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Abstract

In this report, I give a brief introduction to the ideas of algebraic statistics and look at some compu-

tational examples involving Gröbner basis techniques. The main motivation was to have a better idea of

the scalability of these methods, but as we will see, the results are not very encouraging in the general

case. I do not cover more advanced work touching more closely to algebraic geometry and polyhedral

combinatorics.
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1 Introduction

The term algebraic statistics was coined by Pistone et al. and used as the title of their book [PRW00]: the

idea is to use methods from computational commutative algebra and algebraic geometry to answer questions

arising in parametric statistics. One can view a graphical model as the image of a polynomial map from

the space of parameters to the space of joint probability distributions on the observed random variables.

The topic is now a popular subject of research. Moreover, the questions to be answered already raised new

questions in algebraic geometry, in particular in tropical algebraic geometry, and in real algebraic geometry.

This report is just a very basic introduction to the field of algebraic statistics. The recent book [PS05] in

particular has served as a reference. After introducing the necessary definitions, I cover some elements of (i)

the search for model invariants to test the validity of a given model and (ii) maximum-likelihood estimation

of the model parameters. Most of the current applications seem to be currently in computational biology, but

my interest lies more in engineering applications. I show some computational examples on hidden Markov

models (HMMs), which are extremely important in practice; a classical example is their use for speech

recognition [Rab89]. I have tried to focus on the issue of the complexity and scalability of the methods

proposed. I will come back to this point in the conclusion of this report.

2 Algebraic Statistical Models for Discrete Data

A statistical model is a family of probability distributions on some state space. Here we assume the state

space to be finite, and denote it by [m] = {1, . . . ,m}. Then a probability distribution on [m] is a point in

the (m− 1)-dimensional probability simplex

∆m−1 := {(p1, . . . , pm) ∈ Rm :
m∑

i=1

pi = 1 and pj ≥ 0 for all j},

and a statistical model is a subset of the simplex. We will write ∆ instead of ∆m−1 when the underlying state

space is understood. Note that a requirement is that the coordinates pi must be nonnegative real numbers.

When we use algebraic computations however, we will allow pi to be a complex number and deal with the

real positivity independently. We denote the polynomial ring C[p] = C[p1, . . . , pn], where the variables are

the state probabilities.

We restrict the family of statistical models considered to algebraic statistical models. They arise as the image

of a polynomial map

f : Rd → Rm, θ = (θ1, . . . , θd) 7→ (f1(θ), . . . , fm(θ)).

The unknowns θ1, . . . , θd represent the model parameters, and in most cases of interest, d is much smaller

than m.

Let N = {0, 1, 2, . . .} denote the non-negative integers. Each fi is a polynomial in the d unknowns, which

means it has the the form

fi(θ) =
∑

α∈Nd

cα θα1
1 · · · θαd

d ,
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where only finitely many of the coefficients cα are non-zero. We assume that the parameter vector θ ranges

over an open subset Θ ⊂ Rd, which is called the parameter space of the model f . We also assume that the

parameter space satisfy the condition

fi(θ) > 0 for all i ∈ [m] and θ ∈ Θ.

Under these hypotheses, the following two conditions are equivalent:

f(Θ) ⊂ ∆ ⇔ f1(θ) + . . . + fm(θ) = 1, (1)

which means that all non-constant terms of the polynomials fi cancel and the constant terms add up to 1.

If (1) holds, then the model is simply the set f(Θ). More generally, the model is the family of all probability

distributions on [m] of the form

1∑m
i=1 fi(θ)

(f1(θ), . . . , fm(θ)), where θ ∈ Θ,

i.e., it is the image of a set of rational functions.

We now introduce two classes of algebraic models, which turn out to be important in applications.

2.1 Linear Models

An algebraic statistical model f : Rd → Rm is called a linear model if each of its coordinate polynomial fi(θ)

is a linear function, i.e., there exist vectors ai ∈ Rd and real numbers bi such that

fi(θ) = aT
i θ + bi =

d∑
j=1

aijθj + bi, ∀i ∈ {1, . . . , d}.

For this model, it is convenient to take the m linear functions f1(θ), . . . , fm(θ) such that their sum is the

constant function 1.

2.2 Log-Linear or Toric Models

The second class of models that we introduce are the toric models, or in more standard statistical terms

log-linear models. They are important for studying of Markov chains.

