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Abstract

Motivated by the type of missions currently performed by unmanned aerial vehicles, we

investigate a discrete dynamic vehicle routing problem with a potentially large number of targets

and vehicles. Each target is modeled as an independent two-state Markov chain, whose state

is not observed if the target is not visited by some vehicle. The goal for the vehicles is to

collect rewards obtained when they visit the targets in a particular state. This problem can be

seen as a type of restless bandits problem, although we operate here under partial information.

We compute an upper bound on the achievable performance and obtain in closed form an index

policy proposed by Whittle. Simulation results provide evidence for the outstanding performance

of this index heuristic and for the quality of the upper bound.
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1 Introduction

Unmanned aerial vehicles (UAVs) are already actively used for military operations and inves-

tigated for civilian applications such as environmental control and monitoring. Technological

advances in this area have been impressive, yet it seems clear that a major challenge for future

developments will be to increase the level of autonomy of these systems [UAV05]. For this we

need solutions with acceptable levels of performance to difficult optimization problems. For

example, variants of the weapon-target assignment problem have been recently studied in this

context by [BTAH02]. Often, the problems solved are essentially static combinatorial optimiza-

tion problem. Yet, for most applications of UAVs, involving surveillance and monitoring, we

would like to factor into the decision making process the (stochastic) evolution of the environ-

ment, which results in even harder stochastic control problems.

In this paper, we consider the following scenario. A group of M mobile sensors (UAVs) is

tracking the states of N > M sites. Each site can be in one of two states s1 or s2 at each period,

but we only know the state of a site with certainty if we actually visit it with a sensor. However,

we also know that the states of the sites evolve independently of each other and and as Markov

chains with known transition matrices. Hence we can estimate the states of the sites that are

not visited by any sensor at a given period. Every time a sensor visits site number i which

happens to be in state s1, we receive a reward Ri. No reward is received if the site turns out

to be in state s2. The goal is to allocate the sensors at each time period, in order to maximize

an expected total discounted cost over an infinite horizon. Through this model, we capture the

following trade-off. It is advantageous to keep a good estimate of the states of the sites in order

to take a good decision about which sites to visit next. However, the estimation problem is

not the end goal, and so there is a balance between visiting sites to gain more information and

collecting rewards. For an application example, one can think of the following environmental

monitoring problem. M UAVs are surveilling N ships for possible bilge water dumping. The

rewards are associated with the detection of a dumping event (state s1 for a ship). However, if

the UAV is not present during the dumping, the event is missed.

The problem described above is related to various sensor management problems. These

problems have a long history [Ath72, MPD67], but have enjoyed a renewed interest more recently

due to the important research effort in sensor networks, see e.g. [FO90, Cas97, Cas05, GCHR06,

Wil07]. Close to the ideas of this work, we mention the use by [KE01, KE03] of Gittins’ solution

to the multi-armed bandit problem to direct a radar beam towards multiple moving targets.

One goal of this paper is to point out the relevance of Whittle’s interesting extension to the

multi-armed bandit problem, which he called the restless bandits problem. In fact, Whittle
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already mentioned the potential application to airborne sensor routing in his original paper

[Whi88].

Let us start by briefly recalling the multi-armed bandit (MAB) and restless bandits (RB)

models. The classical MAB problem concerns N sites or projects, where the state of project i

at discrete time t is xit, with values in a discrete state space. At each time t, only one project

can be worked on. Then a reward ri(xit) is received, and the state xit evolves to xit+1 according

to a known Markov rule specific to project i. The N − 1 projects that are not operated produce

no reward and their states do not change. The important result of Gittins [GJ74, Git89] is that

the rich structure of this problem makes possible an efficient solution. Optimal policies turn out

to have the form of an index rule. That is, we can compute independently for each project an

index λi(xit) ∈ R such that the optimal policy is to operate at each period the project with the

maximal index.

The requirement of the discrete state space is not crucial. [KE01] adapted the model to a

stochastic control problem with partial information. It is well-known that these problems can

be solved by a transformation to a full state information control problem, where the new state

however is continuous and represents a conditional probability on the original state space. The

other assumptions made in the MAB model inhibit its applicability for the sensor management

problem in a more fundamental way however. Suppose one has to track the state of N targets

evolving independently. First, the MAB solution helps scheduling only one sensor, since only one

target can be worked on at each period. Moreover, even if one does not make new measurements

on a specific target, its information state still has to be updated using the known dynamics of

the true state. This violates the assumption that the projects that are not operated remain

frozen. Hence in [KE01] the authors have to assume that the dynamics of the targets are slow

and that the propagation step of the filters can be neglected for unobserved targets. This might

be a reasonable assumption for scheduling a radar beam, but not necessarily for our purpose of

moving a limited number of airborne sensors to different regions.

To overcome the shortcomings of the MAB model, [Whi88] introduced the restless bandits

model. In this problem, we now allow for M projects to be simultaneously operated, rewards

can be generated for the projects that are not active, and most importantly these projects

are also allowed to evolve, possibly according to different transition rules. These less stringent

assumptions are very useful for the sensor management problem, but unfortunately the RB

problem is now known to be intractable, in fact PSPACE-hard [PT99], even if M = 1 and

we only allow deterministic transition rules. Nonetheless, Whittle investigated an interesting

relaxation and index policy for this problem, which extends Gittins’ and which we will review

in section 4 in our specific context. The relaxation technique in particular has been used more

recently and apparently independently for more involved sensor management problems but with

similar characteristics by Castañón [Cas97, Cas05]. Our problem can be seen as a particular

case of the restless bandits problem, although under partial information. Whittle’s heuristic

for partial information problems has apparently not been studied previously in the literature,

except for the particular case already mentioned of the multi-armed bandit problem.

The rest of the paper is organized as follows. In section 2, we give a precise formulation of
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our problem. In section 3, we provide a counter example showing that the obvious candidate

solution to the problem is not optimal. Section 4 presents in a general setting our solution to this

sensor routing problem, inspired by Whittle’s method and more general work on constrained

Markov decision processes [Alt99]. An upper bound on the achievable performance is obtained

by solving a relaxed problem using a Lagrangian approach and subgradient optimization. A

lower bound is obtained by computing Whittle’s index policy. The computation of Whittle’s

indices is non trivial in general, and the indices may not always exist. An attractive feature of

our problem however is that all computations can be carried out analytically. Hence in section

5, we show the indexability of the problem and obtain simultaneously a closed form expression

of Whittle’s indices. Finally in section 6, we verify experimentally the high performance of the

index policy by comparing it to the upper bound for some problems involving a large number

of targets and vehicles.

2 Problem Formulation

We consider the following discrete time problem. We have N sites, each of which can be in one

of two states {s1, s2}. For i ∈ {1, . . . , N}, the state of site i changes from one period to the next

according to a Markov chain with known transition probability matrix P (i), independently of

the fact that an agent is present or not, and independently of the other sites. To specify P (i), it

is sufficient to give P (i)
11 and P (i)

21 , which are the probabilities of transition to state s1 from state

s1 and s2 respectively. We have M agents to observe the sites and obtain rewards. When an

agent explores site i, it can observe its state without measurement error, and obtain a reward

Ri if the site is in state s1. There is no cost for moving the agents between the sites. We want

to determine how we should allocate the agents at each time period.

