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1 Introduction

This report is a summary of the paper [BM06] of Peter Bartlett and Shahar Mendelson on Empirical Mini-

mization.

Typical algorithms in machine learning minimize an empirical loss. This is a particular case of minimum

contrast estimation in statistics. To recall the set-up, a learning algorithm is presented with a set of i.i.d.

input-output pairs (X1, Y1), . . . , (Xn, Yn), drawn from a probability distribution P on the space X ×Y, with

P unknown. We would like to find a function g : X → Y which, given a new input X, accurately predicts the

output Y , where (X, Y ) is again distributed according to P . Accurately means that we have a loss function

L : Y2 → [0, 1], and we would like to find g which minimizes the risk PL(g(X), Y ) 1. Since P in unknown

and only the sequence of samples is given, in empirical risk minimization we choose g to minimize the sample

average of L(g(x), y) instead, hoping that this function will “generalize well” for new inputs.

The general problem that we are led to study is as follows. Given i.i.d. samples X1, . . . , Xn (which are the

pairs of inputs/outputs above) with values in a set X , we define the empirical measure Pn = 1
n

∑n
i=1 δXi .

We compute an empirical minimizer f̂ over a class F of real-valued functions on X

Pnf̂ = inf
f∈F

Pnf,

or a ρ-approximate minimizer verifying

Pnf̂ ≤ inf
f∈F

Pnf + ρ.

We then want to estimate the expectation of this empirical minimizer

E
[
f̂(X)|X1, . . . , Xn

]
which we just denote P f̂ in the following. The authors argue that by considering relative loss functions

instead of loss functions in the scenario described above, it is natural to assume that for every f ∈ F ,

Pf ≥ 0, although the functions in F can take negative values.

The paper considers several approaches to estimating the expectation of the empirical minimizer, which we

review in the following. Roughly, the idea is that there are relevant mild assumptions that one can make
1For P a probability measure, in the following I will write Pf :=

R
fdP
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on the class F which help improve significantly the traditonal upper bounds on P f̂ . It is also possible to

give upper bounds directly on the empirical minimizer instead of bounds valid for the whole class F , and an

example is given where this approach gives much better results.

Throughout this paper we assume that F is a uniformly bounded class of functions and we denote bF =

supf∈F ‖f‖∞. The proofs rely heavily on the functional version of Bernstein’s inequality due to Talagrand

[Tal94], which requires this uniform bound.

2 Structural Approach to Comparing the Empirical and Actual

Measures

In the classical approach, we compare the deviation between Pf and Pnf over the entire class F , assuming

that the algorithm might return any function of the class for f̂ . Then if Pnf̂ is small, and the worst case

deviation is small, P f̂ will be small obviously.

2.1 The Uniform Law of Large Numbers

We say that a class F satisfies the uniform law of large numbers with respect to a probability measure P if,

for every ε > 0,

lim
n→∞

Pr(‖P − Pn‖F ≥ ε) = 0,

where ‖P − Pn‖F = supf∈F |Pf − Pnf |. This leads to the following notion of similarity, uniform on the

entire class, between the empirical and actual measures.

Definition 2.1. Given an integer n and a probability measure P , we say that the empirical and actual

structures on F are (λ, δ)-close if

Pr(‖P − Pn‖F ≥ λ) ≤ δ.

In particular, if 0 ∈ F and the empirical and actual structures are (λ, δ)-close, then a ρ-empirical minimizer

verifies P f̂ ≤ inff∈F Pnf + λ + ρ ≤ λ + ρ with probability at least 1− δ.

In the following, let σ2
F = supf∈F var[f ] and recall bF = supf∈F ‖f‖∞.

The paper provides a set of results to evaluate the benefits and limitations of using this notion of similarity.

Theorem 2.1. There exists absolute constants C,C ′, c, c′ for which the following holds.

1. For any class of functions F , and every 0 < δ < 1, the empirical and actual structures are (λn, δ)-close

provided that

λn ≥ C max

{
E‖P − Pn‖F , σF

√
log(1/δ)

n
,
bF log(1/δ)

n

}
.

2. Let F be a class of functions such that bF ≤ 1. Then

E‖P − Pn‖F ≥ c
σF√

n
.
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Furthermore, for every integer n ≥ 1/σ2
F , with probability at least c′,

‖P − Pn‖F ≥ C ′ E‖P − Pn‖F .