Let A = (aij) be a non-negative integer d×m matrix with the property that all column sums are equal:

d∑
i=1

ai1 = . . . =
d∑

i=1

aim. (2)

The jth column vector aj of the matrix A represents the monomial

θaj =
d∏

i=1

θ
aij

i , j = 1, . . . ,m.
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Note that with assumption (2) all these monomials have the same degree. The toric model of A is the image

of the positive orthant Θ = Rd
>0 under the map

f : Rd → Rm, θ 7→ 1∑m
j=1 cjθaj

(c1θ
a1 , . . . , cmθam),

with c1, . . . , cm positive constants. We will only consider the case where ci = 1 for all i. Note that we can

scale the parameter vector without changing the image, i.e., f(θ) = f(λθ), and so the dimension of the toric

model f(Rd
>0) is at most d− 1.

The name log-linear model comes from the fact that logarithms of the probabilities are linear functions in

the logarithms of the parameters θi. The adjective “toric” is used because the image of the map f is a toric

variety.

Example 2.1 (Independence Model). Let X1 be a random variable on [m1], and X2 a random variable on

[m2]. Then the state space for the random vector X = (X1, X2) is of size m = m1m2. Assume the two

random variables are independent and denote

pij = P (X1 = i, X2 = j) = P (X1 = i)P (X2 = j)

=

(
m2∑
k=1

pik

)
︸ ︷︷ ︸

θi

(
m1∑
l=1

plj

)
︸ ︷︷ ︸

θj+m1

, for all i ∈ [m1], j ∈ [m2].

The independence model is a toric model with m = m1m2 and d = m1 + m2. The polynomial map is

f : Rd → Rm, θ 7→ 1∑
i,j θiθj+m1

(θiθj+m1)i∈[m1],j∈[m2].

A point p ∈ ∆m−1 lies in the image of f if and only if X1 and X2 are independent, i.e., if and only if the

m1 ×m2 matrix (pij) has rank one. The matrix A has entries in {0, 1} and exactly two 1’s per column.

For instance, with m1 = 2,m2 = 3, the matrix A =

p11 p12 p13 p21 p22 p23

θ1

θ2

θ3

θ4

θ5



1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1


encodes the

rational map f : R5 → R2×3 given by

(θ1, θ2; θ3, θ4, θ5) 7→
1

(θ1 + θ2)(θ3 + θ4 + θ5)

(
θ1θ3 θ1θ4 θ1θ5

θ2θ3 θ2θ4 θ2θ5

)
.

f(R5
>0) consists of all positive 2× 3 matrices of rank 1 whose entries sum to 1.

2.3 Markov Models

2.3.1 Toric Markov Chains

We fix an alphabet Σ with l letters, and we fix a positive integer n. We shall define a toric model whose

state space is the set Σn of all words of length n. The model is parametrized by the set Θ of positive l × l
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matrices. Thus d = l2 and m = ln. The d × m matrix A with integer entries will be denoted by Al,n. Its

rows are indexed by Σ2, its columns by Σn. The entry of Al,n in the row indexed by the pair σ1σ2 ∈ Σ2 and

the column indexed by the word π1π2 . . . πn ∈ Σn is the number of occurrences of the pair inside the word,

i.e., the number of indices i ∈ {1, . . . , n− 1} such that σ1σ2 = πiπi+1. The toric Markov chain model is the

toric model specified by the matrix Al,n.

For example, let us consider words of length n = 4 over the binary alphabet Σ = {0, 1} so that l = 2, d =

4,m = 16. The matrix A2,4 is the following 4× 16 matrix:

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

00

01

10

11


3 2 1 1 1 0 0 0 2 1 0 0 1 0 0 0

0 1 1 1 1 2 1 1 0 1 1 1 0 1 0 0

0 0 1 0 1 1 1 0 1 1 2 1 1 1 1 0

0 0 0 1 0 0 1 2 0 0 0 1 1 1 2 3


The parameters can be organized in a 2× 2 matrix

θ =

(
θ00 θ01

θ10 θ11

)

and the parameter space Θ = R2×2
>0 . The toric Markov chain model of length n = 4 for the binary alphabet

is the image of Θ under the monomial map

f2,4 : R2×2 → R16, θ 7→ 1∑
ijkl pijkl

(p0000, p0001, . . . , p1111),

where pi1i2i3i4 = θi1i2θi2i3θi3i4 for all i1i2i3i4 ∈ {0, 1}4.

