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Chapter 1

Actuation Techniques for
RF MEMS

1.1 Electrostatic Actuation

Currently almost all RF MEMS developped use an electrostatic actuation prin-
ciple. The advantages are obvious: the basic principle is simple (a potential
between 2 electrodes creates a force between them), the implementation and
fabrication techniques are not too complicated and can be done using surface
micromachining. Many switches have been already developped, and a review of
these can be found in [1].

I will not discuss here the interest in developping MEMS for RF communica-
tions. Suffice to say that RF switches in particular offer electrical characteristics
far better than what the best P.I.N. diodes can do. However, some problems
still remain that prevent their efficient use, namely reliability problems and the
fact that still no good packaging method is available for them. Concerning the
first issue, the failure mechanisms for DC-contact switches (i.e. metal to metal
contact) are resistive (e.g. degradation of the contact area due to impacts) and
due to microwelding, and for capacitive switches, the failure is due to stiction.
This stiction is linked to charges that remain permanently in the dielectric and
create an electric field strong enough to maintain the moving electrode in the
down position. The charging of the dielectric material itself is due to the strong
electric field necessary for the reliable actuation of the electrode. An important
drawback of these switches is that because electrostatic forces decrease rela-
tively rapidly with distance and because we need air gaps in the up position of
2− 3 µm to insure sufficient isolation, the actuation requires high voltages (say
around 30 V ), at least for the initial movement of the electrode (note that we
can’t reduce the spring constant of the electrode too much for reliability issues).

Thus usually, in the down position, the voltage is decreased (typically to 5V ),
in order to limit the effect of charge trapping in the dielectric. Moreover, other
actuation techniques have been studied to try to overcome in particular the
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problem of generating high actuation voltages. As we will see in the following,
these actuation techniques do not currently produce results that make them
interesting for a practical use.

1.2 Other Non Magnetic Actuation Techniques

Electrostatic Actuation is largely dominant for MEMS switches. Other actua-
tion techniques can be used to avoid the drawbacks of the electrostatic switches,
namely the high voltages required.

Hence an electrothermal has been developped for example by the LETI [3],
with an actuation voltage of less than 3V . But the actuation power is in the tens
of milliwatts range (compared to no static power consumption for electrostatic
switches), and the closure time in the hundreds of nanoseconds, and thus this
switch is quite slow.

Another technique that could be employed would be to use piezoelectric
actuation, although here again the implementation is more difficult than for
the electrostatic case. In the following, we will concentrate our attention on
different magnetic actuation principle, with the Microlab switch for example
being currently one of the most interesting switches on the market.

1.3 A Magnetic Switch

In general, we take switches as examples since the actuation principle can then
be used for other MEMS structures, like varactors, filters, oscillators, etc...
There are of course some additional subtleties like for e.g. the possibility of using
the inherent voltage-electrostatic force non linearity for direct filtering+mixing
[2], but these can be ommited in this general discussion. In the following, we
discuss another actuation principle, which is relevant for the rest of the report,
namely by presenting some characteristics of the magnetic switch produced by
Microlab [4], [5]. Table 1.1 presents the characteristics of the latching relay.
Comparing with the electrostatic switches, we can make a few remarks:

• First, the operating voltage can be maintained low (< 5 V ), but at the
expense of high currents in the coil (around 100mA). The switch can
retain a down position thanks to the magnetic field created by a permanent
magnet, therefore no external power is needed for latching.

• the switch is slow. The main reason is that a thick (≈ 20 µm) film of
permalloy has to be deposited to form the movable part; therefore the
mass is important and this slows down the mechanism. With a switching
time reported in the order of 500µs, this switch remains very slow for RF
systems where typically electrostatic switches change state in about 5 µs,
and are still slow for practical applications.

From this discussion about different already demonstrated actuation tech-
niques, we would like ideally to use a magnetic actuation because we do not
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Table 1.1: Characteristics of the Latching Micromagnetic Relay developped by
Microlab.

Characteristic Reported in [5] Reported on Website [4]
Operating Voltage ≈ 5V < 2 V ?
Switching Current 79mA < 100mA

Switching time (off→on) 0.5ms -
Switching current pulse < 0.2ms < 0.1ms

want to generate high operating voltages, but also low currents for a low power
dissipation (comparable to diodes, ideally in the µW range, since electrostatic
switches dissipate virtually no DC power). Therefore a natural conclusion is
that the main magnetic field has to be created with permanent magnets, and
not with a coil. Because of the constraints on the switching time, the movable
structure must remains small, excluding the usually used thick NiFe structures.
The idea, to be presented in the following, is simply to create a strong perma-
nent magnetic field, and actuate a structure placed in this field using Lorentz
(more precisely Laplace) forces, by feeding a small current through the struc-
ture. Therefore the movable structure can remain small, even smaller than in
the electrostatic actuation case. In fact, the idea is so simple that if it has not
been demonstrated so far, it is mainly because good permanent magnets (hard
magnetic materials) are not easily obtained at the microscale by standard depo-
sition techniques. Therefore, before presenting our design further, it is necessary
to review the current state of available magnetic materials for MEMS.
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Chapter 2

Magnetic Materials for
MEMS

2.1 Overview

We will deal in the following with two types of magnetic materials: soft and
hard. An introduction to the properties of these materials can be found in
chapter 4. Soft magnetic materials have been used and integrated into MEMS
technology for some time now ([10],[11]). Hard Magnetic Materials are subject
to an intensive research work dealing with very thin films of these materials for
applications in memories. But the litterature on thick films of hard magnetic
materials is rather limited, although the applications in MEMS are today con-
sidered. Typically, we hope to have hard magnetic materials (i.e. permanent
magnets) with the best characteristic possible in order to create a strong mag-
netic field. This should allow us then to obtain strong Lorentz forces with low
current and power dissipation.

Some groups, essentially interested in the physics of these films, reported
thick films of rare-earth permanent magnets before 1990 ([6], and [8] for a more
recent publication). The properties of these films are actually good and sufficient
for our design. The possibility of integrating them into a process remains an
issue. These films were obtained by sputtering and needed that the substrate
be heated at a temperature of more than 600oC. The process has to take this
high temperature step into account.

There is of course a strong interest in depositing permanent magnets through
more easily integrated techniques such as electroplating [14]. The set up in this
case is simple, but unfortunately, the properties reported ([16]) are not sufficient
if we want to bias a magnetic circuit and use a reasonnable amount of power
for the actuation (the properties are approximately 10 times worse than for the
sputtered magnets).
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2.2 Current State

2.2.1 Research Groups

Serial Fabrication
In this paragraph I include the reported systems for which the fabrication

is not parallel: that is, the magnets are manipulated individually. This is not
what we would like (not compatible with an industrial process), but could be
use for demonstration.

• Possibilities at the university of Michigan: it seems to be difficult
to developp a process involving permanent magnet materials at the SSEL.
Prof. Gianchandani has already worked with permanent magnets when
he was a professor at the University of Wisconsin-Madison but apparently
was not willing to cooperate. Suffice to say that they used micro-electro-
discharge machining to shape NdFeB magnets.