A conclusion we can draw from this theorem is the following. The only assumption made here is that the

class F is uniformly bounded with uniformly bounded variances. The notion of similarity in definition 2.1

involves bounding E‖P − Pn‖F , and we obtain empirical and actual structures which are close uniformly

on F . On the other hand, λn cannot decrease faster than 1/
√

n, and it is impossible to use this notion of

similarity to obtain an asymptotic result stronger than P f̂ ≤ 1/
√

n.

In practice this approach is too conservative and we would like to find better bounds. This is done in the

following with some additional assumptions on the function class F . The approach in section 2.2 is still

based on considering the distance between the measures on the whole class, whereas in section 3 we describe

the results that the authors obtained by also taking into account the properties of the empirical minimizer.

2.2 Isomorphic Coordinate Projections

Let us denote the sample by τ = (X1, . . . , Xn) and define on the class of functions F the (random) coordinate

projection Πτ : f → (f(X1), . . . , f(Xn)). Here we will consider the following notion of similarity between

the empirical and actual measures.

Definition 2.2. We say that the coordinate projection Πτ is an ε-isomorphism if for every f ∈ F ,

(1− ε)Pf ≤ Pnf ≤ (1 + ε)Pf.

We will also need the following definition, which says that the variance of the elements of F decreases as

their expectation decreases.

Definition 2.3. We say that F is a (β, B)-Bernstein class with respect to the probability measure P (where

0 < β ≤ 1 and B ≥ 1), if every f in F satisfies

P (f2) ≤ B(Pf)β .

Note that if f belong to a Bernstein class, then necessarily Pf ≥ 0. The paper gives references showing that

certain relative loss functions are Bernstein.

We will need an additional assumption on the class F . We say that F is star-shaped around 0 if for every

0 ≤ a ≤ 1 and any f ∈ F , af ∈ F . Let Fλ = {f ∈ F : Pf = λ}. First we have:

Lemma 2.2. Let F be star-shaped around 0 and let τ ∈ Xn. For any λ > 0 and 0 < ε < 1, the projection

Πτ is an ε-isomorphism of Fλ if and only if it is an ε-isomorphism of {f ∈ F : Pf ≥ λ}.

With these definitions, the authors show the following result.

Theorem 2.3. There is an absolute constant c for which the following holds. Let F be a class of functions,

such that for every f ∈ F , ‖f‖∞ ≤ bF . Assume that F is a (β, B)-Bernstein class and suppose that
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λ, x, n, 0 < ε < 1 and 0 < θ < 1 satisfy

λ ≥ cmax

{
bF x

nθ2ε
,

(
Bx

nθ2ε2

)1/(2−β)
}

.

Then

1. If E‖P − Pn‖Fλ
≥ (1 + θ)λε, then

Pr (Πτ is not an ε-isomorphism of Fλ) ≥ 1− e−x.

2. If E‖P − Pn‖Fλ
≤ (1− θ)λε, then

Pr (Πτ is an ε-isomorphism of Fλ) ≥ 1− e−x,

and if moreover F is star-shaped around 0 and 0 < λ < 1, every f ∈ F satisfies

Pr
(

Pf ≤ max
{

Pnf

1− ε
, λ

})
≥ 1− e−x.

Note that the second assertion of 2 follows immediately from the first and lemma 2.2, considering the sets

{f ∈ F : Pf < λ} and {f ∈ F : Pf ≥ λ} separately.

Example 2.1. If F consists of nonnegative functions uniformly bounded by bF (properties frequently

assumed for loss functions), then clearly F is a (1, bF )-Bernstein class. If in addition bF = 1, the condition

on λ in the theorem becomes

λ ≥ c
x

nθ2ε2
,

which improves, with these additional assumptions, on the 1/
√

n bound of the previous paragraph.

To close this paragraph, I’m adding another theorem proved in this paper, which is similar to theorem 2.3,

with an additional final part which will be used in section 3.1 to compare the different approaches. First, let

ξn(r) = E sup{Pf − Pnf : f ∈ F , Pf = r}, and

ξn(r1, r2) = E sup{Pf − Pnf : f ∈ F , r1 ≤ Pf ≤ r2}.

Here is the theorem. Again, note that the first part is similar to the last part of theorem 2.3, and the second

part is obtained by fixing the values of ε, θ and taking λ = r′ in the first part.