The map fl,n : Rd → Rm is defined analogously for larger alphabets and longer sequences.

2.3.2 Markov Chains

The Markov chain model is a submodel of the toric Markov chain model. Let Θ1 denote the subset of all

matrices θ ∈ Rl×l
>0 whose rows sum to one. The Markov chain model is the image of Θ1 under the map fl,n.

A Markov chain is any point p in the model fl,n(Θ1). An entry θij of the matrix θ represents the probability

of transitioning from state i ∈ Σ to j ∈ Σ. This definition agrees with the familiar decription of a Markov

chain in terms of its transition probabilities, except that here we require the initial distribution at the first

state to be uniform.

To define a fully observed Markov model, we fix the sequence length n and we consider a first alphabet

Σ with l letters and a second alphabet Σ′ with l′ letters. The observable states in this model are pairs

(σ, τ) ∈ Σn × (Σ′)n of words of length n. A sequence of N observations in this model is summarized in a

matrix u ∈ Nln×(l′)n

where u(σ,τ) is the number of times the pair (σ, τ) was observed. Hence in this model

m = (l l′)n. The fully observed Markov model is parametrized by a pair of matrices (θ, θ′) where θ is an

l × l matrix and θ′ is an l × l′ matrix; as before, these matrices have rows which sum to one. The matrix
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θ encodes a Markov chain as before. The entry θ′ij represents the probability of outputting symbol j ∈ Σ′

when the Markov chain is in state i ∈ Σ. With the constraints on the sum of the rows of (θ, θ′), we have

d = l(l + l′ − 2).

Let Θ1 denote the set of matrices (θ, θ′) ∈ Rl×l
>0 × Rl×l′

>0 whose rows sum to one. The fully observed Markov

model is the restriction to Θ1 of the toric model

F : Rd → Rm, (θ, θ′) 7→ p = (pσ,τ )

where pσ,τ =
1
l
θ′σ1τ1

θσ1σ2θ
′
σ2τ2

θσ2σ3 . . . θσn−1σn
θ′σnτn

.

2.3.3 Hidden Markov Models

Finally, the hidden Markov model (HMM) f is derived from the fully observed Markov model F by summing

out the first indices σ ∈ Σn. More precisely, consider the map

ρ : Rln×(l′)n

→ R(l′)n

obtained by taking the column sums of the matrix with ln rows and (l′)n columns. The hidden Markov

model is the algebraic statistical model defined by composing the fully observed Markov model F with the

marginalization map ρ:

f = ρ ◦ F : Θ1 ⊂ Rl(l−1) × Rl(l′−1) → R(l′)n

.

The degree of f in the entries of θ is n− 1 and in the entries of θ′ is n.

A more standard way of describing an HMM is to say that this model has n observed variables Y1, . . . Yn

taking on l′ possible values and n hidden variables X1, . . . , Xn taking on l possible values. The HMM is then

characterized by the following conditional independence statements for i = 1, . . . , n:

P (Xi|X1, X2, . . . , Xi−1) = P (Xi|Xi−1),

P (Yi|X1, . . . , Xi, Y1, . . . , Yi−1) = P (Yi|Xi).

These transition probabilities are given by the matrices θ and θ′.

Example 2.2. Consider the classical example of the “occasionally dishonest casino”. In that casino, they

use a fair die most of the time, but occasionally they switch to a loaded die. Our two alphabets are

Σ = {fair,loaded} and Σ′ = {1, 2, 3, 4, 5, 6} for the six possible outcomes of rolling a die. Suppose a particular

game involves rolling the die n = 4 times. This hidden Markov model has d = 12 parameters:

θ =
fair loaded

fair

loaded

(
x 1− x

1− y y

)
and θ′ =

1 2 3 4 5 6

fair

loaded

(
f1 f2 f3 f4 f5 1−

∑5
i=1 fi

l1 l2 l3 l4 l5 1−
∑5

i=1 li

)
.

This hidden Markov model has m = 64 = 1296 possible outcomes, namely, all the words τ = τ1τ2τ3τ4 ∈ (Σ′)4.

