial time
approximation algorithms that for every instance produce solutions whose value (or expected value if the
algorithm is randomized) is guaranteed to be within a ratio of at least α (0 ≤ α ≤ 1) from the optimal
solution. In fact, the problems that we will study are even MAX − SNP hard: this implies, by the
results in [PY91, ALM+92], that there exists some ρ < 1 such that the existence of a ρ-approximation,
polynomial time algorithm for any of these problems would imply P = NP .

A common method for obtaining an approximation algorithm for a combinatorial optimization prob-
lem is based on linear programming. Goemans and Williamson [GW96] successfully extended this ap-
proach to semidefinite programming. The approach can be divided into the following steps:

• Formulate the problem as an integer quadratic program.

• Relax the problem to a semidefinite program.

• Solve the relaxation in polynomial time, obtaining a vector solution v1, . . . , vn.

• Round the vector solution to an integer solution x1, . . . , xn (somehow).

In this report, we will investigate randomized rounding techniques that have been developped following
the original method of Goemans and Williamson, which used a random hyperplane rounding. First
however, we say a few words about semidefinite programs.

Semidefinite programming is a special case of convex programming where the feasibility region is
an affine subspace of the cone of positive semidefinite matrices. Semidefinite programs are much more
general that linear programs, but they are not much harder to solve. Most interior-point methods for
linear programming have been generalized to semidefinite programs. As in linear programming, these
methods have polynomial worst-case complexity, and perform well in practice. Semidefinite programming
has been the object of much attention, partly because of applications in combinatorial optimization and
in control theory [GLS88, Ali95, VB96].

We will not discuss semidefinite programming itself in this report. Suffices to say that all relaxation
formulations presented can be solved via semidefinite programming, in the sense that an algorithm returns
a solution which is within ε > 0 of the optimum, in time polynomial in n and log(1/ε). This epsilon
should be included in the approximation ratio (i.e. strictly speaking, we obtain an α− ε approximation),
but since it can be arbitrarily small we will most often omit it in the discussion. For an overview of
the semidefinite programs arising in combinatorial optimization and the duality theory of SDP, one can
refer to [VB96]. It is interesting to note the close connections between relaxations used in combinatorial
optimization (and other current “hot” topics in optimization) and relaxations of hard control problems,
which date back at least to 1944 in the Soviet litterature.

We will write Y < 0 to specify the constraint that the matrix Y must be a semidefinite matrix. Recall
that the Gram matrix [yij] of a set of vectors v1, . . . , vn in Rn is the matrix whose elements are given by
yij = vi · vj , where “.” denotes the inner product. A Gram matrix is positive semidefinite. Conversely,
given a semidefinite matrix Y , we can perform a Cholesky decomposition to write Y = BTB, which gives
a representation of Y as a Gram matrix, for which the vectors are the columns of B. Strictly speaking,
we can only perform numerically an incomplete Cholesky factorization since we can encounter irrational
numbers, but again we can approximate the result up to an arbitrary close number.

Here are some additional notations. If not stated otherwise, ‖.‖ will denote the euclidian norm. When
considering a graph G = (V,E) (undirected), n is number of vertices and m is the number of edges. We
will note for the standard normal distribution

φ(r) =
1√
2π
e−r2/2 and Φ(x) =

∫ ∞

x

φ(r)dr

We will also use several times facts about random vectors chosen from the n-dimensional standard normal
distribution. Let r be such a vector. Then the projections of r onto two lines l1 and l2 are independant
and normally distributed iff l1 and l2 are orthogonal. Alternatively, we can say that under any rotation
of the coordinate axis, the projections of r along these axes are independant standard normal random
variables. The intersection of r with the unit sphere defines a point which has uniform distribution on
the unit sphere.

3

2 Rounding via Random Hyperplane Partitions and Im-
provements

2.1 Random Hyperplane Partition [GW96]

In their seminal paper, Goemans and Williamson present randomized approximation algorithms based on
a semidefinite relaxation for MAX CUT, MAX 2SAT, MAX DICUT and MAX SAT, when the weights
are non-negative. The algorithms randomly round the solution of the semidefinite program using a
hyperplane separation technique, which has proved to be an important tool, for either direct application
or extension.

The method can be illustrated on the MAX CUT problem. Given an undirected graph G = (V,E),
with vertices V = 1, . . . , n and weights wij = wji ≥ 0 on the edges (i, j) ∈ E, the maximum cut problem
is that of finding the set of vertives S that maximizes the weight of the edges in the cut (S, S); that is,
the weight of the edges with one endpoint in S and the other in S. We set wij = 0 if (i, j) 6∈ E and
denote the weight of a cut (S, S) by w(S, S) =

∑
i∈S,j 6∈S wij . Note that assigning each vertex to S with

probability 1/2 produces a cut with expected value 1/2 of the total weight (by linearity of expectation),
and therefore provides a 1/2-approximation algorithm. We are interested in improving on this result.

The weight of the maximum cut is given by the following integer quadratic program:

Z∗MC = Max
1

2

∑
i<j

wij(1− yiyj)

subject to: yi ∈ {−1, 1} ∀i ∈ V. (1)

Indeed, the set S = {i|yi = 1} corresponds to a cut of weight w(S, S) = 1
2

∑
i<j wij(1− yiyj).

The semidefinite relaxation of 1 is obtained by allowing yi to be a multi-dimensional vector vi of
unit Euclidian norm. Since the linear space spanned the these vectors has dimension at most n, we can
assume that these vectors belong to Rn. If we replace (1− yiyj) by (1− vi · vj), we recover the objective
function when the vectors lie in a 1-dimensional space. We can then formulate the relaxation in terms
of the Gram matrix Y = [yij] of the vectors vi, as follows:

Z∗R,MC = Max
1

2

∑
i<j

wij(1− yij)

subject to: yii = 1 ∀i ∈ V
Y < 0. (2)

Once we have solved this relaxation, the vectors vi are obtained via Cholesky factorization. Then an
integral solution is found using the following randomized rounding:

• Choose a vector r uniformly distributed on the unit sphere Sn. This can be done by drawing
n values r1, r2, . . . , rn independantly from the standard normal distribution (and normalizing the
resulting vector r, but this step can be skipped).

• Set S = {i|vi · r ≥ 0}.
In words, we choose a random hyperplane through the origin, with normal r, and separate the vertices
depending on the “side” of the hyperplane to which their vector belongs. If W is the cut produced this
way, and E[W] its expectation, the authors showed:

E[W] ≥ αgw
1

2

∑
i<j

wij(1− vi · vj) = αgwZ
∗
R,MC ≥ αgwZ

∗
MC ,

where αgw = min0≤θ≤π
2
π

θ
1−cosθ

> .878. Hence the algorithm has performance guarantee of αgw − ε
for any desired ε for the MAX CUT problem and this proves that the upper bound obtained from the
semidefinite relaxation is at most 14% suboptimal.