The state of the N sites at time t is xt = (x1
t , . . . , x

N
t ) ∈ {s1, s2}N , and the control is to

decide which M sites to observe. An action at time t can only depend on the information

state It which consists of the actions a0, . . . , at−1 at previous times as well as the observations

y0, . . . , yt−1 and the prior information y−1 on the initial state x0. We represent an action at by

the vector (a1
t , . . . , a

N
t ) ∈ {0, 1}N , where ait = 1 if site i is visited by a sensor at time t, and

ait = 0 otherwise.

Assume the following flow of events. Given our current information state, we make the

decision as to which M sites to observe. The rewards are obtained depending on the states

observed, and the information state is updated. Once the rewards have been collected, the

states of the sites evolve according to the known transition probabilities.

Let p be a given probability distribution on the initial state x0. We assume independence of

the initial distributions, i.e.,

P (x1
0 = s1, . . . , xN0 = sN ) = p(s1, . . . , sN )

=
N∏
i=1

(pi−1)1(si=s1)(1− pi−1)1(si=s2),

for some given numbers pi−1 ∈ [0, 1]. For an admissible policy π, i.e., depending only on the
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information process, we denote Eπp the expectation operator. We want to maximize over the set

of admissible policies Π the expected infinite-horizon discounted reward

J(p, π) = Eπp

{ ∞∑
t=0

αtr(xt, at)

}
, (1)

where

r(xt, at) =
N∑
i=1

Ri 1{ait = 1, xit = s1},

and subject to the constraint
N∑
j=1

1{ait = 1} = M,∀t. (2)

It is well known that we can reformulate this problem as an equivalent Markov decision

process (MDP) with complete information [Ber01]. A sufficient statistic for this problem is

given by the conditional probability P (xt|It), so we look for an optimal policy of the form

πt(P (xt|It)). An additional simplification in our problem comes from the fact that the sites are

assumed to evolve independently. Let pit be the probability that site i is in state s1 at time t,

given It. A simple sufficient statistic at time t is then (p1
t , . . . , p

N
t ) ∈ [0, 1]N .

Remark. The state representation chosen here involves a uncountable state space, for which the

MDP theory is usually more technical. However, in our case, little additional complexity will

be introduced. It is possible to adopt a state representation with a countable state space, by

keeping track for each site of the number of periods since last visit as well as the state of the site

at that last visit. In addition, we need to treat separately the time periods before we visit a site

for the first time. This state representation, although potentially simpler from the theoretical

point of view, is notationally more cumbersome and will not be used.

We have the following recursion:

pit+1 =



P
(i)
11 , if site i is visited at time t and found in state s1.

P
(i)
21 , if the site i is visited at time t and found in state s2.

f i(pit) := pitP
(i)
11 + (1− pit)P

(i)
21 = P

(i)
21 + pit(P

(i)
11 − P

(i)
21 ),

if site i is not visited at time t.

(3)

3 Non-Optimality of the Greedy Policy

We can first try to solve the problem formulated above with a general purpose POMDP solver.

However, the computations become quickly intractable, since the size of the state space increases

exponentially with the number of sites. Moreover, this approach would not take advantage of

the structure of the problem, notably the independent evolution of the sites. We would like to

use this structure to design optimal or good suboptimal policies more efficiently.

There is an obvious candidate solution to this problem, which consists in selecting at each

period the M sites for which pitR
i is the highest. This policy is not optimal in general, however.

To show this, it is sufficient to consider a simple case with completely deterministic transition
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Figure 1: Counter Example.

rules but uncertainty on the initial state. This underlines the importance of removing the

uncertainty at the right time.

Consider the example shown on Fig. 1, with N = 2, M = 1. Assume that we know already

at the beginning that site 1 is in state s1, i.e., p1
−1 = 1. Hence we know that every time we

select site 1, we will receive a reward R1, and in effect this makes state s2 of site 1 obsolete.

Assume R1 > p2
−1R

2, but (1 − p2
−1)R2 > R1, i.e., R2 − R1 > p2

−1R
2. Let us denote p2

−1 := p2

for simplicity. The greedy policy, with associated reward-to-go Jg, first selects site 1, and we

have

Jg(1, p2) = R1 + αJg(1, 1− p2).

During the second period the greedy policy chooses site 2. Hence

Jg(1, 1− p2) = (1− p2)R2 + α(1− p2)Jg(1, 0) + αp2Jg(1, 1).

Note that Jg(1, 0) and Jg(1, 1) are also the optimal values for the reward-to-go at these states,

because the greedy policy is obviously optimal once all uncertainty has been removed. It is easy

to compute

Jg(1, 0) =
R1 + αR2

1− α2
, Jg(1, 1) =

R2 + αR1

1− α2
.

Now suppose we sample first at site 2, removing the uncertainty, and then follow the greedy

policy, which is optimal. We get for the associated reward-to-go:

J(1, p2) = p2R2 + αp2Jg(1, 0) + α(1− p2)Jg(1, 1).
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Let us take the difference:

J − Jg = p2R2 + αp2Jg(1, 0) + α(1− p2)Jg(1, 1)−R1

− α(1− p2)R2 − α2(1− p2)Jg(1, 0)− α2p2Jg(1, 1)

= p2R2 −R1 − α(1− p2)R2

+ αJg(1, 0)(p2 − α+ αp2) + αJg(1, 1)(1− p2 − αp2)

= p2R2 −R1 − α(1− p2)R2

+
α

1− α2
[(R1 + αR2)(p2 − α+ αp2)

+ (R2 + αR1)(1− p2 − αp2)]

= p2R2 −R1 − α(1− p2)R2+
α

1− α2
[R1(p2 − α+ αp2 + α− αp2 − α2p2)

+R2(αp2 − α2 + α2p2 + 1− p2 − αp2)]

= p2R2 −R1 − α(1− p2)R2 + αp2R1 + αR2(1− p2)

= p2R2 −R1 + αp2R1.

For example, we can take R2 = 3R1, p2 = (1 − ε)/3, for a small ε > 0. We get p2R2 =

R1(1 − ε) < R1 and (1 − p2)R2 = (2 − ε)R1 > R1 so our assumptions are satisfied. Then

J − Jg = α
3R

1(1 − ε − αε
3 ), which can be made positive for ε small enough, and as large as we

want by simply scaling the rewards. Hence in this case it is better to first inspect site 2 than to

follow the greedy policy from the beginning.