The coordinates of the map f : R12 → R1296 are polynomials of degree 7 = 3+4 (degree 3 in the two unknowns

x and y, degree 4 in the ten unknowns f1, . . . , l5):

pτ1τ2τ3τ4 =
1
2

∑
σ1,σ2,σ3,σ4∈Σ

θ′σ1τ1
θσ1σ2θ

′
σ2τ2

θσ2σ3θ
′
σ3τ3

θσ3σ4θ
′
σ4τ4

.
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We finish this section by a remark on an apparent obvious limitation of the algebraic point of view: even if

the number of parameters of the Markov model is limited, the number of variables in the polynomial rings

involved grows exponentially with the length n of the chain considered. Considering for example a simple

isolated word recognition system as described in [Rab89], we can have l′ = 5, n = 40, and hence a polynomial

ring with 540 variables pi’s, which is not representable on any computer explicitely. As we will see in the

next section, Gröbner basis computations are used relatively intensively in algebraic statistics, which means

that we would have to restrict computations to models far smaller than those of interest in engineering

applications. At this point, it is not clear to me if such problems do not arise in the current applications

of algebraic statistics in computational biology, or if the problem is recognized and methods are developped

with this in mind. This would seem natural, since most of the existing algorithms for graphical models are

designed with a perspective on the possible computational explosion if the structure is not properly exploited,

a classical example being the Viterbi algorithm.

3 Computing Polynomial Invariants

The polynomial functions that vanish on the image of an algebraic statistical model are called invariants of

the model. There is an issue here because in general, the image of a polynomial map f : Cd → Cm is not an

algebraic variety. Therefore, the convention is to use the expression “image of the polynomial” map to mean

the the Zariski closure f(Cd) of the image in Cm, which is the smallest variety containing f(Cd) ([CLO97],

chapter 3). The potential points p ∈ f(Cd) \ f(Cd) are then disregarded. In the following, we will take the

polynomials with rational coefficients. Let If ⊂ Q[p1, . . . , pm] be the ideal representing the variety f(Cd). A

polynomial h ∈ Q[p1, . . . , pm] lies in the ideal If is an only if

h(f1(t), . . . , fm(t)) = 0 for all t = (t1, . . . , td) ∈ Rd,

where we can replace Rd by any open subset Θ ⊂ Rd (our parameter space) and obtain an equivalent

condition. The ideal If is prime, and the polynomials in this ideal are called the model invariants.

By plugging the empirical frequencies of the observed data into these invariants (or some of them if we

don’t know all of them), and observing if the result is close to zero, it can be checked whether the model is

appropriate. To compute the invariants, i.e., generators of If , we need to eliminate the parameters of the

equations defining the polynomial map, which is the implicitization problem. One way to do this is by using

Gröbner basis, but as we will see in the following example, this is possible only for small models (another

popular method is to use multipolynomial resultants). The method using Gröbner basis is based on the

following theorem ([CLO97], p. 126):

Theorem 3.1. (Polynomial Implicitization) Let k be an infinite field, and let F : kn → km be a polynomial

map F (t1, . . . , tm) = (f1, (t1, . . . , tm), . . . , fn(t1, . . . , tm)). Let I be the ideal I = 〈x1 − f1, . . . , xn − fn〉 ⊂
k[t1, . . . , tm, x1, . . . , xn] and let Im = I ∩ k[x1, . . . , xn] be the mth elimination ideal. Then V (Im) is the

smallest variety in kn containing F (km).

This gives an algorithm for the implicitization problem: we start by finding a Gröbner basis with respect

to an elimination ordering where every ti is greater than every xi. By the elimination theorem ([CLO97],
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p.113), the elements of the Gröbner basis not involving t1, . . . , tm form a basis of Im, and by the theorem

above, they define the smallest variety in kn containing the parametrization.

Example 3.1 ([PS04]). Consider an HMM with n = 3 and binary random variables (l = l′ = 2). It is

defined by the map given by the equations (we scaled the 8 joint probabilities by a factor of 2)

pτ1τ2τ3 = θ′0τ1
θ00θ

′
0τ2

θ00θ
′
0τ3

+ θ′0τ1
θ00θ

′
0τ2

θ01θ
′
1τ3

+ θ′0τ1
θ01θ

′
1τ2

θ10θ
′
0τ3

+ θ′0τ1
θ01θ

′
1τ2

θ11θ
′
1τ3

+θ′1τ1
θ10θ

′
0τ2

θ00θ
′
0τ3

+ θ′1τ1
θ10θ

′
0τ2

θ01θ
′
1τ3

+ θ′1τ1
θ11θ

′
1τ2

θ10θ
′
0τ3

+ θ′1τ1
θ11θ

′
1τ2

θ11θ
′
1τ3

, τ1τ2τ3 ∈ {0, 1}3,

We can try to compute the invariants of this HMM. The equations above (the x′is in the theorem are now