• Laboratoire d’électrotechnique de Grenoble, France: Dr. Cugat’s
group. They have also developped a movable mirror using magnets ([20]),
for which they glued micro magnets provided by Comadur, a swiss com-
pany. They do not report the thickness of these magnets. They are more
or less collaborating with the team of prof. Kornilov ([8]) and cite his work
about the 300 µm thick films of NdFeB. They also reported a permanent
magnet micromotor [21]: the integration of the SmCo magnets is not clear,
and the work of Kornilov is the only work on thick hard magnetic films
cited again. They also work in Grenoble with the CEA-LETI, and I con-
tacted there Dr. Gaud, director of the magnetic actuators department
in August 2002. They seemed to be still trying to obtain satisfying re-
sults for electrodeposited magnetic films, and he told me that basically all
possibilities should be considered in this field.

Magnetic Films for Batch Fabrication

• Queen’s College of New-York: Dr. Cadieu [6]. This is the first report
that I found on thick films of hard magnetic materials. Thick films of
SmCo are sputtered with and good magnetic properties. Drawback: the
susbstrate has to be heated. Cadieu worked on several projects intended
to integrate these films in MEMS. An example is [7], where a 25 µm thick
Sm-Co film is used to bias Ni-Fe permalloy films. This last reference is
interesting for different reasons: it gives the condition used for sputtering
Sm-Co (and Ni-Fe also in this case), and shows a sandwich configuration
with hard and soft magnetic material, although they use a thick dielec-
tric layer between the two films in this case. The way they create their
sandwich structure is not reported.

• Moscow State Institute of Steel and Alloys: Dr. Kornilov [8]. Very
thick sputtered magnetic films of NdFeB are reported, up to 300 µm.
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Excellent magnetic properties. Again the substrate has to be heated,
around 500oC. Very few information about this group is available.

• Nagasaki University, Japan: [9]. Good properties, the laser ablation
technique achieves better deposition rates (50 µm/hr) than sputtering,
but annealing at 923 K again.

• M. Allen and L. Lagorce: [12], [13]. They have developped polymer
magnets, that is resin-bonded magnet films. The magnetic properties
reported so far are not as good as for the sputtered magnets (Br ≈ 0.3T
and BHc ≈ 350 kA/m), but the possibilities to integrate them in MEMS
processes are very interesting. This article should be reviewed in detail;
moreover, it should be possible to increase the magnetic properties of these
magnets (see discussion in [18]).

• Other groups and techniques: i put here together some interesting works
from other groups, but none of them fullfill our requirements. They rep-
resent however a trend towards an easier integration of the deposition of
magnetic materials with MEMS processes. There are reviews of magnetic
materials for MEMS by Judy ([17], [16]) and Chin ([18]). Co-Pt and Fe-Pt
are good futur candidates for MEMS because they should be adapted to
electroplating; see for example [23] for electrodeposited Co-Pt, although
the thickness is only 0.2 µm. Ahn ([14]) has also already used electro-
plated permanent magnets in actuators, but the properties of his magnets
are not sufficient for our purpose.

Christenson, Garino and Venturini at Sandia National Labs hold a patent
on the batch fabrication of precision miniature permanent magnets, but i
cannot currently get the paper that i give as a reference [15].

2.2.2 Companies

There is very little information that i can provide in this section.
Micro magnets
If we need to use small magnets that we want to manipulate individually,

we should be able to get them from the companies that provide micro magnets
for the watch industry. Cugat describes such a process in [20]. They glued and
micromachined the magnets (Sm-Co type). However the final dimensions are
not reported, so the size for our design might not be compatible. The magnets
were provided by Comadur ([26]), which is a swiss company. There is probably
a company in the US providing these magnets, but i could’nt find it.

Deposition of magnetic films
Only very few companies give information about the possible deposition of

magnetic materials.San Diego Magnetics ([27]) deposit thin films of magnetic
materials with different techniques and works in the field of MEMS although the
thickness seems to be limited to 15 µm. This is the most interesting company
for our purpose that I found.

15



Us, inc. ([28]) sells sources for planar magnetron sputtering that they say
compatible with Nd-Fe-B, but probably don’t deposit the materials themselves.
The Materials Science and Technology Division of the Naval Research Labora-
tory put on its web page that they have a magnetic materials MBE system, but
without further explanation ([29]).

In general, we will probably not find on a website the exact configuration
that we need. Given than the use of these hard magnetic materials is emerging
at this scale, especially with this thickness, we have to find a company which
would be interested in trying to deposit with the specification that we need.
I just think that because we do not ask a standard material, thickness, and
process, we cannot find this information by just consulting the adds or even the
basic information given on the websites of the companies. Basically we will need
to proceed by trial and error because we don’t know what can really be done.
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Chapter 3

Microsystems Actuated by
Lorentz Forces

3.1 Introduction

We are trying to obtain magnetic actuation without burning too much power. A
design will be proposed in the following which intends to create a high magnetic
field density at no cost with a permanent magnet material and a soft mag-
netic material to concentrate the flux. The process proposed will be a batch
fabrication process, instead of attaching individual magnets to the chip.

For the moment, we will assume that we are able to create a magnetic field
density of 1T in the direction perpendicular to the substrate. We consider some
possible applications and related issues in the following sections.

3.2 Switches

We have briefly discussed in chapter 1 the disadvantages associated with electro-
static actuation. An important characteristic of these forces however is that the
electrostatic force in the down position is strong, allowing low contact resistance
and keeping the contact without dissipating any DC power. The expression of
the electrostatic force is simply:

Fel =
ε0AV

2

2(d+ td
εr

)2
(3.1)

with A the area of the electrodes, V the voltage between the electrodes, d the air
gap height, td the dielectric thickness and εr the dielectric relative permitivity.
When the contact is made, we can compute the force between the electrodes by
the expression:

Fel,down =
ε0AV

2

2( tdεr )2
(3.2)
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This force is distributed over the area of contact. Consider now a beam with a
current ie trough it, and placed in a strong magnetic field B. The lineic force
acting on the beam is ie×B and therefore when the contact is made, the total
force applied to the bottom electrode will be, assuming the current and the
magnetic field are perpendicular:

Fm,down = ieBc (3.3)

where c is the length over which the contact is made.
To have a sufficiently low resistance in the on position, the contact force on

most metal-to-metal contact series switches should be at least 100 − 200 µN
[30]. For the electrostatic actuation, if we suppose that we deal with a beam
5 µm wide, that the contact can be made on a length 100 µm, a dielectric with
td = 0.15 µm and εr = 7.6, a voltage V = 5 V , then we get Fel,down = 142 µN .
The calculation for the magnetic force gives: Fm,down = 1 µN only for a cur-
rent of 10 mA, and thus we see that using the Lorentz force is impractical for
maintaining the contact. However, the advantage of this force is that it is inde-
pendant of the gap with the substrate, and thus we could use it to actuate the
structure, and then maintain the contact by applying a small voltage. Moreover,
by reversing the current, we can obtain a force in the opposite direction which
could be use in case of stiction of the beam to separate it from the substrate,
and hence enhance the yield and also reliability of the switch. Using Lorentz
forces for yield enhancement has already been considered in [31].