4 Restless Bandits

The optimization problem (1) subject to the ressource constraint (2) seems difficult to solve

directly. However one can obtain an upper bound on the achievable performance by relaxing

the constraint (2) to enforce it only on average. More specifically, we replace it by the following

constraint

Eπp


∞∑
t=0

αt
N∑
j=1

1{ait = 1}

 =
M

1− α
,

or equivalently by

D(p, π) = Eπp

{ ∞∑
t=0

αt
N∑
i=1

1{ait = 0}

}
=
N −M
1− α

. (4)

Clearly (4) is implied by (2), so solving the optimization problem (1) with relaxed constraint

(4) indeed provides an upper bound on the achievable performance. This relaxed problem can

now be solved using the tools available for constrained MDPs. The two main (dual) approaches

are a direct linear programming formulation on the set of occupation measures, or a Lagrangian

approach using dynamic programming ideas [Alt99]. In addition to solving the relaxed problem,

we would also like to use its solution to obtain a feasible policy for the original problem. We do

this by using the additional restless bandits structure.

7



To study the restless bandits problem, Whittle used the Lagrangian approach for the con-

strained MDP, which we also follow here. Linear programming in the context of sensor man-

agement has also been used, see e.g. [YW00, LDF06]. The following results can be found in

[Alt99, chapter 3]. Define the Lagrangian

L(p, π, λ) = J(p, π) + λ

(
D(p, π)− N −M

1− α

)
,

with λ ∈ R a Lagrange multiplier. Then the optimal reward for the problem with averaged

constraint satisfies

J∗(p) = sup
π∈Π

inf
λ
L(p, π, λ) = sup

π∈ΠS

inf
λ
L(p, π, λ),

where ΠS is the set of stationary Markov (randomized) policies. Since we allow for randomized

policies, a classical minimax theorem allows us to interchange the sup and the inf to get

J∗(p) = inf
λ

{
J∗(p;λ)− λN −M

1− α

}
(5)

where

J∗(p;λ) = sup
π∈ΠD

{J(p, π) + λD(p, π))} (6)

= sup
π∈ΠD

Eπp

{ ∞∑
t=0

αt
N∑
i=1

Ri 1{ait = 1, xit = s1}+ λ1{ait = 0}

}
,

and ΠD is now the set of stationary deterministic policies. For a fixed λ, J∗(p;λ) can be

computed using dynamic programming, and the possibility to restrict to deterministic policies

is a classical result for unconstrained dynamic programming. Moreover, the computation of

J∗(p;λ) has the interesting property of being separable by site. Hence we can solve the dynamic

programming problem for each site separately:

J∗(p;λ) =
N∑
i=1

J∗,i(p;λ)

J∗,i(pi;λ) = max
{
λ+ αJ∗,i(f ipi;λ), piRi + αpiJ∗,i(P i11;λ) + α(1− pi)J∗,i(P i21;λ)

}
,

the second equation being Bellman’s equation for site i.

We can now finish the computation of the upper bound using standard dual optimization

methods. Supose that we are given a prior p on the initial states of the sites. The dual function,

which we would like to minimize over λ, is

G(p;λ) = J∗(p;λ)− λN −M
1− α

.

G is a convex function of λ, although in general not differentiable. We can solve the minimization

problem (5) using the subgradient method, althouth an even simpler method such as a line search

would also be possible. We have the following well-known result, see e.g. [Ber99]:

Theorem 4.1. A subgradient of G(p; ·) at λ is

D(p, π∗λ)− N −M
1− α

=
N∑
i=1

Di(pi, π∗,iλ )− N −M
1− α

, (7)
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where π∗λ is an optimal policy for the problem (6) (which can be decomposed into optimal policies

π∗,iλ for each site), and

Di(pi, π∗,iλ ) = E
π∗,iλ
pi

{ ∞∑
t=0

αt1{ait = 0}

}
.

We will see in section 5 that an expression for D(p, π∗λ) is obtained at no additional cost once

we have an expression for J∗(p;λ).

So far however, we have only provided a means to compute an upper bound on the achievable

performance. It remains to find a good policy for the original, path constrained problem. Whittle

proposed an index policy which generalizes Gittins’ policy for the multi-armed bandit problem

and emerges naturally from the Lagrangian relaxation. We underline here only the key ideas

and refer the reader to [Whi88] for more details and motivations behind this heuristic.

To compute Whittle’s indices, we consider the bandits (or targets) individually. Hence

we isolate bandit i, consider the computation problem for J∗,i(pi;λ) and drop the superscript

identifier i for simplicity. λ can be viewed as a “subsidy for passivity”, which parametrizes a

collection of MDPs. Let us denote by P(λ) ⊂ [0, 1] the set of information states p of the bandit

such that the passive action is optimal, i.e.,

P(λ) = {λ ∈ R : λ+ αJ∗(fp;λ) ≥ pR+ αpJ∗(P11;λ) + α(1− p)J∗(P21;λ)} .

Definition 4.1. A bandit is indexable if P(λ) is monotonically increasing from ∅ to [0, 1] as λ

increases from −∞ to +∞, i.e.,

λ1 ≤ λ2 ⇒ P(λ1) ⊆ P(λ2).

Hence a bandit is indexable if the set of states for which it is optimal to take the passive

action increases with the subsidy for passivity. This requirement seems very natural. Yet

Whittle provided an example showing that it is not always satisfied, and typically showing the

indexability property for particular cases of the RB problem is challenging, see e.g. [NM01,

GRHK06]. However, when this property could be established, Whittle’s index policy, which we

now describe, was found empirically to perform outstandingly well. [WW90] also studied a form

of asymptotic optimality for this heuristic.

Definition 4.2. If a bandit is indexable, its Whittle index is given, for any p ∈ [0, 1], by

λ(p) = inf {λ ∈ R : p ∈ P(λ)} .

Hence, if the bandit is in state p, λ(p) is the value of the subsidy λ which renders the active

and passive actions equally attractive. Then, restauring the superscripts i for the N bandits,

and assuming that each bandit is indexable we obtain for state (p1
t , . . . , p

N
t ) a set of Whittle

indices λ1(p1
t ), . . . , λ

N (pNt ). Then Whittle’s index heuristic applies at each period t the active

action to the M projects with largest index λi(pit), and the passive action to the remaining

N −M projects.
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5 Indexability and Computation of Whittle’s Indices

5.1 Preliminaries

In this section we study the indexability property for each site. For the sensor management

problem considered in this paper, we show that the bandits are indeed indexable and compute

the Whittle indices in closed form. Since the discussion concerns a single site, we will again

drop the superscript i. A site has its dynamics completely specified by P21 and P11. We denote

the information state by pt, i.e., pt is the probability that the site is in state s1, conditioned on

the past. If we visit the site and it is in state 1, we get a reward R > 0, but if it is in state

s2, we get no reward. In the following, we call visiting the site the active action. Finally, if we

do not visit the site, which is called the passive action, we collect a reward λ with probability

1. The indexability property that we would like to verify means that as λ increases, the set of

information states where it is optimal to choose the passive action grows monotonically (in the

sense of inclusion), from ∅ when λ→ −∞ to [0, 1] when λ→ +∞.

For reference we rewrite Bellman’s equation of optimality for this problem. If J is the optimal

value function, then

J(p) = max {λ+ αJ(fp), pR+ αpJ(P11) + α(1− p)J(P21)} (8)

where fp := pP11 + (1− p)P21 = P21 + p(P11 − P21).

Note that for simplicity, we dropped the λ and the ∗ from the previous notation, i.e., J(p) :=

J∗(p;λ). First we have

Theorem 5.1. J is a convex function of p, continuous on [0, 1].