Theorem 2.4. There is an absolute constant c for which the following holds. Let F be a (β, B)-Bernstein

class of functions bounded by bF which is star-shaped around 0. Then for any 0 < θ, ε, λ < 1 satisfying

λ ≥ max

{
ξn(λ)

(1− θ)ε
, c

bF x

nθ2ε
, c

(
Bx

nθ2ε2

)1/(2−β)
}

.

every f ∈ F satisfies

Pr
(

Pf ≤ max
{

Pnf

1− ε
, λ

})
≥ 1− e−x.
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In particular, there is an absolute constant c such that if

r′ = max

{
inf {r > 0 : ξn(r) ≤ r/4} ,

c bF x

n
, c

(
Bx

n

)1/(2−β)
}

then a ρ-approximate empirical minimizer f̂ ∈ F satisfies

Pr
(
P f̂ ≤ max{2ρ, r′}

)
≥ 1− e−x.

3 Direct Approach

This part deals with a direct analysis of the empirical mimizer, and an example in section 3.1 shows that

this approach can yield in certain cases much sharper estimates than by means of a structural result which

holds for every function in the class. The goal is to show that the dominant term in the upper bound on P f̂

is, roughly,

argmaxr>0(ξn(r)− r).

The theorem below will give upper and lower bounds on P f̂ , not using this maximizer directly, but values

of r that almost maximize this quantity. For ε > 0, define

rε,+ = sup
{

0 ≤ r ≤ bF : ξn(r)− r ≥ sup
s>0

(ξn(s)− s)− ε

}
,

rε,− = inf
{

0 ≤ r ≤ bF : ξn(r)− r ≥ sup
s>0

(ξn(s)− s)− ε

}
.

The theorem shows that, with a suitable choice of ε, not too small, P f̂ is approximately between rε,− and

rε,+.

Theorem 3.1. For any c1 > 0, there is a constant c, depending only on c1, such that the following holds.

Let F be a (β, B)-Bernstein class that is star-shaped around 0, and such that for every f ∈ F , ‖f‖∞ ≤ bF .

For x given, let

r′ = max

{
inf {r > 0 : ξn(r) ≤ r/4} ,

c bF (x + log n)
n

, c

(
B(x + log n)

n

)1/(2−β)
}

For 0 ≤ ρ ≤ r′/2, let f̂ denote a ρ-approximate empirical risk minimizer. If

ε ≥ c

(
max

{
sup
s>0

(ξn(s)− s), r′β
}

(B + b)(x + log n)
n

)1/2

+ ρ,

1. then

Pr
(

P f̂ ≤ max
{

1
n

, rε,+

})
≥ 1− e−x.

2. If moreover

ξn(0, c1/n) < sup
s>0

(ξn(s)− s)− ε,

then

Pr
(
P f̂ ≥ rε,−

)
≥ 1− e−x.
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Example 3.1. The authors mention that it is easy to see, for the case of nonnegative functions as in example

2.1, that this theorem gives the same upper bound. Somehow I don’t find it that easy.

Remark. Note the important difference in this theorem with the previous results: it gives bounds valid for

P f̂ only, not for the whole class F .

3.1 Comparison of the Approaches

Recall the assumptions made: F is a star-shaped class of uniformly bounded functions which satisfies a

Bernstein condition (which implies Pf ≥ 0, for every f ∈ F). In this part we mention the existence of

such a class F for which the direct approach yields a much better upper bound on P f̂ than the structural

approach. The theorem is as follows.

Theorem 3.2. There is an absolute constant c for which the following holds. If 0 < δ < 1 and n is

sufficiently large, there is a probability measure P and a (1, 2)-Bernstein, star-shaped class F , with bF = 1,

such that

1. For every X1, . . . , Xn, there is a function f ∈ F with Pf = 1/4 and Pnf = 0.

2. For the class F , the function ξn satisfies:

ξn(r) =


(n + 1)r if 0 < r ≤ 1/n

r if 1/n < r ≤ 1/4

0 if r > 1/4.

Thus, inf{r > 0 : ξn(r) ≤ r/4} = 1/4.

3. If f̂ is a ρ-approximate minimizer, where 0 ≤ ρ < 1/8, then with probability larger than 1− δ,

1
n

(
1− c

√
log n

n
− ρ

)
≤ P f̂ ≤ 1

n
.

Part 1 says that no coordinate projection can be an ε-isomorphism (for any 0 < ε < 1). In particular, part

2 says that theorem 2.4 can only give the upper bound 1/4. More generally, any kind of similar structural

approach, proving inequalities valid for the whole class F , can only provide trivial bounds in this case. On

the other hand, part 3 is proved in the paper as a direct application of theorem 3.1, which is thus seen to

provide a much better upper bound in this case.
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