3.3 Voltage Tunable Capacitor

Voltage Tunable Capacitors have application in voltage controlled oscillatore.
There is not much to say about this since we can use basically a capacitive
switch to obtain high capacitance ratio. Diodes are still used in LC-oscillators,
where the capacitance of a reverse biased pn-junction can be controlled by the
bias voltage:

Cvar =
C0(

1 + Vr
Φb

)m , m ≈ 0.3 ,Φb ≈ 0.7V (3.4)

One disadvantage of the diodes is that the range of variation of the capacitance
is limited. For a variation of Vr from 0V to 3V , Cvar varies from C0 to 0.6 C0.
On the contrary, good electrostatic switches can today achieve a ratio of more
than 100 [33].

3.4 Filters

One of the most interesting applications in the utilisation of a high magnetic
field could be to obtain filters with a higher resonant frequency compared to
the ones obtained so far using electrostatic actuation (eg. [2]). The principle
was already studied in [34]. In order to increase the resonant frequency of the
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Figure 3.1: Vibrating clamped-clamped beam in a high magnetic field.

vibrating beams, the length has to be decreased: the dimension might become
too small to keep the electrostatic actuation principle (with an electrode under
the vibrating beam).

As an example, I will take a simple system: suppose we have in the magnetic
field a short clamped-clamped beam, composed of three layers: Al/Si3N4/Al
(see figure 3.1). This should be quite easy to fabricate compared to the refined
process used to obtain free-free beams for example. Let us use the equations
derived in [34] for the beam fixed at both ends, in the case where we neglect
the intrinsic stress.

Resonant Frequencies of the beam:

fn,b =
η2
n,b√
3π

√
E

ρ

tb
l2b

(3.5)

with η1,b = 2.365, η2,b = 3.927, η3,b = 5.498 . . . Assuming the dimensions
given on the figure, and taking E ≈ 385 Gpa and ρ ≈ 3.1 gm.cm−3 as if the
beam was only made out of silicon nitride, we get for the first resonant frequency
f1,b ≈ 458MHz (the highest resonant frequency obtained with free-free beams
in [2] was 92Mhz).

The principle of the system is to drive the beam with an input current i
(which creates a variable Lorentz force due to the presence of the B field) and
to read the output using a separate path where a voltage is created due the the
fact that we have a circuit moving in a magnetic field:
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V =
∮

(~v × ~B).~dl (3.6)

where ~v is the velocity of the segment of the conductor ~dl. If we integrate
along the mode shape of the lowest harmonic (note also that the even modes
cannot be detected), we obtain V = 3.287lbfBump, where ump is the maximal
deflection, at the midpoint. We can obtain, in general:

ump =
iBl4b

32Ewbt3b

But at the reconant frequency, this value is multiplied by Q, where Q is the
quality factor of the mechanical system, linked to the damping. A mechanical
Q of the order of 10000 should be feasible, possibly under vacuum conditions
(see [2]). We finally get:

Vresonance,rms = 3.287 lb f1,b B
irmsBl

4
b

32Ewbt3b
Q (3.7)

Suppose irms = 2 mA (take Rbeam ≈ 1Ω for the power consumption), then
we obtain Vinduced,rms = 7.64 µV , if Q = 10000.

3.5 Impossibility of Mixing

An interesting possibility of the resonnant structures electrostatically actuated is
that we can perform at the same time filtering and mixing [2]. It is important to
note that this feature is possible due to the nonlinearity of the force with respect
to the input signal, namely the fact that F is proportional to V 2. Therefore if
the input is some Vlo +Vrf , the force will have components at frequency rf − lo
due to the term Vlo × Vrf and we can design the system so that this latter
frequency coincides with the resonant frequency of the beam.

In the case of the Lorentz force, nothing similar is possible since the force is
linear in the input signal ie.
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Chapter 4

Design of the Magnetic
Circuit

4.1 Introduction

So far we have assumed that the structures considered were moving in a strong
magnetic field of 1T, parallel or perpendicular to the plane of the wafer. The
way we create the magnetic field is of course of high importance, and it is
even questinable if such a high magnetic field can practically be reached. In
this chapter, we recall the fundamentals of magnetic circuit design and present
simulations showing how we could create the magnetic field. Two configurations
are considered, creating the magnetic field either in the vertical or horizontal
direction. Some considerations are made on the fabrication processes, using the
information given in chapter 2. Finally, a study has been conducted for the
horizontal field configuration on the influence of air gap losses on the biasing of
a thin magnetic circuit.

4.2 Magnetic Circuit Design

4.2.1 Overview

The magnetic circuit considered will be composed of a permanent magnet creat-
ing the magnetomotive force, a core made out of a soft magnetic material with
high permeability (such as permalloy NiFe) to conduct the magnetic flux, and
an air gap, in which we can place a beam to be actuated (see fig. 4.1).

For a permanent magnet in a magnetic circuit, a demagnetizing field inside
the material is produced by, and is in opposite direction to its own magnetization
[35]. Hm in the material is in the opposite direction to Bm, therefore we are
interested in the second quadrant of the hysteresis loop of the curve B-H, called
the demagnetizing quadrant.
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Figure 4.1: Typical magnetic circuit, with dimension labels.

An example of a demagnetizing curve is given on fig. 4.2. The important
quantities are the remanence Br (when H = 0), the flux coercivity BHc, and
also important is the maximum of the energy product (BH)max corresponding
to the point on the curve on which we wnat to work, for reasons that will
appear clear in the following. The coercivity is a measure of the resistance of
the permanent magnet to demagnetization, and we want to have it as large as
possible.

4.2.2 Equations

Considerations on the quality of the permanent magnet and soft magnetic ma-
terial will be given in the following sections. Let us concentrate here on the
determination of the different (minimal) dimensions in order to create a field
of 1T in the air gap. The numerical values used in these section for illustra-
tion purposes will be reviewed later in the case of microfabricated magnetic
materials, but the equations will remain the same.

First note that the magnetic circuit doesn’t work ideally because of magnetic
reluctance of the magnet and soft iron, and because of flux leakage in the air
gap. The design of the circuit is controlled by three basic equations, in a form
which accounts for these leakages:
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Figure 4.2: Demgnetizing curve for a permanent magnet material.

Hglg = −αHmlm, α ≤ 1 (4.1)
BgAg = βBmAm, β ≤ 1 (4.2)

Bm andHmare on the demagnetizing curve (4.3)

In the following we take α = 0.9 and β = 0.7, values that give good agree-
ment with the simulations for typical magnetic materials. Hg and Hm are the
magnetic field intensity in the air gap and in the permanent magnet, Bg and
Bm are the corresponding flux densities, Ag and Am are the cross section areas
of the air gap and the permanent magnet (A = t× w).

We can note the importance of a high coercivity for the material. We need

|Hm| = |Hg
lg
lm
| < |BHc|

If we want Hg = 1T/µ0 = 7.96e5 A/m in the air gap, a constraint exist on the
ratio lg/lm because a medium performance Nd-Fe-B material for the permanent
magnet typically has a coercivity of only 5e5A/m, and in our case a deposited
magnet will have properties which are far from these numbers. However in
practice, there will be other more restrictive constraints and this one should be
verified in general.