Proof. It is well known that we can obtain the value function by value iteration as a uniform

limit of cost functions for finite horizon problems, which are continuous, piecewise linear and

convex, see e.g. [Son78]. The uniform convergence follows from the fact that the discounted

dynamic programming operator is a contraction mapping. The convexity of J follows, and the

continuity on the closed interval [0, 1] is a consequence of the uniform convergence.

Lemma 5.2. 1. When λ ≤ pR, it is optimal to take the active action. In particular, if λ ≤ 0,

it is always optimal to take the active action and J is affine:

J(p) = αJ(P21) + p[R+ α(J(P11)− J(P21))]

=
(αP21 + p(1− α))R

(1− α)(1− α(P11 − P21))
. (9)

2. When λ ≥ R, it is always optimal to take the passive action, and

J(p) =
λ

1− α
. (10)

Proof. By convexity of J , J(fp) ≤ pJ(P11) + (1− p)J(P21) and so for λ ≤ pR, it is optimal to

choose the active action. The rest of 1 follows by easy calculation, solving first for J(P11) and

J(P21). To prove 2, use value iteration, starting from J0 = 0.

10



With this lemma, it is sufficient to consider from now on the situation 0 < λ < R.

Lemma 5.3. The set of p ∈ [0, 1] where it is optimal to choose the active action is convex, i.e.,

an interval in [0, 1].

Proof. In the set where the active action is optimal, we have

J(p) = pR+ αpJ(P11) + α(1− p)J(P21).

Consider p1 and p2 in this set. We want to show that for all β ∈ [0, 1], it is also optimal to

choose the active action at p = βp1 + (1− β)p2. We know from Belmann’s equation (8) that

pR+ αpJ(P11) + α(1− p)J(P21) ≤ J(p).

By convexity of J , we have

J(p) ≤βJ(p1) + (1− β)J(p2)

J(p) ≤β (p1R+ αp1J(P11) + α(1− p1)J(P21)) + (1− β) (p2R+ αp2J(P11) + α(1− p2)J(P21))

J(p) ≤pR+ αpJ(P11) + α(1− p)J(P21).

Combining the two inequalities, we see that the active action is optimal at p.

Lemma 5.4. The sets of p ∈ [0, 1] where the passive and active actions are optimal are of the

form [0, p∗] and [p∗, 1], respectively.

Proof. This follows from the convexity of the active set and the fact that the active action is

optimal for p ≥ λ
R by lemma 5.2.

In the following, we emphasize the dependence of p∗ on λ by writing p∗(λ). It is a direct

consequence of lemma 5.4 and the continuity of J that p∗(λ) is the unique value where the

passive and the active actions are equally attractive. We also see that to show the indexability

property of definition 4.1, it is sufficient to show that p∗(λ) is an increasing function of λ. Then,

Whittle’s index is obtained by inverting the relation λ→ p∗(λ), i.e.,

λ(p) = inf {λ : p∗(λ) = p} .

In the following, we will compute p∗(λ) explicitely, distinguishing between various cases

depending on the values of the parameters P11 and P21 of the bandit. In addition we also

compute the value function J(p) := J∗(p;λ) and the following “discounted passivity measure”

for each bandit:

D(p, π∗λ) = E
π∗λ
p

{ ∞∑
t=0

αt1{at = 0}

}
.

This last quantity is necessary to compute the subgradient (7). Its computation is a policy

evaluation problem. D(p, π∗λ) obeys the equations

D(p, π∗λ) =

αpD(P11, π
∗
λ) + α(1− p)D(P21, π

∗
λ) for p > p∗(λ)

1 + αD(fp, π∗λ) for p ≤ p∗(λ).
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These equations can be compared to those verified by J∗(p;λ) once p∗(λ) is known:

J∗(p;λ) =

R+ αpJ∗(P11, λ) + α(1− p)J∗(P21, λ) for p > p∗(λ)

λ+ αJ∗(fp, λ) for p ≤ p∗(λ).

Hence it is sufficient to have a closed form solution for J∗(p;λ). To compute D(p, π∗λ), we simply

formally set R = 0 and λ = 1 in the corresponding expression for J∗(p;λ). For example, starting

from expressions (9) and (10), we recover the (trivial) result that D(p, π∗λ) = 0 if λ ≤ 0 and

D(p, π∗λ) = 1/(1− α) if λ > 0.

The next paragraphs of this section present the explicit computations.

5.2 Case P21 = P11

This case is very easy. Let P11 = P21 = P . We have in particular fp = P , for all p ∈ [0, 1].

Bellman’s equation gives

J(p) = max{λ+ αJ(P ), pR+ αJ(P )},

so in this case, we have immediately

p∗(λ) =
λ

R

and the project is indexable.

To give the complete expression of the value function, we only need to determine J(P ).

There are two cases:

1. Case P ≤ (λ/R): then J(P ) = λ
1−α , and so

J(p) =

 λ
1−α if p ≤ λ

R

pR+ αλ
1−α if p > λ

R .

2. Case P > (λ/R): then J(P ) = PR
1−α and so

J(p) =

λ+ αPR
1−α if p ≤ λ

R(
p+ αP

1−α

)
R if p > λ

R .

5.3 Case P21 < P11

This case is more involved. We will need to consider the evolution of the state pt.

5.3.1 Case P11 = 1, P21 = 0

Suppose first P11 = 1, P21 = 0, and recall that 0 < λ < R. Then it is clear that J(0) = λ/(1−α)

and J(1) = R/(1 − α). By continuity of J , at p∗ we are indifferent between the passive and

active actions, so

J(p∗) = λ+ αJ(p∗) = p∗R+ αp∗J(1) + α(1− p∗)J(0),

12



from which J(p∗) = λ/(1− α) follows, and then

p∗ =
λ(1− α)
R− αλ

.

Thus p∗(λ) an increasing function of λ, since its derivative is

dp∗

dλ
=

(1− α)R
(R− αλ)2

≥ 0.

As for the value function, we get

J(p) =

 λ
1−α if p ≤ p∗

αλ
1−α + pR−αλ1−α if p > p∗.

5.3.2 Case 0 < P11 − P21 < 1

In this case there is a unique point of intersection between the diagonal line and the line which

is the graph of p→ fp, see Fig. 2. We will denote by I the abscissa in [0, 1] of this intersection

point. Then I is defined by

I = fI = P21 + I(P11 − P21),

that is,

I =
P21

1− (P11 − P21)
,

which is well defined as long as we are not in the case of paragraph 5.3.1. Note that P21 ≤ I ≤
P11. Also, we have

fnp1 − fnp2 = (p1 − p2)(P11 − P21)n, ∀ p1, p2 ∈ [0, 1],

and in particular

fnp− fnI = fnp− I = (p− I)(P11 − P21)n. (11)

So as long as |P11 − P21| < 1, as in this paragraph or in paragraph 5.4.2, the distance between

fnp and I decreases strictly at each iteration and fnp→ I as n→∞.