the pτ1τ2τ3) in the 16 variables (the pτ1τ2τ3 , θij , θ
′
ij , without taking into account the constraints that the

sum of the rows of the transition matrix sums to one) define the ideal I. We can try to eliminate the

variables θij and θ′ij as described in the algorithm above. For this purpose, we can use Singular [GP02]

to compute the reduced Gröbner basis of I with the command std(I), once we have fixed an elimination

ordering. It is known that the lexicographic ordering is usually expensive. Example 1.8.4 in [GP02] uses the

product ordering of two degrevlex orderings (dp(s),dp(n-s)) to eliminate the first s variables. Singular

also provides a special command eliminate. In any case, on a relatively recent desktop, with 1 GB of RAM,

the computation runs out of memory after running more than 20 hours... In their paper [PS04], Pachter and

Sturmfels simply state that the image of the map was found by Gröbner basis computation to be the zero

set of the single quartic polynomial

p2
011p

2
100 − p2

001p
2
110 + p000p011p

2
101 − p000p

2
101p110 + p000p011p

2
110 − p001p

2
010p111 + p2

001p100p111

+ p2
010p100p111 − p000p

2
100p111 − p000p

2
011p110 − p001p011p100p101 − p010p011p100p101

+ p001p010p011p110 − p010p011p100p110 + p001p010p101p110 + p001p100p101p110 + p000p010p011p111

− p000p011p100p111 − p000p001p101p111 + p000p100p101p111 + p000p001p110p111 − p000p010p110p111. (3)

What is not mentioned in that paper is that the computation apparently took about seven hours on a dual

2.8 GHz, 4 GB RAM machine running Singular, and was actually the largest model which could be handled

by a direct application of the Gröbner basis method ([PS05], chapter 11). The Gröbner basis computation

is very sensitive to the number of variables. If now I add explicitely the constraints that θi1 = 1 − θi0 and

θ′i1 = 1−θ′i0, I reduce the number of variables to 12, 4 of which have to eliminated, and now the computation

is almost instantaneous: the reduced Gröbner basis of the image variety for degrevlex has now 14 polynomials

(the result is too long to be reproduced here). It seems that the reason this was not done in [PS04] was to

obtain an ideal of invariants that can be described more simply in terms of just the polynomial (3).

It appears that the extension to longer chains (n ≥ 4) of the computation of invariants using direct Gröbner

basis computation becomes quickly prohibitive. There are conjectures about the structure of the ideal of

invariants of Markov models (see for example conjecture 13 in [PS04]), but in general the problem is hard

and the ideal may remain unknown.

3.1 The Implicitization Problem Using Linear Algebra

In [PS05] (chapter 11), it is conjectured that the ideal of a binary HMM of any length is generated by

polynomials of low degree. Then, by limiting the search to those generators of the ideal which have degree
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less than some bound, we may consider the implicitization problem as a linear algebra problem.

We discuss this point first for a general algebraic statistical model. We consider a polynomial map f :

C[θ1, . . . , θd] → C[p1, . . . , pm]. We let If be the ideal of polynomial invariants associated to f , and If ,δ this

ideal restricted to polynomials of degree at most δ. Consider first polynomial relations between the pi’s

of degree at most 1. We can expand 1, p0, p1, . . . , pm, in terms of the parameters θj , j = 1, . . . , d; denote

f0 = 1, fi, i = 1, . . . ,m, these expansions. Let M = {mi}k
i=1 be the vector of all monomials in the θj occuring

in the fi’s, we have fi =
∑

j βijmj for each i. Then an invariant of degree at most 1 is a linear relation

m∑
i=1

αi

 k∑
j=1

βijmj

 =
k∑

j=1

(
m∑

i=1

βijαi

)
mi = 0.

This polynomial equals the zero polynomial if and only if the coefficients of each monomial is zero. Hence

generators for If ,1 can be found by computing a linear basis for the kernel of the matrix B = (βij).