To analyze the algorithm, we first use the linearity of expectation to write

E[W] =
∑
i<j

wijP [sign(vi · r) 6= sign(vj · r)],

where sign(x) = 1 if x ≥ 0 and −1 otherwise. The analysis is performed on a term by term basis, and
the result follows essentially from the following lemma:

4

Lemma 1. Given a vector drawn uniformly from the unit sphere Sn and two vectors vi and vj, we have

P [sgn(vi · r) 6= sgn(vj · r)] =
1

π
arccos(vi · vj). (3)

Proof. The lemma states that the probability the random hyperplane separates the two vectors is pro-
portional to the angle between the two vectors θ = arccos(vi · vj). We have P [sgn(vi · r) 6= sgn(vj · r)] =
2P [vi · r ≥ 0, vj · r < 0] by symmetry and the set {r : vi · r ≥ 0, vj · r < 0} has measure θ

2π
times the

measure of the full sphere.

Since the weights wij are non-negative, and we can show 1
π

arccos(y) ≥ αgw
1
2
(1−y) with αgw defined

above, we obtain E[W] ≥ αgw
1
2

∑
i<j wij(1− vi · vj) and the approximation result.

The authors also give a better bound when the maximum cut is large, and we will revisit this point
when discussing outward rotations and RPR2. They briefly discuss the case where edges are negative,
and we will explore this issue further in part 3.

2.2 Vector Projection [KMS98]

The results of Goemans and Williamson have immediately inspired other researchers for the design of new
approximation algorithms. Karger, Motwani and Sudan used semidefinite programming for the problem
of coloring k-colorable graphs. To round the solution, they used first random hyperplane partitions and
then proved that for this problem, it is possible to optimize the method to obtain a better approximation
ratio: this leads to the “vector projection” method, as a direct generalization of random hyperplace
partition (this method is also called simply random projection in RPR2, see below). Their algorithm
colors a k-colorable graph on n vertices with min{O(∆1−2/k log1/2 ∆logn), O(n1−3/(k+1) log1/2 n)} colors,
where ∆ is the maximum degree of any vertex.

A legal coloring of a graph G = (V,E) with k colors is a partition of its vertices into k independant
sets: we can view this as an assignment of colors to the vertices such that no two adjacent vertices receive
the same color. The minimum number of colors needed for such a coloring is called the chromatic number
of G. As for the MAX CUT problem, the relaxation is based on assigning (n-dimensional) vectors to the
vertices, instead of assigning colors directly. Again the vectors assigned to adjacent vertices should be
different, in the sense that they form a large angle; then it is easy to separate them using a technique
similar to the random hyperplane partition.

More precisely, given a real number k ≥ 1, a vector k-coloring of G is an assignment of unit vectors
vi ∈ Rn to each vertex i ∈ V such that for any two adjacent vertices i and j the inner product of their
vectors satisfies the inequality

vi · vj ≤ − 1

k − 1

Here is how to relate a vector k-coloring to the solution of the original problem. First, we can show
that for all positive integers k and n such that k ≤ n+ 1, there exist k unit vectors in Rn such that the
inner product of any distinct pair is −1/(k− 1). The proof of this fact is outside the scope of this report
and can be found in the paper. This implies that if G is k-colorable then G has a vector k-coloring, since
we can bijectively map the k colors to such k vectors. In particular, finding the minimum k such that
G has a vector k-coloring provides a lower bound on the chromatic number of G. The harder part is to
show that this lower bound is not too far from our objective, and for this a semidefinite formulation is
introduced.

Let Y be the Gram matrix of the vectors vi, i ∈ V . As for MAX CUT, this positive semidefinite
matrix has ones on its diagonal. We solve the semidefinite program

Z∗R,C = Min t

subject to: yij ≤ t ∀(i, j) ∈ E
yii = 1 ∀i ∈ V
Y < 0. (4)

and recover the vectors {vi}n
i=1 via (incomplete) Cholesky factorization. If the graph has a vector k-

coloring, we obtain a vector (k+ ε)-coloring from this procedure, in time polynomial in k, n and log(1/ε).
As usual, we omit the ε in the discussion.

Let us focus first on the case k = 3 for clarity. We will show that using the random hyperplane
technique we can transform a vector 3-coloring into a O(∆log3 2)-semicoloring as described below. A
k-semicoloring of G is an assignment of k colors to at least half its vertices such that no two adjacent

5

vertices are assigned the same color. This gives an algorithm for semicoloring, which in turn leads to a
coloring algorithm that uses up at most a logarithmic factor more colors than the semicoloring algorithm.
This can be shown by recursively semicoloring the subset of vertices with no assignment yet, using a new
set of colors at each step. In our case, this gives a O(∆log3 2 logn)-coloring of G.

So we want to separate the vertices by choosing hyperplanes randomly. In our vector 3-coloring two
vectors associated with an adjacent pair of vertices i and j have a dot product of at most −1/2, so the
angle between the two vectors is at least 2π/3. By picking a random hyperplane, lemma 1 tells us that
we have a probability at least 2/3 of separating adjacent vertices, i.e. of cutting a given edge. Picking h
hyperplanes independantly at random, the probability that an edge is not cut by one of these hyperplanes
if (1/3)h and so the expected fraction of the edges no cut is also (1/3)h. Note also that the h hyperplanes
can partition Rn in at most 2h distinct regions. We give the same color to all vertices whose vectors lie
in the same region. In particular, two adjacent vertices will receive the same color if the edge joining
them is not cut. With these elements, we have

Theorem 2. If a graph has a vector 3-coloring, then it has an O(∆log3 2)-semicoloring that can be
constructed from the vector 3-coloring in polynomial time with high probability.

Proof. Take h = 2 + dlog3 ∆e. Then (1/3)h ≤ 1/(9∆) and 2h = O(∆log3 2) (this is the number of color
used). The expected number of edges not cut is at most m/(9∆) ≤ n/18 < n/8 since m is at most
n∆/2. So by Markov’s inequality, the probability that n/4 edges are not cut is at most 1/2. Deleting one
endpoint of each uncut edge, we obtain a set of 3n/4 vertices colored such that no two adjacent vertices
have the same color (their edge is cut), i.e. a semicoloring. Repeating the process t times, we obtain a
O(∆log3 2)-semicoloring with probability at least 1− 1/2t.

The result of theorem 2 can be strengthened via a refinement of the hyperplane partition. The new
algorithm uses the vector k-coloring to extract from G a large independent set of vertices, namely of
size Ω(n/(∆1−2/k

√
ln ∆)). We assign one color to this set and recurse on the rest of the vertices, so we

use O(∆1−2/k
√

ln∆) colors to color half of the vertices. To find this independant set, we actually find
an induced subgraph with a large number n′ of vertices and a number m′ � n′ of edges. Given such a
graph, we can delete one endpoint of each edge to leave an independent set of n′ −m′ vertices, i.e. of
size roughly n′.

We use a randomized procedure to select an induced subgraph with n′ vertices and m′ edges such
that E[n′ −m′] = Ω(n/(∆1−2/k

√
ln∆)). Repeating the procedure several times, we can get a subgraph

such that n′ −m′ = Ω(n/(∆1−2/k
√

ln ∆)) with high probability.
The method to select the induced subgraph is a generalization of the random hyperplane technique.