Case p∗ ≥ I:
Assume first that p∗ ≥ I, and consider p belonging to the passive region [0, p∗]. From (11)

and the assumption 0 < P11 − P21 < 1, we obtain a sequence of iterates fnp which remains in

the passive region while converging to I. Hence we get, since J is continuous at I,

J(p) = λ+ αJ(fp) = λ+ αλ+ α2J(f2p) = . . . =
λ

1− α
.

So for instance, J(P21) = J(p∗) = λ
1−α , since P21 ≤ I ≤ p∗ implies that P21 belongs to the

passive region.

Now for p > p∗, we have

J(p) = pR+ αpJ(P11) + α(1− p)J(P21) = pR+ αpJ(P11) + α(1− p) λ

1− α
.

There are two subcases. First if P11 ≤ p∗, then we get

J(p) = pR+
αλ

1− α
.
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Figure 2: Case I < p∗ < P11. The line joining P21 and P11 is p → f(p). In the active region, we

have pt+1 = P11 or P21 depending on the observation.

Continuity of J at p∗, gives p∗R+ αλ
1−α = λ

1−α and so

p∗(λ) =
λ

R
. (12)

This is the expression in the case λ
R ≥ P11.

It is also possible that P11 > p∗. Then

J(P11) = P11R+ αP11J(P11) + α(1− P11)J(P21),

which gives

J(P11) =
P11R+ α(1− P11) λ

1−α
1− αP11

.

Using the continuity of J at p∗ and the fact that fp∗ ≤ p∗, we get

p∗

[
R+ α

P11R+ α(1− P11) λ
1−α

1− αP11
− αλ

1− α

]
= λ,

which after simplifications gives

p∗(λ) =
(1− αP11)λ
R− αλ

. (13)

Then the condition p∗ < P11 translates to λ
R < P11, which is coherent. As before, it is easy to

see that p∗ is an increasing function of λ in this subcase. This completes the case p∗ ≥ I.

Remark. The expressions (12) and (13) give a continuous and monotonically increasing function

p∗(λ) on the interval [λI , R] = [λI , P11R] ∪ [P11R,R], where λI is the point where p∗(λI) = I,

with p∗(λI) given by (13). This can be rewritten

λI :=
P21R

1− (P11 − P21)(1 + α− αP11)
.

Summarizing the results above, we have then

14



1. If R > λ ≥ P11R, then p∗(λ) = λ
R and

J(p) =

 λ
1−α if p ≤ p∗

pR+ αλ
1−α if p > p∗.

2. If P11R > λ ≥ λI , then p∗(λ) = (1−αP11)λ
R−αλ and

J(p) =

 λ
1−α if p ≤ p∗

αλ
1−α + p R−αλ

1−αP11
if p > p∗.

Case p∗ < I:

This subcase is the most involved. We have by continuity of J at p∗:

J(p∗) = λ+ αJ(fp∗) = p∗R+ αp∗J(P11) + α(1− p∗)J(P21).

Since p∗ < I we have fp∗ > p∗, i.e., fp∗ is in the active region. So we can rewrite the second

equality as:

λ+α((fp∗)R+α(fp∗)J(P11) +α(1− fp∗)J(P21)) = p∗R+αp∗J(P11) +α(1− p∗)J(P21). (14)

Expanding the left hand side gives

J(p∗) = λ+ α2J(P21) + α(P21 + p∗(P11 − P21))[R+ α(J(P11)− J(P21))].

It is clear that P11 ≥ I and since I > p∗ we have

J(P11) = P11R+ αP11J(P11) + α(1− P11)J(P21),

so

J(P11) =
P11R+ α(1− P11)J(P21)

1− αP11
,

which gives

J(P11)− J(P21) =
P11R− (1− α)J(P21)

1− αP11
,

and

R+ α(J(P11)− J(P21)) =
R− α(1− α)J(P21)

1− αP11
. (15)

We now use (15) on both sides of the continuity condition (14):

λ+α2J(P21)+α(P21+p∗(P11−P21))
[
R− α(1− α)J(P21)

1− αP11

]
= αJ(P21)+p∗

[
R− α(1− α)J(P21)

1− αP11

]
.

We obtain:

p∗ =
λ− α(1− α)J(P21) + αP21

[
R−α(1−α)J(P21)

1−αP11

]
(1− α(P11 − P21))

[
R−α(1−α)J(P21)

1−αP11

] .

We can rewrite this expression as

p∗ =
(1− α(P11 − P21)) [λ− α(1− α)J(P21)] + αP21(R−M)

(1− α(P11 − P21)) [R− α(1− α)J(P21)]
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Figure 3: Case P21 < p∗ < I.

or

p∗ = 1− (R− λ)(1− αP11)
(1− α(P11 − P21)) [R− α(1− α)J(P21)]

. (16)

So essentially the problem is solved if we can have an expression for J(P21). The case where

p∗ ≤ P21 can be solved the most easily. Then

J(P21) = P21R+ αP21J(P11) + α(1− P21)J(P21),

which, combined with the similar equation for J(P11), gives:

J(P11) =
R(P11 − α(P11 − P21))

(1− α)[1− α(P11 − P21)]
(17)

J(P21) =
P21R

(1− α)[1− α(P11 − P21)]
. (18)

After some calculation, we get:

p∗(λ) =
λ

R
.

and this is valid for the case p∗(λ) ≤ P21, i.e., λ ≤ P21R.

Now from figure 3, if P21 < p∗ < I, it can be seen that the iterates fkP21, initially in the

passive region, eventually reach the active region and at that point one can evaluate J(P21).

The number of iterations however depends on the position of p∗.

It is easy to see that

fnP21 = P21
1− (P11 − P21)n+1

1− (P11 − P21)
.

The rest of the analysis, computing J(P21) for P21 < p∗ < I, will distinguish different cases by

the unique integer k such that:

fkP21 < p∗ ≤ fk+1P21.
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By definition of p∗ separating the passive and active regions, we have:

J(P21) = λ+ αλ+ α2λ+ . . .+ αkλ+ αk+1J(fk+1P21) =
1− αk+1

1− α
λ+ αk+1J(fk+1P21),

(19)

J(fk+1P21) = (fk+1P21)R+ α(fk+1P21)J(P11) + α(1− fk+1P21)J(P21)

= αJ(P21) + (fk+1P21)[R+ α(J(P11)− J(P21))]

= αJ(P21) + (fk+1P21)
R− α(1− α)J(P21)

1− αP11
, (20)

where the last line was obtained using (15). Solving this system of equations, we obtain

J(P21) =
1

1− α
(1− αk+1)(1− αP11)λ+ αk+1(1− α)(fk+1P21)R

(1− αk+2)(1− αP11) + αk+2(1− α)(fk+1P21)
. (21)

We can now use this expression in (16). As an intermediate step, we compute:

R− α(1− α)J(P21) =
(1− αP11)[R(1− αk+2)− λ(α− αk+2)]

(1− αP11)(1− αk+2) + αk+2(1− α)(fk+1P21)
.

Then we obtain:

p∗ = 1− (R− λ)[(1− αP11)(1− αk+2) + αk+2(1− α)(fk+1P21)]
(1− α(P11 − P21))[R(1− αk+2)− λ(α− αk+2)]

.