This method generalizes to If ,δ for higher δ in a straightfoward manner. We consider P, the vector of

all monomials in the unknowns p1, . . . , pm of degree at most δ, and let M be the vector consisting of all

monomials in θj appearing in the expansions of the monomials in P. Then as in the case δ = 1 above,

computing the relations of degree at most δ becomes computing the kernel of a large matrix whose (i, j)th

entry is the coefficient of Mj in the expansion of Pi.

The software written by Nicolas Bray and Jason Morton [BM05] is build on refinements of this principle.

The first refinement is that when computing the generators for increasing δ, we may eliminate from P at a

given step the monomials pα which lie in the initial ideal generated by the generators already computed at

a previous step. Additionally, there is an interesting usage of the trivial invariant 1−
∑m

i=1 pi:

Proposition 3.2. Suppose f is an algebraic statistical model, and If is its ideal of invariants. Then there

exists a set L of homogeneous polynomials in the pi such that {1−
∑m

i=1 pi} ∪ L is a basis for If .

Proof. Let B be a finite basis for If (which exist by Hilbert’s basis theorem). Take g ∈ B a non-homogeneous

polynomial (if no such g exist we are done), and let δ be the smallest degree of a monomial in g. Let gδ

be the degree δ part of g. Since 1 −
∑

i pi ∈ If , so is (1 −
∑

i pi)gδ. Then we can replace g ∈ B with

g − (1−
∑

i pi)gδ to obtain B′ such that B′ ∪ {1−
∑m

i=1 pi} still generates If . Now the minimum degree of

a monomial occuring in g has increased by at least one. Repeating this finitely many times, we have the

required L.

Using proposition 3.2, we may restrict the search for invariants to homogeneous polynomials. The refinements

above are valid for any algebraic model. Bray and Morton develop more involved refinements specific to

HMMs in chapter 11 of [PS05]. Using their software [BM05], Bray and Morton report that they could

compute the Gröbner basis (3) in less than one minute instead of the seven hours reported in example 3.1.

However, I was not able to compile their software and test more complex models. Without a result bounding

the degree of these generators, we cannot be sure that we obtain all the invariants describing the ideal If ;

however, even if we obtain only a subset of all the invariants, the method is of interest if it is scalable.

Unfortunately, this seems to be still far from any real-world engineering application, since the authors report
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that the program took 159 minutes to for an HMM with binary variables of length 5, providing 249 invariants

for the model. The result for length 6 was better (14 minutes), returning 692 invariants. For length 7, only

40 invariants of degree 1 were found, and no other invariant of degree less than or equal to 4 (which seems

to be the maximum degree tested): in that case, the computation took only 17s.

Clearly, in applications we are probably not interested in obtaining hundreds of polynomials to test our

model. It would be interesting to understand what it means for the data to satisfy a certain number of

invariants (and what is the degree of these invariants), in terms of reliability of the model. Then if we can

restrict the computation to finding a small number of interesting polynomials, the method has chances to

be scalable.

Moreover, if we are interested only in obtaining some elements in the ideal obtained after elimination of

the variables θi, it is possible that methods based on resultants might be more interesting than methods

based on Gröbner basis, which describe the ideal entirely. For example, if f, g ∈ C[x, y], then we know that

Res(f, g, x) belongs to the first elimination ideal < f, g > ∩C[y] ([CLO97], section 3.5 proposition 9). Now

in the elimination procedure, we have more than two polynomials and one variable to eliminate so we would

have to introduce multipolynomial resultants. One way of doing this is explained in [CLO97], section 3.6,

in terms of the generalized resultants of a set of polynomials, but there is much more theory related to

multipolynomial resultants, for example in [GKZ94], which might be useful in this context.

4 Maximum Likelihood Estimation

Another important applications of algebraic statistics is in solving the likelihood equations (also called

“maximum” likelihood equations in the litterature, but here I follow Dudley [Dud]): for algebraic statistical

models, this boils down to solving polynomial equations. First we recall some basic definitions.

Consider a family of laws {Pθ, θ ∈ Θ} on a measurable space (X,B), all absolutely continuous with respect to

a σ-finite measure µ (which will be the counting measure for us since we consider only discrete models). Then

there exist Radon-Nikodym derivatives dP/dµ, which give us what we call likelihood functions f(θ, x) :=

(dPθ/dµ)(x), θ ∈ Θ, x ∈ X. For each x ∈ X, a maximum likelihood estimate (MLE) of θ is any θ̂ = θ̂(x) such

that f(θ̂, x) = sup{f(φ, x) : φ ∈ Θ} > 0.