We choose a random n-dimensional vector r according to the same spherically symmetric n-dimensional
normal distribution, and select the vertices i for which vi · r ≥ c, for a threshold c to be optimized. That
is, we look at the projection of the vectors {vi}n

i=1 on r, and as before, we hope that two adjacent vertices
will be separated because their vectors are far apart. Vector projection rounding is thus very similar to
the random hyperplane partition, and indeed if we fix c = 0 we recover the hyperplane partition method.
Optimizing over c however allows us to improve on the previous result and to get our sparse induced
subgraph. We have:

Lemma 3. Let a =
√

2(k−1)
k−2

. Then for any c,

E[n′ −m′] ≥ n

(
Φ(c)− ∆Φ(ac)

2

)
.

Proof. We have E[n′] = nP (vi · r ≥ c) = nΦ(c). Also looking at the probability that two adjacent
vertices are selected, we have

P (v1 · r ≥ c, v2 · r ≥ c) ≤ P ((v1 + v2) · r ≥ 2c) = Φ

(
2c

‖v1 + v2‖

)
Now

‖v1 + v2‖ =
√
v2
1 + v2

2 + 2v1 · v2

≤
√

2− 2/(k − 1) = 2/a

It follows that E[m′] ≤ mΦ(ac) ≤ (n∆/2)Φ(ac), and combining the two expressions we obtain the
result.

6

With some calculus we can show that setting c =
√

2 k−2
k

ln ∆ gives nΦ(c)/2 as a lower bound of

the right hand side of the expression in lemma 3 (if ∆ is large enough; but otherwise a greedy coloring
algorithm works). Some more calculus show that nΦ(c)/2 = Ω(n/(∆1−2/k

√
ln ∆)) as needed. Therefore

with the recursion argument given at the beginning of this discussion, we have a stronger version of
theorem 2.

Theorem 4. For every integer function k = k(n), a vector k-colorable graph with maximum degree ∆
can be semi-colored with at most O(∆1−2/k

√
ln∆) colors in probabilistic polynomial time.

As with the simple random hyperplane algorithm, an algorithm for approximate coloring follows
immediately from this result. The algorithm presented in the paper combines the previous arguments
with a technique due to Wigderson [Wig83] to obtain the approximation ratio announced at the beginning
of this paragraph.

It is natural to ask then what characteristic of the problem makes the choice of c different from 0
better. With respect to MAX CUT, here we have more information on the angle formed by the vectors
obtained from the semidefinite relaxation. Changing the threshold c is a way to use this information. As
we will see in the following, this idea of extracting more information from the angle between the vectors
is recurrent in the successive improvements of hyperplane rounding.

2.3 Outward Rotations [Zwi99]

As it was briefly mentioned in paragraph 2.1, Goemans and Willimamson proved that their algorithm
behaves even better on graphs with large maximum cuts, more precisely on graphs with cuts that contain
85% of the total weight of the graph. If not, the algorithm is only guaranteed to produce a cut whose
size is αgw times the size of the maximum cut in the graph. Zwick [Zwi99] generalized their algorithm,
with a tool used previously by Nesterov [Nes98] called outward rotations. The method tries to improve
on the original algorithm by increasing the small angles.

Let us first review the more general version of the analysis of Goemans and Williamson for MAX
CUT. Let Wtot =

∑
i<j wij be the total weight of the edges of the graph, and define A = Z∗R,MC/Wtot

and B = Z∗MC/Wtot (recall that A and B are at least 1/2). Clearly E[W] ≤ Z∗MC ≤ Z∗R,MC ≤ Wtot.
The result stated in paragraph 2.1 was E[W] ≥ αgwZ

∗
R,MC ≥ αgwZ

∗
MC .

Let h(t) = arccos(1 − 2t)/π and let t0 = argmint∈(0,1]h(t)/t ≈ 0.84459. We have in fact h(t0)/t0 =
αgw. Let

α(A) =

{
h(A)/A if A ≥ t0.

h(t0)/t0 = αgw if A ≤ t0.

Theorem 5. The Goemans-Williamson algorithm produces a cut with expected weight

E[W] ≥ α(A)Z∗R,MC ≥ α(A)Z∗MC ≥ α(B)Z∗MC .

Proof. The only non trivial inequality is the first one, and only the case A ≥ t0 (large maximum cut)

has yet to be proved. Letting λe = wij/Wtot and xe =
1−vi·vj

2
for e = i, j, we can write A =

∑
e λexe.

From lemma 1, the expected weight of the cut produced by the GW algorithm is:

E[W] = Wtot

∑
e

λe
arccos(1− 2xe)

π
= Wtot

∑
e

λeh(xe)

Define

h̃(t) =

{
αgwt, ∀t ∈ [0, t0].

h(t), ∀t ∈ [t0, 1].

We can readily show that h̃ is convex and that h̃(t) ≤ h(t) ∀t ∈ [0, 1]. Since
∑

e λe = 1 we have by

convexity of h̃ and for A ≥ t0∑
e

λeh(xe) ≥
∑

e

λeh̃(xe) ≥ h̃(
∑

e

λexe) = h̃(A) = h(A).

This shows

E[W] ≥Wtoth(A) = h(A)Z∗R,MC/A.

7

As A varies from t0 to 1, h(A)/A varies from αgw to 1 so the performance guarantee of the GW
algorithm improves. The result is strictly stronger than the previous bound for A > t0. This means that
as the relative size of the maximum cut in the graph gets larger, it is easier to approximate it. At the
limit when A = B = 1, the graph is bipartite and a maximum cut that cuts all the edges can be found
in linear time. Alon, Sudakov and Zwick [ASZ01] showed that this analysis of the algorithm is tight, i.e.
they constructed graphs for which the algorithm returns cuts of size E[W] = α(A)Z∗R,MC = α(B)Z∗MC ,
for 1/2 ≤ A ≤ 1.

Note that for 1/2 ≤ A ≤ t0, the performance of the GW algorithm stays unchanged. On the other
hand, the expected weight of a random cut is Wtot/2 = Z∗R,MC/(2A), and so achieves a performance ratio
of 1/(2A), which is close to 1 when A is close to 1/2 and therefore better than the GW algorithm. Zwick’s
algorithm gives an approximation ratio which is always at least as good as the better ratio of these two
algorithms. As mentioned before, the algorithm performs outward rotation of the vectors obtained from
the semidefinite relaxation before rounding them, as described in the following.

We assumed that the solution {vi}n
i=1 of the program lies in Rn. We can embed these vectors in R2n

by adding n 0 coordinates to each of them. Then we choose n vectors u1, . . . , un orthonormal in R2n

such that these vectors are also orthogonal to the vectors v1, . . . , vn. For instance, take ui with 1 for
coordinate (n+ i) and 0 for the other coordinates. Let 0 ≤ γ ≤ (π/2) be an angle. We can rotate each
vector vi by an angle γ toward ui in the plane spanned by ui and vi, to obtain the vectors v′1, . . . , v

′
n.