We are free to choose the working point we want on the demagnetizing curve.
A common practice is to choose the point that allows to create the magnetic
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field in the air gap using the minimum volume of magnet possible. Multiplying
equations (4.1) and (4.2), and with V = A× l, we obtain:

(Vm)min =
µ0HgVg

(Bm|Hm|)max
(4.4)

Therefore we see that we should work at the point of the demagnetizing
curve where the energy product is maximal. A good approximation for a first
design is to consider that this point corresponds to Bm = Br/2 and Hm = Hr/2,
as if the demagnetizing curve was a straight line.

Once we have chosen the desired working point, we note that we must also
lie on the line:

Bm = µ0|Hm|
Aglmα

Amlgβ
(4.5)

Fixing the ratio:

lmAg
lgAm

=
Bmβ

µ0|Hm|α
(4.6)

Example: suppose we have a hard magnetic material with |BHc| = 520 ×
103 A.m−1 and Br = 0.8 T . If we consider that we need Hg = 800 kA.m−1 in
the air gap, we have:

lmAg
lgAm

= 0.95

lg
lm

= α
|Hm|
Hg

= 0.292

Ag
Am

= 0.292× 0.95 = 0.28

And usually the dimensions of the air gap are fixed by the application, fixing
then the dimensions of the magnet.

4.3 Planar Configuration

4.3.1 Presentation of the Design

A first straighforward implementation for a capacitive switch is shown on fig
4.3. For this, we need to move current carrying beams upwards or downwards,
and so the generated magnetic field should be parallel to the plane of the wafer.
Therefore, the beams would be placed in the air gap of the magnetic circuit
shown on fig. 4.4. This magnetic circuit would have to be deposited on the
wafer, and obviously the dimension that poses the biggest fabrication problems
is the thickness.

It is quite easy to control the width and length of the magnet as soon as we
have a mean for shaping it, but as we have seen in chapter 2, depositing thick
hard magnetic material with good properties is not an easy task. Moreover, the
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Figure 4.3: Capacitive switch actuated with the Lorentz force on the beams.

process integrating the switch structure and the magnetic circuit would have to
be carefully studied. Quite often, the deposition of the hard magnetic material
requires a high temperature step, impossible if the Aluminum switch has already
been deposited. On the other hand, if we deposit a thick magnet first, then we
can’t approach the mask close enough to the wafer to shape fine features. But
we have to control the width of the beam precisely, to have a width for the air
gap then as small as possible. Typically the width of the beam would be of the
order of 5µm, the width of the air gap 15µm.

A solution to these problem could be to use a transfer process similar to the
process used for the RF switch of the Berkeley sensor and Actuator Center [36].
The principle of this process for our case, shown on fig. 4.5, would allow the
independant fabrication of the magnetic circuit on one wafer and the movable
structure on the other wafer. The alignement at the bonding step need only to
be done in such a way that the beams fall in the air gap. The main difficulty
that this process currently encounters is to obtain a repeatable height for the
switch structure with respect to the bottom electrode. Since in our case, the
force would be independant of the distance between the capacitive plate and
the substrate, we would still be able to operate a switch positionned too high
by giving a reasonable additional amount of current. No precise study of this
process was carried during this project, but I think it might be a reasonable idea
to consider. The advantage of keeping a planar configuration is that it allows to
maintain the contact with a strong electrostatic force thanks to the large area
of the suspended capacitive plate.
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Figure 4.4: Planar magnetic circuit.

Figure 4.5: Process for the magnetic switch in the planar configuration, using
the Berkeley Transfer Process. The final top view is shown on c).
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Figure 4.6: Influence of thickness on the working point of the magnet and the
field in the air gap. We see on the right the asymptotic behavior corresponding
to the value calculated analytically. The ration t/w needs to be quite high to
reach this behavior.

4.3.2 Impact of the Thickness on the Biasing of the Mag-
netic Circuit

As we mentionnes previously, the thickness of the planar configuration of the
magnetic circuit is critical. A limiting factor to the magnetic field density in
the air gap is the ratio t/w, thickness of the magnetic circuit over length of the
gap (see fig. 4.4 - note that here w represents what we called in a previous part
lg). We performed a numerical study of the influence of this parameter on the
field in the air gap, whose principal results are summarized on fig. 4.6. These
results allow us to determine when the derivation done in part 4.2.2 are valid
to compute the magnetic field in the air gap.

• When the ratio t/w becomes too small (typically here, the ratio is 1, 20µm
thick for an air gap 20µm wide), the fringing fields increase a lot and an
additional factor is that it changes the working point of the magnet. The
equivalent area in the middle of the air gap used in the analytical calcula-
tion becomes very large. What the finite elements simulation predicts, is
that it becomes impossible to bias the permanent magnet at the
right point (cf. previous discussion), that is, it predicts that the magnet
remains at a point Hm quite small instead of having Hm in the order of
Hc/2 as we wanted.

• Figure 4.6 shows the influence of the thickness on the magnetic character-
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istics of the circuit. Ideally, without taking the fringing fields into account,
the magnetic field in the magnet and in the air gap should be independant
of the thickness. We see that for ratios t/w in the order of 40 or greater,
this is true. But we see that we cannot make this assumption for a ratio
of 1. And the problem is not just a leakage problem which could be solved
by increasing the dimensions of the magnet. I tried to use the analytical
dimensions obtained to get a B in the air gap around 10T , to see if the
simulation would predict something 10 times less, that is, in the order of
1T , but this doesn’t work better than with a magnet with realistic dimen-
sions. The main reason is probably again that the losses have an influence
on the conservation of the flux and the Ampere Law, and the result is that
the magnet is not working properly.

• This is not just a problem of calculation or bad mesh. In [37], the same
ratio of 1 for the thickness and width is used in the fabrication of a soft
magnetic material with an air gap, and the result of the experiment differs
from the calculation by a factor of 10 also.

• So the result obviously depends on the thickness, and for this planar mag-
netic circuit, a 3-D analysis is required. With a thickness of 20 µm and
width of the air gap 20 µm, I was not able to have a field in the air gap
of more than 0.2T , even with a very large magnet. When the thickness
increases more, the magnet begins to work properly and we can have the
behavior predicted by the analytical result. I would say that a ratio of
2.5 to 5 would be needed to get relatively good results. We reach the
limitation of the thickness due to the electrodeposition step, if the width
of the air gap is 20µm.

4.4 Vertical Configuration and Packaging

An alternate configuration was considered, which creates a magnetic field per-
pendicular to the plane of the wafer. It consists of a stack of hard and soft
magnetic materials, and integrated the packaging in the fabrication process.
This section presents a complete design including considerations on the process.

We study here the particular design in the case we would use the perma-
nent polymer magnets obtained by Mark Allen at Georgia Tech (Strontium
Ferrite/Polyimide Composites), with the properties reported. The advantage
of these magnets would be that they are more compatible with micromachining
and MEMS processes than sputtered magnets.