We rewrite this expression in a more readable form as:

p∗ = 1−Ak
R− λ

BkR− Ckλ
(22)

Ak =
(1− αP11)(1− αk+2) + αk+2(1− α)(fk+1P21)

1− α(P11 − P21)

Bk = 1− αk+2

Ck = α− αk+2.

The condition

fkP21 < p∗ ≤ fk+1P21

can then be rewritten as

Ak − (1− fkP21)Bk
Ak − (1− fkP21)Ck

<
λ

R
≤ Ak − (1− fk+1P21)Bk
Ak − (1− fk+1P21)Ck

. (23)

As a sanity check, we can verify that the successive thresholds agree:

Ak − (1− fk+1P21)Bk
Ak − (1− fk+1P21)Ck

=
Ak+1 − (1− fk+1P21)Bk+1

Ak+1 − (1− fk+1P21)Ck+1
.

Taking the cross-products, this amounts to verifying:

(1− fk+1P21)(Bk+1Ck −BkCk+1) +Ak(Ck+1 −Bk+1) +Ak+1(Bk − Ck) = 0.
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Figure 4: Plot of p∗(λ) for P21 = 0.2, P11 = 0.8, α = 0.9.

The left hand side gives

(1− fk+1P21)[α(1− αk+3)((1− αk+1)− α(1− αk+2)2] + (1− α)(Ak+1 −Ak)

=− αk+2(1− α)2(1− fk+1P21) + (1− α)
(1− αP11)αk+2(1− α) + αk+2(1− α)(αfk+2P21 − fk+1P21)

1− α(P11 − P21)

=αk+2(1− α)2

[
−(1− fk+1P21) +

(1− αP11) + αP21 + [α(P11 − P21)− 1]fk+1P21

1− α(P11 − P21)

]
=0.

On each interval, we verify that p∗ is an increasing function of λ. We just compute

dp∗

dλ
= −Ak

−(BkR− Ckλ) + Ck(R− λ)
(BkR− Ckλ)2

dp∗

dλ
= Ak

(1− α)R
(BkR− Ckλ)2

≥ 0.

Remark. It can be verified that the first threshold also coincides with the previous case studied,

that is:
A0 − (1− fP21)B0

A0 − (1− fP21)C0
= P21

Also, as k →∞, we can easily verify that the thresholds in (23) converge to λI/R.

A plot of p∗(λ) is given on Fig. 4 and 5. To conclude this case, i.e., λ < λI , let us summarize

the computational procedure.

1. If λ ≤ P21R, then p = λ
R . J(P11) and J(P21) are given by (17) and (18) respectively.
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Figure 5: Plot of p∗(λ) for P21 = 0.2, P11 = 0.8, α = 0.9. The vertical lines show the separation

between the regions corresponding to different values of k in the analysis for p∗ < I. λI is an

accumulation point, i.e., there are in fact infinitely many such lines converging to λI .

2. If P21R < λ < λI , we have first to find the unique k such that the condition (23) is verified.

Once this is done, p∗ is given by (22), J(P21) is given by (21), and J(P11), or equivalently

R+ α(J(P11)− J(P21)), is given by (15).

With this, we have all the elements to actually compute J(p) for given values of p and λ. When

p ≥ p∗, we have J(p) = αJ(P21) + p[R+α(J(P11)− J(P21))] and so we are done. When p < p∗

however, to finish the computation we need to proceed as in the computation of J(P21). We first

find the unique integer l such that f lp < p∗ ≤ f l+1p (it exists since here p∗ < I and f lp→ I as

l→∞). Let s = P11 − P21. Since

f lp = P21
1− sl

1− s
+ psl = I(1− sl) + psl = I − sl(I − p),

we obtain

l =
⌈

1
ln s

ln
I − p∗

I − p

⌉
− 1.

Then we have

J(p) =
1− αl+1

1− α
λ+ αl+2J(P21) + αl+1(f l+1p)[R+ α(J(P11)− J(P21))],

see (19), (20).
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5.4 Case P21 > P11

5.4.1 Case P11 = 0, P21 = 1

As in section 5.3, we start the study of the remaining case P21 > P11 with P11 = 0, P21 = 1.

Then, because the active and the passive actions are necessarily optimal at p = 1 and p = 0

respectively by lemma 5.4, we have

J(1) = R+ αJ(0), J(0) = λ+ αJ(1),

which gives

J(1) =
R+ αλ

1− α2
, J(0) =

λ+ αR

1− α2
, (24)

and from which we get

R+ α(J(0)− J(1)) =
R+ αλ

1 + α
.

Now by continuity of J ,

J(p∗) = λ+ αJ(1− p∗) = p∗R+ αp∗J(0) + α(1− p∗)J(1), (25)

and using the preceding relations in the right-hand side

J(p∗) = α
R+ αλ

1− α2
+ p∗

R+ αλ

1 + α
=
R+ αλ

1 + α

(
α

1− α
+ p∗

)
. (26)

Now if we have p∗ ≥ 1/2, then 1− p∗ ≤ 1/2 ≤ p∗ is in the passive region, and so

J(1− p∗) = λ+ αJ(p∗).

Reporting in the first part of (25), we obtain

J(p∗) =
λ

1− α
,

which, with (26), gives

p∗ =
λ(1 + α− α2)− αR

(1− α)(R+ αλ)
.

p∗ is an increasing function of λ since one can verify that

dp∗

dλ
= (1− α2)

R

(1− α)2(R+ αλ)2
≥ 0.

Then the condition p∗ ≥ 1/2 translates to

λ

R
≥ 1 + α

2 + α− α2
=

1
2− α

.

In the case p∗ < 1/2, (1− p∗) > 1/2 > p∗ is in the active region, so we obtain

J(1− p∗) = (1− p∗)R+ α(1− p∗)J(0) + αp∗J(1)

= R+ αJ(0)− p∗[R+ α(J(0)− J(1))]
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Reporting in (25), we get

λ+ α(R+ αJ(0)− J(1)) = p∗(1 + α)[R+ α(J(0)− J(1))]

which gives after easy calculation

p∗ =
λ

R+ αλ
.

This is again an increasing function of λ and the condition p∗ < 1/2 can be written

λ

R
<

1
2− α

,

which is coherent (the junction between the two cases happens when p∗(λ) hits 1/2).

Now for a given value of p and λ, we also want to compute J(p). Comparing λ/R to 1/(2−α),

we can deduce the correct formula for p∗. Then if p ≥ p∗, we are done, using the values of J(0)

and J(1) in (24). We obtain in this case:

J(p) =
R+ αλ

1− α2
(α+ p(1− α)).

If p < p∗, J(p) = λ+αJ(1−p), and we distinguish between two subcases. If (1−p) ≤ p∗ (which

is only possible if p∗ > 1/2), i.e., 1− p∗ ≤ p < p∗, then

J(p) =
λ

1− α
.