These vectors are then rounded using a random hyperplane.
The idea is as follows. Using a random hyperplane to round the vectors {ui}n

i=1 produces a uniform
random assignment, because ui · uj = 0 in lemma 1. So by letting γ vary from 0 to π/2, we get various
combinations of the GW random hyperplane rounding (obtained exactly for γ = 0) and the uniform
random assignment (obtained exactly for γ = π/2). Hence the performance of the algorithm is expected
to be a combination of the performance of the two algorithm, and at least as good as any of the two if
we search for the best γ. We have v′i = (cos γ)vi + (sin γ)ui and therefore v′i · v′j = (cos2γ)(vi · vj) for
i 6= j. So by letting θij = arccos(vi · vj) and θ′ij = arccos(v′i · v′j) we immediately get

cos θ′ij = cos2 γ cos θij , for i 6= j. (5)

In terms of the Y matrix, if we also define Y ′ = [y′ij] = [v′i · v′j], we have

Y ′ = (cos2 γ)Y + (sin2 γ)I.

From (5) and if 0 < cos2 γ < 1, we get that if θij > π/2, then θij > θ′ij > π/2, and if θij < π/2,
then θij < θ′ij < π/2. Therefore outward rotations decrease angles larger than π/2 and increase angles
smaller than π/2. Since the performance of the GW algorithm depends on how large the angles are, we
expect an improvement on this algorithm only in the case where worst performance guarantees are for
configurations in which some of the angles are below π/2. Zwick show that this happens for A ≤ t0. More
precisely, for any value of A, his algorithm computes an angle γ(A), perform outward rotations of all the
vectors {vi}n

i=1 by this angle and then rounds the solution using a random hyperplane. If A < t0 then
γ(A) > 0 and we can improve strictly on the GW algorithm. If A ≥ t0 then γ(A) = 0, i.e. we recover
the GW algorithm. Zwick provides a formula for determining γ(A), however the formula depends on the
size of the maximum cut. So in practice we would have to search for a good value of γ numerically. Note
that a more general scheme would be to rotate different vectors by different angles.

2.4 Random Projection + Randomized Rounding (RPR2) [FL01]

Outward rotation is an example of a possible generalization of the hyperplane rounding technique. Further
generalization was introduced by Feige and Langberg [FL01] with the RPR2 (Random Projection followed
by Randomized Rounding). This technique is again applied to the light MAX CUT problem. However,
in problems where the semidefinite program contains more information, such as in MAX DICUT or MAX
2-SAT, generalizing the rounding procedure also leads to a significant improvement of the approximation
ratio of the original GW algorithm in the general case, and not only for special cases such as when the
maximum cut is relatively small. We will explore this issue further in paragraph 2.5.

RPR2 contains the random hyperplane rounding technique and its variant involving outward rotation
as special cases. The goal, which started to appear already with outward rotations, is to perform a
systematic search for the best approximation, possibly within a restricted family of rounding procedures.
The random hyperplane rounding is the basic idea. Vector projection was a “baby version” of searching for
an improvement over random hyperplane. With techniques such that RPR2 or as already in [FG95], the
search for improvement relies heavily on numerical computations. Note also that these improvements in

8

general are concerned with problems close to MAX CUT, for which the semidefinite program is relatively
simple and the analysis is not too complicated. Extending these ideas to a problem like approximate
graph coloring would probably imply overcoming lots of technical difficulties.

In the spirit of the vector projection formulation, we can describe the more general randomized
hyperplane rounding as follows:

• Project the vector solution on a random line through the origin, obtaining a fractional solution
x1, . . . , xn.

• Round the fractional solution x1, . . . , xn to a 0/1 solution using threshold rounding (i.e. xi is
rounded to 1 if xi is greater or equal to the specified threshold, to 0 otherwise). The threshold
chosen by Goemans and Williamson is 0. The threshold chosen by Karger et al. is the parameter
c.

The RPR2 technique is simply based on the remark that the threshold rounding in the second step can
be replaced by a randomized rounding, as in the usual approach for linear programming relaxation. More
precisely, the RPR2 family is a family of rounding procedures parametrized by a function f : R → [0, 1].
An RPR2 procedure using f has two steps defined as:

Step 1 (Projection): Project the vectors v1, . . . , vn onto a random line, as in the vector projection
method. That is, pick a random vector r drawn from the n-dimensional standard normal distribution
and let xi = vi · r be the directed distance of the projected vector from the origin.

Step 2 (Randomized rounding): Define the 0/1 solution a1, . . . , an: for each i, set ai to be 1 inde-
pendently with probability f(xi) = f(vi · r).

Clearly, the standard random hyperplane rounding is a member of the RPR2 family, with f being the
step function which is 1 on R+ and 0 otherwise. Maybe more surprisingly, the version including outward
rotation is also a member of the family RPR2.

Theorem 6. For any γ ∈ [0, π/2], there is a function fγ such that using RPR2 with fγ is equivalent to
γ-outward rotation followed by random hyperplane rouding.

Proof. We use the notation introduced in paragraph 2.3, and define the coordinate system so that the
vector ui has a 1 for coordinate (n+i) and 0 for the other coordinates. Let r = (r1, . . . , rn, . . . , r2n) be the
random vector chosen after the outward rotation, from the 2n-dimensional standard normal distribution.
Since the components of r are drawn independantly from the 1-dimensional standard normal distribution,
we can write

v′i · r = (cos γ) vi · (r1, . . . , rn) + (sin γ) rn+i = (cos γ) xi + (sin γ) rn+i

(where we consider vi in the original n-dimensional space). Then in the following random hyperplane
rounding step, we set yi to 1 iff (v′i · r) ≥ 0, i.e. iff rn+i ≥ −xi cot γ (for γ 6= 0; recall that the case γ = 0
corresponds just to the GW algorithm).

Since rn+i is a one-dimensional standard normal random variable, and rn+i is independent of rn+j

for i 6= j, this gives an equivalent way to describe the algorithm: first determine xi via projection of vi

on a random line in Rn, and then set each ai independantly to 1 with probability fγ(xi) = Φ(−xi cot γ).
Therefore this is a special case of RPR2.

So RPR2 offers a generalization of outward rotation. By considering a larger set of functions, we
hope to be able to improve on the results obtained via the previous method. On the other hand, the
interesting characteristic of the functions corresponding to outward rotations is that the analysis is quite
easy to perform, and by considering more general functions this might not always be the case. Let us
describe the general analysis of RPR2 for MAX CUT. As usual, it reduces to computing the probability
that an edge is cut, i.e. P (ai 6= aj), and use the linearity of expectation to obtain the expected size of the
cut. Here is a trick to simplify the calculation, which was actually already used in the proof of lemma 1:

Remark 7. Let θij = arccos(vi · vj) be the angle between vi and vj (recall that these are unit vec-
tors). Since the distribution of r is spherically symmetric, we can assume vi = (1, 0, . . . , 0) and vj =
(cos θ, sin θ, 0, . . . , 0) in the computation of P (ai 6= aj), in particular vi · r = r1 and vj · r = r1 cos θ +
r2 cos θ = z(θ, r1, r2).