The magnets have less good properties compared to what we considered so
far, so this design needs a bigger magnet. But we see here how the structure of
the magnetic circuit compensates the lack of good properties to achieve a high
magnetic field in the air gap.
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Figure 4.7: Final device with dimensions.

4.4.1 Final Device

Figure 4.7 presents the final cross section of the device we would like to obtain.
The movable part is a beam, which will be terminated by a capacitive plate for
example, or more probably just used directly to make a DC contact. We want to
actuate this beam in the horizontal direction: it is suspended inside the airgap
of the magnetic circuit, and thus in a region where a strong vertical magnetic
field exists. When a current goes through this beam, a horizontal Lorentz force
is created. The next section shows how this vertical stack might be done.

4.4.2 Process

Figure 4.8 presents the possible process flow that we imagined. This process
requires two bondings to enclose the movable structure inside the air gap of the
magnetic circuit. An alternative would be to use only one bonding step for the
top magnetic yoke if we see that it is possible to deposit (or screen-print) the
permanent magnetic material on top of the soft magnetic material, or even not
to use any bonding if the top soft magnetic material can be electrodeposited
with enough thickness on top of the strucure. See figures 4.9 and 4.10 for these
variations. Note that in the last case, the thick permanent magnet material has
to be deposited after the structure, otherwise we won’t be able to define the
dimensions of the movable beam (1µm wide, 5µm thick) with enough precision.

4.4.3 Magnetic Characteristics of the Materials

• Hard Magnetic Material
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Figure 4.8: Possible Process flow with two bonding steps.

Figure 4.9: Possible Process flow with one bonding step and screen printing of
the magnet.

Figure 4.10: Possible Process flow with electroplating of the top soft magnetic
material. The magnet has to be deposited after the movable structure.
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Figure 4.11: B-H Curves for the hard and soft magnetic materials.

Figure 4.11 presents the demagnetization curve we used in the magnetic
simulation for the hard magnetic material. This is an idealized curve
with coercivity and remanent field values extracted from [12]. BHc =
318 kA/m ≈ 4000 Oe and Br ≈ 0.3T . Note that the direction of magne-
tization has to be the vertical direction (perpendicular to the wafer).

• Soft Magnetic Material

The information for the (electroplated) soft magnetic material is extracted
from [10]. Coercive force= 47A/m, saturation magnetization Ms = 1.5 T
and relative permeability µr = 4500. The BH curve obtained is also given
on figure 4.11.

4.4.4 Magnetic Simulation Results

With all the elements presented, the simulation of the magnetic circuit gives a
vertical magnetic field density of approximately 1T in the air gap, which agrees
with the preliminary hand calculation. The dimensions should be corrected
once we have the exact characteristics of the materials, for example to bias the
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Figure 4.12: Distribution of the flux lines in the magnetic circuit.

magnet at the (BH)max working point. But in general, the circuit behaves
well (in particular doesn’t suffer from the leakage problems in the air gap which
prevented previous designs to work because of biasing problems in the magnet).
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Chapter 5

Mechanical Analysis

5.1 Overview

This chapter presents a compilation a various simple mechanical studies we have
done on the mechanical systems involved. Here we assume generally that we
are able to place our structures in a magnetic field intensity of 1T , as discussed
in the previous chapters, and we evaluate some important characteristics of
the strucures we could use as RF components (mainly switches). Among these
characteristics are power consumption, contact force issues, switching speed,
maximal displacement (to allow a good isolation in the open state), etc. The
chapter is divided into two parts: static and dynamic analysis. To be added in
the future is a part on contact mechanics and the problem of contact resistance
build-up for DC metal-metal contact switches, which is still a major issue in RF
MEMS switches.

Note that this part cannot provide definitive results, since we still lack at this
point a completely realistic design confirmed by experiments in the fabrication
laboratory. Therefore the numerical examples included are simply given as
references.

5.2 Static Analysis

5.2.1 Bending of a Beam Subjected to a Uniform Load

The equation governing the static equilibrium of the beam is:

d4z

dx4
=
ieB

EI
, x ∈ [−L,L] (5.1)

where z is the vertical displacement of the beam at the horizontal position x,
2L the length of the beam, E is the Young’s modulus of the material, I is the
modulus of inertia (I = wt3/12 for a beam with width w and thickness t), ie is
the current in the beam and B the magnetic field density.
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We add the following boundary conditions, depending on the way the beam
is attached:

z(−L) = z(L) =
dz

dx
(−L) =

dz

dx
(L) = 0 (Clamped− Clamped Beam) (5.2)

z(−L) = z(L) =
d2z

dx2
(−L) =

d2z

dx2
(L) = 0 (Free− Free Beam) (5.3)

The solutions to these systems are the following:

z(x) =
ieBL

4

24EI
((
x

L
)4 − 2(

x

L
)2 + 1) (C − C beam) (5.4)

z(x) =
ieBL

4

24EI
((
x

L
)4 − 6(

x

L
)2 + 5) (F − F beam) (5.5)

Ex: for ie = 1 mA, B = 1 T , E = 70 GPa, w = 5 µm, t = 1 µm, 2L =
300 mum, we get a mid-point deflection w0 = 5ieBL

4

24EI = 3.6 µm. If we account
for a resistivity of Aluminum of ρ = 2.8e−8 Ω.m, we get a dc power dissipated
for moving the beam P = 2ρL

wt i
2
e = 1.68 µW .

5.2.2 Uniformly Loaded Beam in Contact with a Solid
Wall

We consider here the case of a free-free beam (boundary condition (5.3)), and
add a constraint given by a rigid wall at distance H from the rest position of
the beam (see fig. 5.1). When the contact is made, equation (5.5) has to be
modified to account for the constraint. We can distinguish two cases: for a
moderate load, the contact is made at only one point; if we continue to increase
the load above a critical point, a line contact exist.

• Point contact: for 24EIH
5L4 ≤ ieB ≤ 24EIH

L4

We call R0 the force exerted by the wall on the beam at the contact point
x = 0, and M0 the moment at x = 0. We have:

EI
d2z

dx2
=
ieBx

2

2
−R0x−M0 (5.6)

z(x) =
ieBx

4

24EI
− R0x

3

6EI
− M0x

2

2EI
+H (5.7)

Solving for the boundary condition at x = L, we get:

R0 =
3EI
L3

(
5ieBL4

24EI
−H) > 0 (since ieB >

24EIH
5L4

) (5.8)

M0 =
3EIH
L2

− ieBL
2

8
> 0 (since ieB <

24EIH
L4

) (5.9)
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Figure 5.1: Schematic of the beam for the study of the contact with a rigid wall.
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Figure 5.2: Voltage driven circuit with a movable part in a uniform magnetic
field.

• Line contact along −c < x < c: for 24EIH
L4 < ieB

Here the curvature is 0 at the point where the beam leaves the contact,
so there is no moment. We obtain:

z(x) =
ieB(x− c)4

24EI
− R0(x− c)3

6EI
+H (5.10)

and solving again for the boundary condition x = L:

R0 =
ieB(L− c)

2
(5.11)

c = L− (
24EIH
ieB

)
1
4 > 0 (since ieB >

24EIH
L4

) (5.12)

5.3 Dynamic Analysis

5.3.1 Electromagnetic Damping

In general, the magnetic field created by the current in the beam can easily be
neglected compared to the strong external field. In this section, we evaluate
the impact of the magnetic damping, due to the fact that we have a movable
conductor in a magnetic field. In general, we will neglect this effect, but it is
worth mentionning since it is the same phenomena that guided our discussion
on filtering applications in 3.4.