Otherwise, if (1− p) > p∗, i.e., p < 1− p∗ and p < p∗, then

J(p) = λ+ α[(1− p)R+ α(1− p)J(0) + αpJ(1)].

and this gives after simplifications

J(p) =
λ(1− α2p(1− α)) + αR(1− p(1− α))

1− α2
.

5.4.2 Case 0 < P21 − P11 < 1

The discussion related to the fixed point I at the beginning of section 5.3.2 is still valid here,

including equation (11) showing the convergence of the iterates fnp to I since we assume in this

paragraph that 0 < P21 − P11 < 1. These iterations land now alternatively on each side of I.

Case p∗ ≥ I.

In the case p∗ ≥ I, the iterates fnp∗ converge to I while remaining in the passive region. So

we immediately get

J(p∗) =
λ

1− α
.

By continuity of J at p∗, where the active action is also optimal, we have

λ

1− α
= p∗R+ αp∗J(P11) + α(1− p∗)J(P21),

and this gives us

p∗ =
λ

1−α − αJ(P21)
R+ α(J(P11)− J(P21))

. (27)
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We now compute J(P11) and J(P21) in the different cases, depending on the position of p∗.

Note first that P11 < I necessarily, so P11 is in the passive region by our assumption p∗ ≥ I.

Hence

J(P11) = λ+ αJ(fP11).

fP11 is greater than I however and can fall in the passive or the active region. If fP11 ≤ p∗, it

is easy to see that the iterates fnP11 will remain in the passive region, and so we obtain

J(P11) =
λ

1− α
.

If fP11 > p∗, we get

J(fP11) = (fP11)R+ α(fP11)J(P11) + α(1− fP11)J(P21).

We can now have p∗ greater or smaller than P21. However note that necessarily I < P21 and

so if P21 ≤ p∗, the iterates fnP21 remain in the passive region and

J(P21) =
λ

1− α
.

Otherwise if p∗ < P21, then

J(P21) = P21R+ αP21J(P11) + α(1− P21)J(P21),

and so

J(P21) = P21
R+ αJ(P11)
1− α+ αP21

,

R+ α(J(P11)− J(P21)) = (1− α)
R+ αJ(P11)
1− α+ αP21

.

We can now finish the computation of p∗ using (27). Note first that

fP11 = P21 − P11(P21 − P11) < P21.

Hence we will subdivide the interval [I, 1] into the union [I, fP11] ∪ [fP11, P21] ∪ [P21, 1]. For

p∗ ∈ [P21, 1], J(P11) = J(P21) = λ/(1− α) and so

p∗ =
λ

R
.

Clearly then p∗(λ) = P21 if and only if λ = P21R.

For p∗ ∈ [fP11, P21],

p∗ =
λ

1−α − αP21
R+αJ(P11)
1−α+αP21

(1− α)R+αJ(P11)
1−α+αP21

, J(P11) =
λ

1− α
.

This gives after substitution

p∗ =
λ(1 + αP21)− αP21R

R(1− α) + αλ
.

22



We verify easily that dp∗

dλ is an increasing function of λ and we check that this expression gives

again p∗(λ) = P21 if and only if λ = P21R. As for the other side of the interval, we have

p∗(λ) = fP11 if and only if

λ = λfP11 := R
P21 − (1− α)P11(P21 − P11)

1 + αP11(P21 − P11)
. (28)

Finally we consider the case p∗ ∈ [I, fP11]. There is a bit more work to get an expression

for J(P11). We have

J(P11) = λ+ αJ(fP11)

J(P11) = λ+ α2J(P21) + α(fP11)[R+ α(J(P11)− J(P21))]

J(P11) = λ+
R+ αJ(P11)
1− α+ αP21

[α2P21 + α(1− α)(fP11)].

This implies immediately

R+ αJ(P11) = (R+ αλ) +
R+ αJ(P11)
1− α+ αP21

[α3P21 + α2(1− α)(fP11)]

R+ αJ(P11) =
(R+ αλ)(1− α+ αP21)

(1− α)(1 + αP21 + α2P11(P21 − P11))
.

Finally this gives

p∗ =
λ(1 + α(1 + α)P21 − α2(fP11))− αP21(R+ αλ)

(1− α)(R+ αλ)

p∗ =
λ(1 + α(1− α)P21 + α2P11(P21 − P11))− αP21R

(1− α)(R+ αλ)
.

It is again straightforward to verify that this is an increasing function of λ by computing

the derivative. For the boundary points, we get by direct calculations that p∗(λ) = fP11 if and

only if λ is given by (28), verifying the continuity at this point, and p∗(λ) = I if and only if

λ = λI :=
P21R

1 + (P21 − P11)(1− α+ αP11)
. (29)

This expression will also be obtained from the analysis below for P11 < p∗ < I.

Case p∗ < I.

Last, we consider the case p∗ < I. It is clear graphically or by inspection of the expression

for I that P21 > I, so the active action is optimal at P21, and

J(P21) = P21
R+ αJ(P11)

1− α(1− P21)
.

This gives

R+ α(J(P11)− J(P21)) = (1− α)
R+ αJ(P11)

1− α(1− P21)
.

We have, again by equation (11), that fp∗ > I > p∗, so, by continuity of J at p∗,

λ+αJ(fp∗) = λ+α[(fp∗)R+α(fp∗)J(P11)+α(1−fp∗)J(P21)] = p∗R+αp∗J(P11)+α(1−p∗)J(P21),
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identical to (14). We get

λ(1− α+ αP21) + (R+ αJ(P11))(α2P21 + α(1− α)(P21 + p∗(P11 − P21)))

= (R+ αJ(P11))(αP21 + (1− α)p∗),

i.e.,
λ(1− α+ αP21)
R+ αJ(P11)

+ α(1− α)p∗(P11 − P21) = (1− α)p∗,

so

p∗ =
(1 + αP21 − α)λ

(1− α)(1 + αP21 − αP11)(R+ αJ(P11))
.

Hence the problem is solved if we have an expression for J(P11). It is clear graphically that

P11 < I. From equation (11), we also see that fP11 > I since P11 − P21 < 0. Hence this time,

fP11 is in the active region, and so the analysis is simpler than in paragraph 5.3.2. The only

cases to consider are 0 ≤ p∗ ≤ P11 and P11 < p∗ < I.

In the first subcase 0 ≤ p∗ ≤ P11, P11 is in the active region and so

J(P11) = P11R+ αP11J(P11) + α(1− P11)J(P21)

J(P11) = α
P21R+ αP21J(P11)

1− α(1− P21)
+ P11(1− α)

R+ αJ(P11)
1− α(1− P21)

J(P11) =
(P11 + α(P21 − P11))(R+ αJ(P11))

1− α(1− P21)
,

and so

J(P11) =
R(P11 + α(P21 − P11))

(1− α)(1 + α(P21 − P11))
,

R+ αJ(P11) =
R(1− α+ αP21)

(1− α)(1 + α(P21 − P11))
.

This gives

p∗ =
λ

R
,

and the condition p∗ ≤ P11 is λ ≤ P11R.