Specialized to the algebraic models above, x was called i and X = {1, . . . ,m} = [m], the set of possible

outcomes, so that the likelihood functions are precisely the fi(θ). Now we can consider these functions

as corresponding to a single experiment, and repeating the experiment N times independently to obtain a

sequence of i.i.d. observations x = (O1, . . . , ON ). The corresponding likelihood functions (for the vector of

observations), which we denote L(θ, x) to avoid confusion, becomes:

L(θ, x) = fO1(θ) . . . fON
(θ) = f1(θ)u1 . . . fm(θ)um ,

where uk is the number of indices j ∈ [N ] such that Oj = k (note here that from the factorization theorem,

it is clear that (u1, . . . , um) is a sufficient statistic for the model f). In practice it is convenient to consider

the log-likelihood function

l(θ, x) = log L(θ) = u1 log(f1(θ)) + . . . + um log(fm(θ)),
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which is a function of the parameter space Θ ⊂ Rd to the negative real numbers R<0. In the following, since

we think of x as being fixed, we will drop it and write L(θ), l(θ).

Since we consider polynomial likelihood functions, a necessary condition for θ to be an MLE is that it satisfies

the likelihood equations
∂L(θ)
∂θj

= 0, for j = 1, . . . , d,

or equivalently
∂l(θ)
∂θj

= 0, for j = 1, . . . , d.

There are lots of potential difficulties with maximum likelihood estimates, such as non-existence (even in an

exponential family), likelihood equations corresponding to a minimum, a local maximum or a saddle point of

the likelihood function, but we will not consider these here (see chapter 3 of [Dud] for some examples). Indeed,

solving the likelihood equations can be in itself a challenging problem, and we focus on some associated

computational issues in the following, in the case of algebraic models.

Example 4.1 (linear models). Recall that for a linear model f , we have fi(θ) =
∑d

j=1 aijθj + bi. The

(log-)likelihood equations are
m∑

i=1

uiai1

fi(θ)
= . . . =

m∑
i=1

uiaid

fi(θ)
= 0.

Studying these equations involves the combinatorial theory of hyperplane arrangements. Each equation

fi(θ) = 0 defines a hyperplane, and the set

C = {θ ∈ Rd : f1(θ) · · · fm(θ) 6= 0}

is a disjoint union of finitely many open convex polyhedra defined by inequalities fi(θ) > 0 or fi(θ) < 0.

It turns out that the natural parameter space of the linear model (where the probabilities are nonnega-

tive) coincides with exactly one bounded region. Results in this theory, such as Varchenko’s formula, have

consequences on the characterization of the solutions of the likelihood equations [CHS06].

4.1 Likelihood Equations and Rational Implicitization

In the case of an algebraic model f = (f1, . . . , fm), the log-likelihood equations can be rewritten, for a vector

of observations u = (u1, . . . , um):

∂l

∂θi
=

u1

f1(θ)
∂f1(θ)

∂θi
+ . . . +

um

fm(θ)
∂fm(θ)

∂θi
, i = 1, . . . , d. (4)

We would like to compute all solutions θ ∈ Cd of these equations. Note that each function in (4) is a rational

function, and so the set of critical points is an algebraic variety outside the locus where the denominators

of these rational functions are zero. The Zariski closure of the set of critical points is an algebraic variety in

Cd, called the likelihood variety of the model f with respect to the data u. Then the problem becomes to

compute this likelihood variety, and this can be done via elimination theory once again.

We can follow the rational implicitization procedure similar to the one described in [CLO97], section 3.3,

which requires a slight modification to the algorithm we considered previously for polynomial implicitization.
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We introduce m new unknowns z1, . . . , zm where zi represents the inverse of fi(θ), and an ideal generated

by m + d polynomials in the ring Q[θ, z]:

J = 〈z1f1(θ)− 1, . . . , zmfm(θ)− 1,
m∑

j=1

ujzj
∂fj

∂θ1
, . . . ,

m∑
j=1

ujzj
∂fj

∂θd
〉.