The circuit configuration is shown on figure 5.2. A voltage source drives the
circuit, which has a movable part. This part is placed in a uniform transverse
magnetic field and is allowed to move vertically, therefore when a current flows
in the circuit, a displacement occurs under the action of the Lorentz forces.

The electromagnetic damping occuring in this experiment is related to the
fact that considering the magnetic system equations, the electric field E′ in
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a coordinate system with a speed v with respect to the reference coordinate
system, where the fields are E and B, is given by:

E′ = E + v ∧ B (5.13)

And Ohm’s law J ′ = σE′ is valid in the coordinate system moving with the
media.

If we consider C(t) as the contour of the circuit deforming with time and
S(t) a corresponding surface oriented as usual, we can write the integral form
of Maxwell-Faraday’s equation:∮

C

E′.dl = − d

dt

∫∫
S

Be.n dS (5.14)

Now the source is in a region where there is no change of magnetic field with
time, thus we can decompose the left hand side:

VA − VB = −
∫ A

B

E′.dl = ue

ue −
∫ B

A

E′.dl =
d

dt

∫∫
S

Be.n dS

ue −
1
σ

∫ B

A

J ′.dl =
d

dt

∫∫
S

Be.n dS

ue −Rie =
d

dt

∫∫
S

Be.n dS

where R represents the total resistance of the circuit.
Thus we see that when we drive the circuit with a voltage source, the current

is given by:

ie =
ue
R
− 1
R

d

dt

∫∫
S

Be.n dS (5.15)

And in our case where the deflection is in the vertical plane and the magnetic
field uniform and parrallel to the normal vector, we get:

ie =
ue
R
− Be

R

dS

dt

where S(t) can be reduced to the area limited by the beam’s position in the
reference and current configurations.

We see how this expression will induce a damping force on the beam: when
the area increases under the action of the Lorentz forces, the current decreases
and therefore the forces decrease. In the following here, we will consider that
we can control the current inside the circuit, and therefore we do not consider
this magnetic damping.
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Figure 5.3: Setup for the determination of the switching time.

5.3.2 Switching Speed. Transient Response of the Beam
Subject to a Dual Magnetic and Electrostatic Actu-
ation

The goal of this section is to evaluate the switching time for a simple beam
subject to a Lorentz and an electrostatic force. The voltage applied is to small
to move the beam from the up position, but it will be sufficient to maintain the
beam in the down position. The beam is doubly clamped and his dimensions
are L = 300µm, w = 5µm, t = 1µm for the numerical simulations. It is placed
in a magnetic field of 1 T . The setup is shown on fig. 5.3.

We implement a Galerkin method similar to the one employed in [38] to
solve the PDE describing the evolution of the beam. No damping is taken
into account in the simulations, but in any case it should be small with the smal
width considered for the beam. We do not take any prestress into account either.
The switching time is also compared to finite elements simulations carried out
with the commercial software Ansys.

Note that for a practical system, this beam would probably be of little
interest, since the area is quite small to use as a DC switch or a capacitor,
and the spring constant considered in the numerical simulations is too low to
insure a good reliability and avoid stiction. But the method is developped to
demonstrate the interest of magnetic actuation when the electrodes are far from
each other, and we could imagine a release facilitated by pulsed Lorentz forces,
as already mentionned [31].

The general equation governing the dynamics of the beam is:

ρ0A
∂2z

∂t2
+ EI

∂4z

∂x4
= −ieB −

ε0wV
2

(d0 + z)2
(5.16)

where A = wt, ρ0 is the density, E is the Young’s modulus of the beam, I is
the modulus of inertia, z is the vertical displacement at position x (see fig. 5.3).
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We look for solutions of the form:

z(x, t) =
∞∑
n=1

ηn(t)zn(x) (5.17)

with zi(x) eigenmodes of the free vibration problem.
Looking for solutions of the form z(x, t) = f(x)cos(ωt) for the free vibrations

leads to the equation determining zn(x):

d4zn
dx4

− ω2
nρ0A

EI
zn = 0 (5.18)

The (normalized) solution for zn is then:

zn(x) = γn

[
cos(µn)− cosh(µn)
−sin(µn) + sinh(µn)

[−sin(µn
x

L
) + sinh(µn

x

L
)]− cos(µn

x

L
) + cosh(µn

x

L
)
]

(5.19)
with

γ2
n =

1

ρ0AL
∫ 1

0

[
cos(µn)−cosh(µn)
−sin(µn)+sinh(µn) [−sin(µny) + sinh(µny)]− cos(µny) + cosh(µny)

]2
dy

(5.20)
and the modal frequencies are determined as follows:

cos(µn)cosh(µn) = 1 , ω2
n = µ4

n

EI

ρ0AL4
(5.21)

we have

µ1 ≈ 4.730
µ2 ≈ 7.853
µ3 ≈ 10.996

µn ≈ (2n+ 1)
π

2
(5.22)

Note that with this normalization, we have the following relationships [39]:

ρ0A

∫ L

0

zn(x)zm(x)dx = δn,m (5.23)∫ L

0

d2zn
dx2

(x)
d2zm
dx2

(x)dx =
ω2
n

EI
δn,m (5.24)

Now we first use (5.17) into (5.16):

ρ0A
∞∑
i=1

η̈i(t)zi(x) + EI
∞∑
i=1

ηi(t)
d4zi
dx4

(x) = ieB −
ε0wV

2

(d0 + z(x, t))2
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Next we multiply by zj(x) and integrate between x = 0 and x = L:

∞∑
i=1

η̈i(t)ρ0A

∫ L

0

zi(x)zj(x)dx+
∞∑
i=1

ηi(t)EI
∫ L

0

d4zi
dx4

(x)zj(x)dx

=
∫ L

0

ieBzj(x)dx−
∫ L

0

ε0wV
2

(d0 + z(x, t))2
zj(x)dx

that is, after 2 integrations by parts and using (5.23) and (5.24):

η̈j(t) + ω2
j ηj(t) =

∫ L

0

ieBzj(x)dx−
∫ L

0

ε0wV
2

(d0 + z(x, t))2
zj(x)dx , j = 1 . . . n

(5.25)
The second term on the right hand side, due to the electrostatic force, com-

plicates the resolution of the system since it induces a coupling between all
the equations through the term z(x, t) in the denominator, which includes all
modes. The difficulty is also linked to the dependance on time present in this
term. Because of this, we developped a finite different scheme to solve the sys-
tem numerically. Special care is needed when z approaches −d0 since then this
term blows up. To avoid this problem, we stopped the computation when the
beam comes close enough to the electrode, selecting the convergence criteria
manually.

The numerical implementation can be summarized in the following steps:

• compute µn and ωn with (5.21).