In the second subcase, P11 < p∗ < I, and fP11 is in the active region, so we have

J(P11) = λ+ αJ(fP11) = λ+ α[fP11R+ αfP11J(P11) + α(1− fP11)J(P21)]

J(P11) = λ+
R+ αJ(P11)

1− α(1− P21)
(α2P21 + α(1− α)fP11)

(R+ αJ(P11))(1− α+ αP21) = (R+ αλ)(1− α+ αP21) + α2(αP21 + (1− α)fP11)(R+ αJ(P11))

and so we get

R+ αJ(P11) =
(R+ αλ)(1− α+ αP21)

(1− α)[1 + αP21 + α2P11(P21 − P11)]
.

This gives finally

p∗ =
λ[1 + αP21 + α2P11(P21 − P11)]

(R+ αλ)(1 + αP21 − αP11)
,

which simplifies to (add and substract αP11 in the numerator)

p∗ =
λ(1 + αP11)
R+ αλ

.
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Figure 6: Plot of p∗(λ) for P21 = 0.9, P11 = 0.2, α = 0.9.

It is easy to see that it is an increasing function of λ, and that the condition p∗ ≥ P11 translates

to λ ≥ P11R. We also verify that the condition p∗ < I corresponds to λ < λI , where λI is given

by (29), which implies the continuity of p∗(λ) at λI .

A plot of p∗(λ) is given on Fig. 6. Finally, we summarize the computational procedure

for the case 0 < P21 − P11 < 1. Given λ, we first check in which subset of the partition

[0, P11R]∪ [P11R, λI ]∪ [λI , λfP11 ]∪ [λfP11 , P21R]∪ [P21R,R] it belongs. We then compute p∗(λ)

accordingly. That is,

p∗(λ) =



λ
R if λ ∈ [0, P11R] ∪ [P21R,R]
λ(1+αP11)
R+αλ if λ ∈ [P11R, λI ]

λ(1+α(1−α)P21+α2P11(P21−P11))−αP21R
(1−α)(R+αλ) if λ ∈ [λI , λfP11 ]

λ(1+αP21)−αP21R
R(1−α)+αλ if λ ∈ [λfP11 , P21R].

With the value of p∗(λ), we can finish the computation. For a given p ∈ [0, 1], we can first

have p > p∗, in which case we are done, using the values of J(P11) and J(P21) computed in the

various cases. If p < p∗, as in the previous paragraph, we need to distinguish two subcases. If

fp ≤ p∗ (which can happen only when p∗ > I, i.e., λ > λI), then immediately J(P ) = λ/(1−α)

since the iterations remain in the passive region. Otherwise, fp > p∗ and we can compute

J(p) = λ+ α(fp)R+ α2(fp)J(P11) + α2(1− fp)J(P21),
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using the values of J(P11) and J(P11) obtained in the various cases.

5.5 Expression of the Indices

The previous paragraphs establish the indexability property for the two-state Markov chain with

the described information structure, for all possible values of the state-transition matrix. Now

we obtain Whittle’s index by inverting the relation p∗(λ) to λ(p). We get

Theorem 5.5. A two-state restless bandit with null/perfect-observations is indexable. The index

λ(p) can be computed as follows. Let s = P11 − P21 (then −1 ≤ s ≤ 1), fnP21 = P21
1−sn+1

1−s ,

and I = P21
1−s .

1. Case s = 0 (P11 = P21):

λ(p) = pR

2. Case s = 1 (P11 = 1, P21 = 0):

λ(p) =
pR

1− α(1− p)
.

3. Case 0 < s < 1 (P11 > P21, P11 − P21 < 1 and note that P21 < I ≤ P11):

• If p ≥ P11 or p ≤ P21: λ(p) = pR.

• If I ≤ p < P11: λ(p) = pR
1−α(P11−p) .

• If P21 < p < I: Let k(p) = d ln(1− pI )

ln s e − 2 (i.e., k(p) is the unique integer such that
ln(1− pI )

ln s − 2 ≤ k(p) < ln(1− pI )

ln s − 1). Then let

Ak(p) =
(1− αP11)(1− αk(p)+2) + αk(p)+2(1− α)(fk(p)+1P21)

1− αs
Bk(p) = 1− αk(p)+2

Ck(p) = α− αk(p)+2.

We have

λ(p) =
Ak(p) − (1− p)Bk(p)

Ak(p) − (1− p)Ck(p)
R.

4. Case s = −1 (P11 = 0, P21 = 1):

• If p ≥ 1/2: λ(p) = α+p(1−α)
1+α(1−α)(1−p)R.

• If p < 1/2: λ(p) = p
1−αpR.

5. Case −1 < s < 0 (P11 < P21, P21 − P11 < 1 and note that P21 > I > P11):

• If p ≥ P21 or p ≤ P11: λ(p) = pR.

• If fP11 ≤ p < P21: λ(p) = p+α(P21−p)
1+α(P21−p)R.

• If I ≤ p < fP11: λ(p) = p+α(P21−p)
1+α(1−α)(P21−p)−α2P11s

R.

• If P11 < p < I: λ(p) = p
1−α(p−P11)R.
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Figure 7: Monte-Carlo Simulation for Whittle’s index policy and the greedy policy. The upper

bound is computed using the subgradient optimization algorithm. We fixed α = 0.95.

6 Computational Experiments

In this section, we present some simulation results illustrating the performance of the index

policy and the quality of the upper bound. We generate sites with random rewards Ri within

given bounds and random parameters P11, P21. We progressively increase the size of the problem

by adding new sites and UAVs to the existing ones. We keep the ratio M/N constant, in this

case M/N = 1/20. When generating new sites, we only ensure that |P11 − P21| is sufficiently

far from 0, which is the case where the index policy departs significantly from the simple greedy

policy. The upper bound is computed for each value of N using the subgradient optimization

algorithm. The expected performance of the index policy and the greedy policy are estimated

via Monte-Carlo simulations.

Fig. 7 shows the result of simulations for up to N = 3000 sites. We plot the reward per agent,

dividing the total reward byM , for readability. We can see the consistantly stronger performance

of the index policy with respect to the simple greedy policy, and in fact its asymptotic quasi-

optimality.

7 Conclusion

We have proposed the application of Whittle’s work on restless bandits in the context of a UAV

routing problem with partial information. For given problem parameters, we can compute an

upper bound on the achievable performance, and experimental results show that the performance

of Whittle’s index policy is often very close to the upper bound. This is in agreement with

existing work on restless bandits problems for different applications. Some directions for future

work include a better understanding the asymptotic performance of the index policy and the

computation of the indices for more general state spaces.

27



References

[Alt99] E. Altman. Constrained Markov Decision Processes. Chapman and Hall, 1999.

[Ath72] M. Athans. On the determination of optimal costly measurement strategies. Auto-

matica, 8:397–412, 1972.

[Ber99] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[Ber01] D.P. Bertsekas. Dynamic Programming and Optimal Control, volume 1 and 2.

Athena Scientific, 2 edition, 2001.

[BTAH02] J.S. Bellingham, M. Tillerson, M. Alighanbari, and J.P. How. Cooperative path

planning for multiple uavs in dynamic and uncertain environments. In Proceedings

of the 41st IEEE Conference on Decision and Control, 2002.
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