A point (θ, z) ∈ Cd+m lies in the variety V (J) of this ideal if and only if θ is a solution of the likelihood

equations with fj(θ) 6= 0 and zj = 1/fj(θ) for all j. To solve our problem, we need to compute the elimination

ideal

I = J ∩Q[θ1, . . . , θd].

This can be done as before by using an eliminationg ordering where zi > θj , computing a Gröbner basis

with respect to this ordering for J , and keeping only the elements of the basis not involving the variables zi.

Finally we keep only the values of the parameters which have their image by f in the probability simplex.

Also, to verify that a given parameter corresponds indeed to a maximum, we would have to compute the

Hessian matrix ∂2l/∂θ2.

Example 4.2 (Jukes-Cantor model). The Jukes-Cantor model is a class of multilinear models which appar-

ently arises in computational biology. One instance given in example 1.7 in [PS05] is the following:

f1(θ) = −24θ1θ2θ3 + 9θ1θ2 + 9θ1θ3 + 9θ2θ3 − 3θ1 − 3θ2 − 3θ3 + 1,

f2(θ) = −48θ1θ2θ3 + 6θ1θ2 + 6θ1θ3 + 6θ2θ3,

f3(θ) = 24θ1θ2θ3 + 3θ1θ2 − 9θ1θ3 − 9θ2θ3 + 3θ3,

f4(θ) = 24θ1θ2θ3 − 9θ1θ2 + 3θ1θ3 − 9θ2θ3 + 3θ2,

f5(θ) = 24θ1θ2θ3 − 9θ1θ2 − 9θ1θ3 + 3θ2θ3 + 3θ1.

Suppose we fix θ3 = 1/10 and we want to solve the likelihood equations as explained above to obtain all the

possible solutions θ1 and θ2. We carry out the process above with Singular, using for example the command

eliminate (the description of the commands to follow is given in example 3.26 of [PS05]), it turns out that

after eliminating the five variables z1, . . . , z5, we obtain the reduced Gröbner basis of the likelihood varieties

very easily (it has six complicated polynomials). We can verify that this variety is of dimension 0 because

two polynomials of the basis have pure powers of t1 and t2 as their initial terms, and in fact, it has exactly

16 points in C2, only one of which actually maps to the probability simplex. It turns out that this solution

is verified to be a local maximum.

Note that this example is smaller than example 3.1 (the HMM of length 3), not so much in terms of the

number of polynomials or variables to eliminate, but in terms of the number of total variables involved

when creating the ring in Singular (7 instead of 16). It seems that this number of variables is critical in the

scalability of the computation with Gröbner basis.
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5 Conclusion

It is difficult to give a conclusion about a field that is evolving quite fast and after being able to only scratch

the surface and understanding the easiest techniques. However, at this point I would say that the methods of

algebraic statistics are not yet ready to be applied in the engineering sciences; or at least, let me say that the

interesting methods are not easy to recognize without more background in the subject than I had. First of

all, a large number of papers in the field present examples of computations using Gröbner basis techniques:

it is then not purely for teaching purposes that the examples proposed are very small. As we have seen for

example in the case of hidden Markov models, the number of variables in the polynomial ring involved grows

exponentially with the length of the model, and extremely simple models are already beyond what can be

done using these techniques.

In general, an advantage of using algebraic methods is to solve parametric problems ([PS04]), and obtain

globally optimum solutions of polynomial equations. For example, we have seen that in principle, we could

obtain all the solutions of the likelihood equations by characterizing the likelihood variety. Note that for

most models, statisticians have to rely on the expectation-maximization algorithm because the problem of

finding only one local maximum likelihood is already a difficult nonlinear programming problem. It is not

clear to me at this point that the methods of algebraic statistics are anywhere close to improving on this

algorithm for realistic models, when computational considerations are taken into account. However, algebra

and combinatorics are useful for more theoretical questions, for example bounding the number of solutions

of these equations.

The question of the size of the models is important. It may be that in computational biology, some small

graphical models with just a few variables are of interest, but graphical models in general provide a useful

framework mostly for very large problems with say millions of variables and a local description of the joint

probability function. Then it is interesting to bring in algorithms from graph theory.

Last, the geometry of maximum-likelihood estimation has been adressed earlier using tools from differential

geometry [Kas89]. In the algebraic geometric framework, this is where tropical geometry comes in, as

well as techniques from polyhedral combinatorics [PS04]. Again it is not easy there to isolate the scalable

computational techniques from the theoretical developments.
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