• compute γn with (5.20).

• compute the RHS terms of (5.16) at time t. Use the initial condition to
start.

• compute all ηj at time t+ ∆t using (5.16), with a forward-backward dif-
ference scheme.

• we have all the elements to compute the terms at time t+ ∆t.

Fig. 5.4 shows the shape of the beam during the response to a step load of
magnetic and electrostatic force, as well as the position of the midpoint with
time and thus the switching time. We see that with the values considered, we
obtain a switching time of around 7 µs.

To verify the scheme, it is possible to compare the results given when we
set V = 0 with the theorical formula. Indeed, when there is no nonlinear term
due to the electrostatic force, the differential equations are decoupled and the
general solution for ηj becomes:

for V = 0 : ηj(t) =
(ieB

∫ L
0
zj(x)dx)
ω2
j

(1− cos(ωjt))

The numerical scheme is shown in this case to provide results very close to the
theoretical values.
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Figure 5.4: Transient response of the beam to a load of magnetic and electro-
static force. The gap between the electrodes is 2.5 µm. a) Shape of the beam
at different instants. b) Position of the midpoint until the first contact.
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5.3.3 Finite Elements Dynamics Simulation

Finite elements simulations have been carried out with ANSYS for the dual
magnetic and electrostatic actuation, and results for the switching time have
been compared to the results obtained in the previous section. The simulation
were done using the transducer element TRANS126 for the electro-mechanical
coupling. The elements were generated along the beam using the macro EMT-
GEN. Due to the simplicity of the geometry and the small deformations, we did
not have to use a more involved technique such as TRANS109. A uniform load
was added to account for the magnetic force.
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Part III

Stability Study
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Chapter 6

Problems of Stability for a
Beam in a Non Uniform
Magnetic Field

6.1 Introduction

The goal of this document is to present the mechanical stability properties of a
beam conducting a current in a non-uniform magnetic field. This is motivated
by trying to understand the type of unstability which can occur in the case of
the capacitive switch with magnetic actuation. In order to derive an analytical
model, some hypothesis have to be made, which changes the configuration of
interest. However, the result should provide some information on the mechanical
behavior of the original beam, and a way to evaluate the validity of future
numerical calculations.

Thus we consider a beam attached at its extremities (the boundary condi-
tions can be simply supported or clamped) and suspended in a magnetic field
created by two infinitely permeable plates with a difference of magnetic total
potential ψ0. In the reference configuration, this beam is exactly on the middle
line between the two plates (figure 6.1). When a current is sent through the
beam, it moves under the action of the Lorentz forces F = i ∧ B. Thus in
this configuration, we exagerate the non uniformity of the magnetic field by
replacing the thick magnets by infinitely thin plates (the plates are infinite in
the x-direction (see 6.1)).

This configuration seems to be unstable: we see that in the ideal configura-
tion, the deflection of the beam happens in the middle plane and the magnetic
forces are purely vertical, but if a lateral deflection of the beam occurs, a lat-
eral component in the magnetic forces appears, which tends to accentuate the
deflection. Therefore, we should find a critical value for the magnetic forces,
at which the stiffness of the beam is not sufficient to compensate these lateral
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Figure 6.1: Configuration of the beam between two infinitely permeable infinite
plates.

magnetic forces, and thus the vertical equilibrium becomes unstable.

6.2 Potential Energy Associated with the Lorentz
Forces

6.2.1 Work Done by the Lorentz Forces for a Portion of
Lineic Circuit in Bext.

For a portion δl of the circuit, with a current i, subject to a small displacement
δs = v dt:

δ2We = i (δl ∧Bext) . δs
= i (δs ∧ δl) .Bext

= i δ2Σ .Bext

= i δ2φec (6.1)

where δ2φec is the flux cut by the infinitely small portion δl of the circuit during
the infinitely small displacement δs. This can be integrated along the circuit or
a part of the circuit:

δWe = i

∫
circuit

(δs ∧ δl) .Bext = iδφec

6.2.2 Maxwell’s Theorem

For an infinitely small deformation or a displacement of the circuit, if Bext

is independent of time, and Φe(t) is the flux of Bext in the circuit (Φe(t) =
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∫∫
St
Bext .n δS =

∮
Ct
Aext . δl, with A being the magnetic potential vector):

δφec = dΦe
δWe = i dΦe (6.2)

The proof is easy and given in annexe A.

6.2.3 Potential Energy When the Current is Constant

Then with i(t) = Ie and Bext independant of time:

δWe = IedΦe = d(IeΦe)

And thus a potential energy is associated to the Lorentz forces:

EpeLorentz = −IeΦe(position and shape of the circuit) (6.3)

Note that a consequence of this is that when only the Lorentz forces work, they
tend to maximize the flux in the circuit (minimize Ep).

6.3 Calculation of the Magnetic Flux

In order to set up the energy of the problem, we see that we need to find an
expression for the flux of the magnetic field intensity through the circuit. In this
paragraph we give the expression of the integrated flux in 2D between any point
on the line joining the plates (z = x = 0) and any point of the plane (yOz) (see
fig. 6.1).

A powerful method is two use a conformal transformation to relate the field
of interest here to the simple field of a line current located at the origin ([40]).
The map transforming the upper half t − plane into the exterior of the plates
in the considered plane (yOz) called Z− plane (Z = y+ jz) is found by solving
the following Schwarz-Christoffel equation:

dZ

dt
= S(1− 1

t2
)

where S depends on the dimensions of the configuration. If we call 2d the
distance between the plates therefore the final map is

Z =
d

2
(t+

1
t
) (6.4)

Note that this map transforms the real axis of the t− plane into the plates
in the Z − plane.

Consider now in the t−plane the field due to two semi-infinite equipotential
planes, one lying between 0 and ∞, the other between 0 and −∞, with a
difference of potential ψ0 maintained between the two halves of the real axis,
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then the field in the positive half plane is described by the complex potential
function:

φ+ jψ =
ψ0

π
log t (6.5)

This is the same field as the field created by a current line at the origin with a
current equal to ψ0 through it (the line creates the potential difference between
the two halves of the real axis). The expression for the complex potential of a
current line is explained in annexe B. We simply recall that in these equations,
ψ is the magnetic potential (H = −∇ψ for regions without currents and in the
exterior ψ obeys Laplace’s equation), and φ = constant defines a flux line, that
is φ = φ0 and φ = φ0 + n have n units of flux passing between them.

Eliminating t between (6.4) and (6.5) gives us the expression of the relation
between the position in the actual Z − plane and the complex potential:

Z = y + jz = d cosh(
π

ψ0
(φ+ jψ)) (6.6)

This expression has to be inverted because we need the expression of the
flux function a each point (y, z). The inversion of (6.6) leads to the following
flux function (valid outside the plates):

φ(y, z) =
ψ0

2π
arccosh(f(y, z))× sign(y) (6.7)

f(y, z) =
y2

d2
+
z2

d2
+

√
z4

d4
+

2z2

d2
+

2y2z2

d4
+ (1− y2

d2
)2 (6.8)

Note here that the line z = 0, |y| ≤ d corresponds to the flux line φ = 0
therefore φ(y, z) directly gives the flux passing between the point (y, z) and any
point of the line between joining the plates, in particular it gives the flux passing
between (y, z) and the origin.