From this, the following lemma follows directly for MAX CUT, and just says that (yi 6= yj) happens
exactly when ai(1− aj) = 1 or aj(1− ai) = 1.

9

Lemma 8. Let θ ∈ [0, π]. Given two vectors vi and vj that form an angle θ, the probability that the
corresponding values ai and aj differ after using RPR2 with a function f is:

Pf (θ) =

∫ ∞

−∞

∫ ∞

−∞
[f(r1)(1− f(z(θ, r1, r2))) + f(z(θ, r1, r2))(1− f(r1))]φ(r1)φ(r2)dr1dr2 (6)

Now note that the expected weight of the cut produced by RPR2 is E[W] =
∑

{i,j}∈E Pf (θij).
Using this general analysis scheme, Feige and Langberg showed that outward rotation is not optimal
in the family RPR2 for the light MAX CUT case, that is, they could improve the performance curve
of outward rotation when A < t0. Their analysis involves the numerical computation of (6) as well as
deriving some necessary conditions that can ensure that f attains a certain level of optimality. They
used piecewise linear functions, for which they claim no optimality result but state that numerical results
give performance close to optimal.

2.5 Semidefinite Relaxations with More Information [FG95, LLZ02]

In some cases, such as for MAX 2-SAT and MAX DICUT, the semidefinite relaxation includes a vector
v0 that plays a special role. Then it is possible to rotate the vectors v1, . . . , vn toward or away from
v0 before rounding them using a random hyperplane. Feige and Goemans [FG95] showed that this
idea could improve the approximation ratio compared to the standard hyperplane rounding. In this
article, they also suggested several ideas for modifying the random hyperplane rounding, which led to
the developments presented in the two previous paragraph. Feige and Goemans suggested the following
ideas (among several others) for problems like MAX 2SAT:

• first, obtain a stronger semidefinite relaxation, adding valid inequalities to the formulation of
[GW96].

• in the rounding step, the structure of the problems suggest to first rotate the vectors obtained from
the semidefinite relaxation.

• instead of using a uniform distribution for r, use the structure of the problem to chose r according
to a skewed distribution.

Following these suggestions, [LLZ02] obtained a 0.94 approximation ratio for MAX 2SAT and 0.874 for
MAX DICUT, compared to 0.878 and 0.796 respectively in the original work of Goemans and Willi-
manson. Note that MAX CUT can be seen as a subproblem of MAX DICUT, and the ratio for MAX
DICUT is quite close to the best ratio of 0.878 obtained for MAX CUT, which is believed to be tight.
Note also that choosing r from a non-uniform distribution is related to the idea of the vector projection
method: indeed, the distribution chosen is skewed in a certain direction, which looks similar to rounding
the vectors depending on the size of their projection on r. However, as we have already noted, by using a
more general formulation, a systematic search for the best solution becomes possible. This is essentially
what the paper of Lewin, Livnat and Zwick does, in the spirit of the RPR2 approach.

In the following I illustrate the ideas mentioned above for the MAX 2SAT problem, following [LLZ02].
Recall that an instance of MAX 2SAT in the Boolean variables x1, . . . , xn is composed of a collection
of clauses C1, . . . , Cm with non-negative weights w1, . . . , wm assigned to them. Each clause Ci is of the
form zi or zi ∨ zj , where each zj is either a variable xj or its negation xj (zj is a literal). The goal is to
assign the variables x1, . . . , xn Boolean values 0 or 1 so that the total weight of the satisfied clauses is
maximized. We let xn+i = xi, for 1 ≤ i ≤ n, and also x0 = 0. Each clause is then of the form xi ∨ xj

where 0 ≤ i, j ≤ 2n, and we associate the weight wij to the clause xi∨xj . As usual, we associate a vector
vi to the variable xi, and the scalar product becomes a dot product in the relaxation. Since x0 = 0,
the vector v0 corresponding to the constant 0 (false). The semidefinite relaxation used by Feige and
Goemans was:

Z∗R,M2SAT = Max
1

4

∑
i,j

wij(3− v0 · vi − v0 · vj − vi · vj)

subject to: v0 · vi + v0 · vj + vi · vj ≥ −1, 1 ≤ i, j ≤ 2n

vi · vn+i = −1, 1 ≤ i, j ≤ n

vi ∈ Rn+1, vi · vi = 1, 0 ≤ i ≤ 2n (7)

In the algorithm of Goemans and Williamson, xi is set to false if vi and v0 lie on the same side of the
random hyperplane. The constraint vi · vn+i = −1 is to ensure consistency. Also, since the formulation
depends only on the inner product between the vectors, we can assum v0 = (1, 0, . . . , 0). Note that it

10

is sufficient to consider a vector space of dimension (n + 1) instead of (2n + 1) to be able to formulate
(7) as a semidefinite program since vi and vn+i are linearly dependant (we can even use a vector space
of dimension

√
2n+ 1 by using a result of Barvinok [Bar95] and Pataki [Pat94]). In the MAX DICUT

problem, a similar formulation is possible, with the vector v0 representing the S side of the cut, i.e. the
set corresponding to the tails of the arcs.

[LLZ02] give a formal generalization of the ideas suggested in [FG95] and search (numerically) for the
best choice within a family of rounding procedures. They define several families of procedures. The most
general is essentially RPR2, that they call GEN+. They used combinations of the restricted families
ROT (used by Feige and Goemans) and SKEW, as described below:

GEN+: let F : R2 × [−1, 1] → [0, 1] be an arbitrary function. Let r = (r0, . . . , rn) be a (n + 1)-
dimensional standard normal random variable. For 1 ≤ i ≤ n, set xi to 1 independently with
probability F (v0 · r, vi · r, v0 · vi).

GEN : let F : R2×[−1, 1] → {0, 1} be an arbitrary function. Let r = (r0, . . . , rn) be a (n+1)-dimensional
standard normal random variable. For 1 ≤ i ≤ n, let xi = F (v0 · r, vi · r, v0 · vi).

ROT : let f : [0, π] → [0, π] be an arbitrary rotation function. Let θi = arccos(v0 · vi). Rotate vi into a
vector v′i that forms an angle θ′i = f(θi) with v0. Round the vectors v0, v

′
1, . . . , v

′
n using the random

hyperplane technique, i.e. let xi = 1 iff (v0 · r)(v′i · r) ≤ 0.

SKEW: Let r = (r0, . . . , rn) be a skewed normal vector, i.e. r1, . . . , rn are still independent standard
normal random variables, but r0 is chosen according to a different distribution. Again, let xi = 1
iff (v0 · r)(v′i · r) ≤ 0.

It can be shown that ROT and SKEW are indeed subfamilies of GEN . I will not present the details
of the paper here, since the challenge is in being able to analyze these general families of rounding
procedures, but no really new idea is introduced. In particular, as usual the analysis is local, i.e. for
MAX 2SAT we only have to compute the probability that a certain clause is satisfied. Let prob(vi, vj)
be the probability that xi and xj both receive the value 1 when the vectors vi and vj are rounded
using the chosen rounding procedure. Then the probability that the 2-SAT clause xi ∨ xj is satisfied
is P (vi, vj) = 1 − prob(−vi,−vj). The performance ratio of the MAX 2-SAT algorithm is then at least
(this was shown already for the GW algorithm)

α = min
(vi,vj)∈Ω

P (vi, vj)
1
4
(3− v0 · vi − v0 · vj − vi · vj)

,

where Ω is the set of pairs of vectors satisfying the constraints of the semidefinite program. The evaluation
of P (vi, vj) boils down to the computation of an integral similar to (6), and the computation of the
minimums for various families of rounding procedures is performed numerically.

11

3 Algorithms Based on Results from Functional Analysis
[AN04]

In the previous part, we have explained how the random hyperplane rounding technique formed the basis
for a number of more general rounding procedures for semidefinite relaxations. A common feature of the
numerous variants of the MAX CUT algorithm is that they look for a lower bound on the probability
that each individual edge is cut and obtain a global lower bound via linearity of expectation. Clearly
this is possible only when the edge weights are non-negative. In a recent paper, Alon and Naor [AN04]
introduced new techniques and analysis methods, based on proofs of Grothendieck’s inequality, that can
handle arbitrary edge weights for graph problems.

3.1 Approximating the Cut-Norm of a Matrix

Alon and Naor considered the problem of approximating the cut-norm ‖A‖C of a real matrix A =
[aij]i∈R,j∈S , i.e. the maximum, over all I ⊂ R, J ⊂ S of the quantity |

∑
i∈I,j∈J aij |. Let us call CUT

NORM the problem of computing the cut-norm of a given real matrix. Alon and Naor show that this
problem is MAX SNP hard, hence look for an efficient approximation algorithm. They describe three
different algorithms, which output two subsets I ⊂ R, J ⊂ S such that |

∑
i∈I,j∈J aij | ≥ ρ‖A‖C . The

best ratio ρ obtained is 0.56 with a randomized algorithm. In this part we discuss their semidefinite
relaxation of the problem.

Assume that A is an n by m matrix. Define another norm that we will relate to the cut-norm, whose
value is given by the quadratic program

‖A‖∞→1 =Max

n∑
i=1

m∑
j=1

aijxiyj

subject to xi, yj ∈ {−1, 1} (8)

The obvious semidefinite relaxation is

Z∗R,CN =Max

n∑
i=1

m∑
j=1

aijui · vj

subject to ‖ui‖ = ‖vj‖ = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m (9)

In (9), we allow the vectors to lie in an arbitrary Hilbert space (i.e. we do not restrict the dimension),
as this will be convenient in the following. But clearly, to solve the semidefinite program we can assume
without loss of generality that they lie in Rn+m. The fact that some entries aij may be positive and
some entries may be negative makes the techniques encountered so far fail: even if we can approximate
well enough each term aijui · vj by its integral rounding aijxiyj , the approximation of the sum might
be bad due to cancellations. Before we look at this problem further, let us first see why this quadratic
program is interesting at all for our problem of estimating the cut norm.

Lemma 9. For any real matrix A = [aij],

‖A‖C ≤ ‖A‖∞→1 ≤ 4‖A‖C (10)

Moreover, if the sum of each row and the sum of each column of A is zero, then ‖A‖∞→1 = 4‖A‖C .

Proof. Consider a particular assignment of values xi, yj ∈ {−1, 1},∑
ij

aijxiyj =
∑

i:xi=1,j:xj=1

aij −
∑

i:xi=1,j:xj=−11

aij −
∑

i:xi=−1,j:xj=1

aij +
∑

i:xi=−1,j:xj=−1

aij

Since each term is bounded in absolute value by ‖A‖C , the triangle inequality implies

‖A‖∞→1 ≤ 4‖A‖C . (11)

Now suppose that ‖A‖C =
∑

i∈I,j∈J aij (the case when it is −
∑

i∈I,j∈J is handled similarly). Define
xi = 1 for i ∈ I and xi = −1 otherwise, yj = 1 if j ∈ J and yj = −1 otherwise. Then

‖A‖C =
∑
i,j

aij
1 + xi

2

1 + yj

2
=

1

4

(∑
i,j

aij +
∑
i,j

aijxi +
∑
i,j

aijyj +
∑
i,j

aijxiyj

)

12

Each sum on the right hand side is bounded by ‖A‖∞→1 so ‖A‖C ≤ ‖A‖∞→1 follows. If the sum of each
row and the sum of each column is zero, then the right hand side is exactly 1

4

∑
i,j aijxiyj , which implies

4‖A‖C ≤ ‖A‖∞→1 and therefore we have equality from (11).

So we have shown that the cut norm is related to the quadratic program (8). Moreover, using (10), it is
possible to show that a ρ-approximation algorithm for approximating ‖A‖∞→1 provides an approximation
algorithm for approximating the cut-norm as well, we the same approximation ratio guaranteed. In the
following, we present two randomized algorithms for approximating ‖A‖∞→1.

3.2 Averaging with a Gaussian Measure

Although we have seen that a term by term analysis for the rounding of the solution of (9) would not
work, there is an inequality by Grothendieck [Gro53] which, recast in the language of convex optimization,
asserts that the semidefinite program (9) and that of the integer program (8) can differ only by a constant
factor. This constant is the Grothendieck’s constant KG, which is unknown but for which we know

π/2 ≤ KG ≤ π

2 ln(1 +
√

2)

So the integrality gap is at most KG (i.e. Z∗R,CN ≤ KG‖A‖∞→1) and therefore it is worth trying to
find an integral solution whose value is comparable to the optimal value of the semidefinite relaxation.
The first algorithm we describe is based on a proof of Grothendieck’s inequality by Rietz [Rie74]. Quite
remarkably, the final algorithm boils down to using the technique that we would have naturally used
after studying that of Goemans and Williamson, even if their analysis does not carry through. Namely,
we will choose a (n+m)-dimensional Gaussian vector r, i.e. with standard, independent, normal random
variables r1, . . . , rn+m as components, and take

xi = sign(ui · r), yj = sign(vj · r). (12)

Also, in its proof Rietz improves on that method with ideas that resemble some of the ideas seen in part
2 ! We will need the following lemma, whose proof requires calculations that we have already seen. To
simplify the notation let p = n+m.

Lemma 10. Let r = (r1, . . . , rp) be a p-dimensional standard normal random vector, and let b, c be unit
vectors ∈ Rp. We have the following identity:

π

2
E[sign(b · r)sign(c · r)] = b · c+ E

{[
b · r −

√
π

2
sign(b · r)

] [
c · r −

√
π

2
sign(c · r)

]}
(13)

Proof. The proof is based on expanding the right hand side and verifying that the result holds. We will
need

E[(b · r)(c · r)] = b · c (14)

This follows from E[rirj] = δij . Indeed if b = (b1, . . . , bn) and c = (c1, . . . , cn), then

E[(b · r)(c · r)] = E

[
p∑

i=1

biri

p∑
i=1

ciri

]
=
∑
i,j

bicjE[rirj] =

p∑
i=1

bici = b · c

To compute E[(b · r)sign(c · r)] we use the rotation invariance idea stated in remark 7 to write c =
(1, 0 . . . , 0) and b = (b1, b2, 0, . . . , 0). Then

E[(b · r)sign(c · r)] = E[(b1r1 + b2r2)sign(r1)]

= E[b1r1sign(r1)] + E[b2r2]E[sign(r1)] (by independence)

= E[b1r1sign(r1)] = 2b1

∫ ∞

0

1√
2π
xe−x2/2dx =

√
π

2
b1

=

√
π

2
(b · c) (15)

With (14) and (15), the result follows readily.

Lemma 10 provides a nice way to analyse globally the quality of the rounding (12).

13

Theorem 11. Solving the semidefinite program (9) followed by the rounding scheme (12) provides an
approximation ratio of (4

π
− 1) for ‖A‖∞→1.

Proof. Let ui, vj ∈ Rp be the vectors solution of (9). Summing (13) over these vectors

π

2
E

[∑
i,j

sign(b · r)sign(c · r)

]

= Z∗R,CN +
∑
i,j

aijE

{[
ui · r −

√
π

2
sign(ui · r)

] [
vj · r −

√
π

2
sign(vj · r)

]}
(16)

Now for any unit vector b, let z(b, r) = b · r −
√

π
2
sign(b · r): these quantities are random variables.

For any two (real valued) random variables X and Y , let us write < X,Y >= E[XY]: this defines an
inner product on the space of random variables. From (13) again, by taking b = c = ui, we obtain
< z(ui, r), z(ui, r) >=< z(vj , r), z(vj , r) >= π

2
− 1. Now since we have defined an inner product in a

Hilbert space (the space of random variables, which is infinite dimensional) and the relaxation (9) was
defined in this full generality, we have for any two random variables X,Y with norm

√
π/2− 1:∑

i,j

aij < X,Y) > ≤
(π

2
− 1
)
Z∗R,CN

In particular for −z(ui, r), z(vj , r)∑
i,j

aij < −z(ui, r), z(vj , r) > ≤
(π

2
− 1
)
Z∗R,CN

which provides the following bound∑
i,j

aijE[z(ui, r)z(vj , r)] ≥
(
1− π

2

)
Z∗R,CN

From this inequality and (16), we obtain the bound

π

2
E

[∑
i,j

sign(b · r)sign(c · r)

]
≥
(
2− π

2

)
Z∗R,CN

which gives the result stated in the theorem.

In this proof, it is interesting to note that the definition of the relaxation on a general Hilbert space
looks quite powerful and provides us with an elegant argument. At the same time, it does not restrict
our ability to solve the program in practice since the solution will only involve p vectors, which therefore
lie in a space of dimension at most p.

3.3 Constructing New Vectors

In this section, we show how to improve the approximation ratio from (4
π
−1) ≈ 0.27 to 2 ln(1+

√
2)

π
≈ 0.56.

The algorithm is based on another proof of Grothendieck’s inequality by Krivine [Kri77]. We first need
a technical lemma in the spirit of lemma 1.

Lemma 12. For every two unit vectors u, v in a Hilbert space, if r is chosen randomly and uniformly
on the unit sphere of the space, then

E[sign(u · r) sign(v · r)] =
2

π
arcsin(u · v). (17)

Proof. As usual by rotation invariance (see remark 7) we can look at the situation in the plane spanned
by u and v. We refer to the notation on Fig. 1. We have

E[sign(u · r) sign(v · r)] = P (sign(u · r) = sign(v · r))− P (sign(u · r) 6= sign(v · r))
= 1− 2P (sign(u · r) 6= sign(v · r))

The event {sign(u · r) 6= sign(v · r)}, as we have already seen in lemma 1, happens exactly when the
projection of r falls between the dashed line and the vertical axis, which has a probability θ/π = 1/2−ψ/π.
But ψ = arcsin(u · v), so we have (17).

14

v
ψ

θ

u

Figure 1: Figure for the proof of identity (17)

Using this identity, the main part of the proof is contained in the following lemma (I skipped some
details, which can be found in [Jam87]):

Lemma 13. For any sets of unit vectors {ui}n
i=1 and {vj}m

j=1 in a Hilbert space H, and for c =

sinh−1(1) = ln(1 +
√

2), there exist sets of unit vectors {u′i}n
i=1 and {v′j}m

j=1 in a Hilbert space H ′,
such that if r is chosen randomly and uniformly in the unit sphere of H ′ then

E[sign(u′i · r) sign(v′j · r)] =
2

π
c (ui · vj) ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Proof. From identity (17), all that we have to prove is that we can find vectors u′i, v
′
j in a Hilbert space

such that
u′i · v′j = sin(c ui · vj) (18)

Note that we use the same notation for inner products in different Hilbert spaces, as well as for
the norm of a vector which will be written ‖.‖ without specifying the underlying vector space. For k
integer, let lk2 denote Rk with the euclidian norm, and l2 denote the space of all infinite square summable
sequences. We will construct the vectors u′i, v

′
j ∈ l2 and describe the mappings T : ln2 → l2 and S : lm2 → l2

such that T (ui) = u′i and S(vj) = v′j .
Writing the Taylor expansion of sin:

sin(c u · v) =

∞∑
k=0

(−1)k+1ck (u · v)2k+1

where ck = c2k+1/(2k + 1)!. Assume n = m (we can always consider the vectors to be in the highest
dimensional space). We can show that for every positive integer k, there is a mapping wk : ln2 → lN2
(where N = 2nk) such that for all u, v

(u · v)k = wk(u) · wk(v)

Therefore we can write

sin(c u · v) =

∞∑
k=1

(−1)k−1ck (w2k+1(u) · w2k+1(v))

Define the mappings T, S by

T (u) =
∑

k

(−1)k√ck[w2k+1(u)]Ik and S(u) =
∑

k

√
ck, [w2k+1(u)]Ik (19)

where Ik denotes the sequence in l2 with a 1 as its kth coordinate and 0 otherwise. For these operators
we have

T (u) · S(v) = sin(c u · v)
Also, (19) implies ‖T (u)‖2 = sinh(c‖u‖2) and ‖S(v)‖2 = sinh(c‖v‖2) (by reversing the argument above
and recognizing the Taylor’s expansion of sinh). So with our choice of c = sinh−1(1), if u and v are unit
vectors, so are u′ = T (u) and v′ = T (v).

15

We can now provide the description of the algorithm. First, we solve the semidefinite program (9),
which returns unit vectors {ui}n

i=1 and {vj}m
j=1. Now we need to find the vectors u′i and v′j . But lemma

13 asserts that the following semidefinite program has a feasible solution (the decision parameters are
the vectors u′i and v′j):

maximize 0

subject to u′i · v′j = sin(c ui · vj), 1 ≤ i ≤ n, 1 ≤ j ≤ m

‖u′i‖ = ‖v′j‖ = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m (20)

This program involves p = n+m vectors so can be formulated and solved as a semidefinite program in
Rp (even if the lemma gave a description in an infinite dimensional space). Then pick r at random from
the p-dimensional standard normal distribution, and let

xi = sign(u′i · r) and yj = sign(v′j · r)

From the lemma and by linearity of expectation we have

E[
∑
i,j

aijxiyj] =
2 ln(1 +

√
2)

π

∑
i,j

aijui · vj ≥
2 ln(1 +

√
2)

π
‖A‖∞→1.

We restate this as a theorem

Theorem 14. There is a randomized ρ-approximation algorithm for computing ‖A‖∞→1, where ρ =
2 ln(1+

√
2)

π
> 0.56.

16

Conclusion

Obviously this report does not pretend to offer a complete view of the use of semidefinite programming
relaxations for combinatorial optimization problems. One important missing element is to discuss in the
various cases encountered how far we are from the best solution achievable. For example, H̊astad [H̊as97]
has shown that it is NP-hard to approximate MAX CUT within 16/17+ ε ≈ 0.94 for any ε > 0. The GW
rounding technique is tight however, i.e. there are graphs where their algorithm performs exactly with
the approximation ratio αgw. So one could think that there is still room for improvement using a new
technique. However, Khot et al. [KKMO04] give an analysis which suggests that the ratio achieved by
the Goemans-Williamson algorithm could be in fact optimal, assuming the “Unique Games conjecture”
(it assumes another conjecture which has been proven in [MOO05]). This is important to understand
the generality of the semidefinite programming formulation.

As we have seen, the random hyperplane rounding technique was the source of a number of gener-
alizations, which seem to have now exhausted the power of the basic method for simple combinatorial
problems. Translating these methods and analysis techniques to more complex problems appears to be
a challenge. We have also shown that the ideas introduced by Alon and Naor lead to a more powerful
analysis of the rounding technique, and at the same time draws interesting connections with important
topics in functional analysis. This convergence looks promising, as it has already inspired a number of
papers solving quite general integer quadratic programs (see [CW04] and the references therein).

References

[Ali95] F. Alizadeh. Interior point methods in semidefinite programming with applications to com-
binatorial optimization. SIAM Journal on Optimization, 5:13–51, 1995.

[ALM+92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and in-
tractability of approximation problems. In Proceedings of the 33rd IEEE Symposium on
Foundations of Computer Science (FOCS), pages 14–23, 1992.

[AN04] N. Alon and A. Naor. Approximating the cut-norm via Grothendieck’s inequality. In Pro-
ceedings of the 36th ACM STOC, pages 72–80, 2004.

[ASZ01] N. Alon, B. Sudakov, and U. Zwick. Constructing worst case instances for semidefinite
programming based approximation algorithms. In Symposium on Discrete Algorithms, pages
92–100, 2001.

[Bar95] A. Barvinok. Problems of distance geometry and convex properties of quadratic maps.
Discrete and Computational Geometry, 13:189–202, 1995.

[CW04] M. Charikar and A. Wirth. Maximizing quadratic programs: extending Grothendieck’s
inequality. In Proceedings of the 45th annual IEEE symposium on Foundations of Computer
Science, 2004.

[FG95] U. Feige and M. Goemans. Approximating the value of two prover proof systems, with
applications to max 2sat and max dicut. In Proceedings of the Third Israel Symposium on
Theory of Computing and Systems, pages 182–189, 1995.

[FL01] U. Feige and M. Langberg. The RPR2 rounding technique for semidefinite programs. In
ICALP ’01: Proceedings of the 28th International Colloquium on Automata, Languages and
Programming, pages 213–224, 2001.

[GLS88] M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-
mization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, 1988.

[Gro53] A. Grothendieck. Résumé de la théorie métrique des produits tensoriels topologiques. Boletim
da Sociedade de matematica de Sao Paulo, 8:1–79, 1953.

[GW96] M. Goemans and D. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming programs. Journal of the ACM,
42:1115–1145, 1996.

[H̊as97] J. H̊astad. Some optimal inapproximability results. In Proceedings of the 29th ACM Sym-
posium on the Theory of Computing, 1997.

[Jam87] G. Jameson. Summing and nuclear norms in Banach space theory, volume 8. London
Mathematical Society Student Texts, 1987.

17

[KKMO04] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for
max-cut and other 2-variable CSPs? In Proceedings of the 45th annual IEEE symposium on
Foundations of Computer Science, 2004.

[KMS98] D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semidefinite pro-
gramming. Journal of the ACM, 45:246–265, 1998.

[Kri77] J. Krivine. Sur la constante de Grothendieck. Compte Rendu de l’Academie des Sciences de
Paris, Serie A-B 284:445–445, 1977.

[LLZ02] M. Lewin, D. Livnat, and U. Zwick. Improved rounding techniques for the max 2-sat and
max di-cut problems. In Integer Programming and Combinatorial Optimization (IPCO),
pages 67–82, 2002.

[MOO05] E. Mossel, R. O’Donnell, and K. Oleszkiewicz. Noise stability of functions with low influences:
invariance and optimality. Manuscript, 2005.

[MR99] S. Mahajan and H. Ramesh. Derandomizing approximation algorithms based on semidefinite
programming. SIAM Journal on Computing, 28(5):1641–1663, 1999.

[Nes98] Y. Nesterov. Semidefinite relaxation and nonconvex quadratic optimization. Optimization
Methods and Software, 9:141–160, 1998.

[Pat94] G. Pataki. On the multiplicity of optimal eigenvalues. Technical report, Carnegie-Mellon
University, 1994.

[PY91] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity
classes. Journal of Computer and Systems Sciences, 43:425–440, 1991.

[Rie74] R. Rietz. A proof of the Grothendieck inequality. Isreal Journal of Mathematics, 19:271–276,
1974.

[VB96] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95, 1996.

[Wig83] A. Wigderson. Improving the performance guarantee for approximate graph coloring. Journal
of the ACM, 30:729–735, 1983.

[Zwi99] U. Zwick. Outward rotations: a tool for rounding solutions of semidefinite programming
relaxations, with applications to MAX CUT and other problems. In Proceedings of the 31th
ACM Symposium on Theory of Computing, pages 679–687, 1999.

18

	Introduction
	Preliminaries
	Rounding via Random Hyperplane Partitions and Improvements
	Random Hyperplane Partition gw-maxcut
	Vector Projection karger-coloring
	Outward Rotations zwick-outward
	Random Projection + Randomized Rounding (RPR2) feige-RPR2
	Semidefinite Relaxations with More Information feige-max2sat, lewin-max2sat

	Algorithms Based on Results from Functional Analysis alon-grothendieck
	Approximating the Cut-Norm of a Matrix
	Averaging with a Gaussian Measure
	Constructing New Vectors

	Conclusion