6.4 Mechanical Problem Formulation

We now have all the information needed to set up the energy of the problem. In
this study, we consider small deformations of the beam, and therefore it leads
to the following simplifications:

• The internal energy can be written:

Eint =
1
2

∫ L

0

(EIyyw2
,xx + EIzzv

2
,xx)dx (6.9)

• The energy associated to the Lorentz forces is the difference between the
potential energy in the reference and the current configuration and can be
written Eem = −Ie∆Φe, with the usual orientation of the normal vector
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compatible with the direction of the current for a surface enclosed by
a lineic circuit. If we consider that the only part of the circuit moving
between the two configurations is the beam, then the term ∆Φe is the flux
passing through the area enclosed by the curve describing the beam in
the two configurations. Because of the small deformations hypothesis, the
length L for the integration along direction (Ox) in both configurations is
the same, without any corrective term (we neglect the cosine of the angle
of the tangent line to the beam with the (Ox) direction). The original
configuration corresponds to the axis (Ox) and φ(y, z) = 0. To compute
the total flux we integrate the infinitesimal flux at position x given by
φ(v(x), w(x)), where v and w are the horizontal and vertical displacements
of the beam in the final configuration (see fig. 6.1). Thus the magnetic
energy is given by:

Eem = −Ie
∫ L

0

φ(v(x), w(x))dx (6.10)

where φ is the expression given in (6.7).

• In the following, we will often make the approximation w
d << 1 in order

to obtain a tractable solution.

Adding (6.9), (6.10) and gives the expression of the energy for the problem:

E(u) = E(v, w) =
1
2

∫ L

0

(EIyyw2
,xx + EIzzv

2
,xx)dx− Ie

∫ L

0

φ(v(x), w(x))dx

6.5 Equilibrium and Stability

6.5.1 Equilibrium Equations. Fundamental Solution

Evaluating the stability of the system can essentially be done in a way similar to
[41]. The first derivative of the energy given in (6.11) provides the equilibrium
equations.

E,u (u)[δu] =
∫ L

0

( EIyyw,xxxx δw + EIzzv,xxxx δv

−Ie
∂φ

∂v
(v(x), w(x)) δv − Ie

∂φ

∂w
(v(x), w(x)) δw) ) dx

+ [w,xx δw,x ]L0 − [w,xxx δw]L0 + [v,xx δv,x ]L0 − [v,xxx δv]L0 (6.11)

And thus here are the equilibrium equations:
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δv terms : EIzzv,xxxx − Ie
∂φ

∂v
= 0 (6.12)

δw terms : EIyyw,xxxx − Ie
∂φ

∂w
= 0 (6.13)

B. C. : v(0) = v(L) = w(0) = w(L) = 0 (6.14)
v,xx (0) = v,xx (L) = w,xx (0) = w,xx (L) = 0 (s.s.) (6.15)
v,x (0) = v,x (L) = w,x (0) = w,x (L) = 0 (clamped) (6.16)

We provide the expression of ∂φ
∂v and ∂φ

∂w in annexe C. We verify that
∂φ
∂v (0, w) = 0, and consider the following approximation of the fundamental
solution (v = 0, w = ŵ) where:

ŵ =
IeB0

24EIyy
x(x− L)(x2 − Lx− L2) (s.s. beam) (6.17)

ŵ =
IeB0

24EIyy
x2(x− L)2 (clamped beam) (6.18)

(6.19)

This equation for (v = 0, w = ŵ) corresponds to the approximation w
d << 1

where (6.13) becomes for v = 0:

EIyyŵ,xxxx = IeB0
1√

1 + ŵ2

d2

≈ IeB0, B0 =
ψ0

πd
(6.20)

B0 is the value of the magnetic field density at the origin. In the following, we
take Ie > 0 and thus the fundamental solution corresponds to ŵ > 0.

6.5.2 Stability of the Equilibrium

The second derivative can be written:

E,uu (û)[ũ , δu] =
∫ L

0

( EIyyw̃,xxxx δw + EIzz ṽ,xxxx δv

−Ie
∂2φ

∂v2
(û) ṽ δv − Ie

∂2φ

∂w2
(û) w̃ δw − Ie

∂2φ

∂v∂w
(û) [w̃ δv + ṽ δw] ) dx

+ [w̃,xx δw,x ]L0 − [w̃,xxx δw]L0 + [ṽ,xx δv,x ]L0 − [ṽ,xxx δv]L0 (6.21)

If we look at the critical point where the definite positiveness might be lost,
we get the following equations for ũ :
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EIzz ṽ,xxxx − Ie
∂2φ

∂v2
(û) ṽ − Ie

∂2φ

∂v∂w
(û) w̃ = 0 (6.22)

EIyyw̃,xxxx − Ie
∂2φ

∂w2
(û) w̃ − Ie

∂2φ

∂v∂w
(û) ṽ = 0 (6.23)

ṽ(0) = ṽ(L) = w̃(0) = w̃(L) = 0 (6.24)
and ṽ,xx (0) = ṽ,xx (L) = w̃,xx (0) = w̃,xx (L) = 0 (s.s.) (6.25)
or ṽ,x (0) = ṽ,x (L) = w̃,x (0) = w̃,x (L) = 0 (clamped) (6.26)

It turns out that the expression of the terms involving the second derivative
of the magnetic flux along the fundamental solution û = (v = 0, w = ŵ) simplify
and give the following system for (6.22) and (6.23) (Ie and ŵ positive):

EIzz ṽ,xxxx − Ie
B0

d

ŵ
d

(1 + (wd )2)
3
2
ṽ = 0 (6.27)

EIzzw̃,xxxx + Ie
B0

d

ŵ
d

(1 + (wd )2)
3
2
w̃ = 0 (6.28)

That is, in the limit where ŵ
d << 1, and for the simply supported beam:

EIzz ṽ,xxxx − (IeB0)2x(x− L)(x2 − Lx− L2)
24EIyyd2

ṽ = 0 (6.29)

EIyyw̃,xxxx + (IeB0)2x(x− L)(x2 − Lx− L2)
24EIyyd2

w̃ = 0 (6.30)

ṽ(0) = ṽ(L) = w̃(0) = w̃(L) = 0 (6.31)
ṽ,xx (0) = ṽ,xx (L) = w̃,xx (0) = w̃,xx (L) = 0 (6.32)

Given the boundary conditions already established, we want to know for
which values of IeB0 we can find a non trivial solution ũ. We do not try to
solve directly the previous equations, but we will use variational methods here.

Solving the differential equation (6.30) with the boundary conditions for w
is equivalent to the following minimization problem:

w̃ = arg min
w,w(0)=w(L)=0

[∫ L

0

(
EIyyw,

2
xx +(IeB0)2 x

2(x− L)2

24EIyyd2
w2

)
dx

]
(6.33)

We can proove by a convexity argument that this problem has a unique
minimum, which is then w̃(x) = 0. Because of the negative sign in equation
(6.29), this argument does not apply any more in the v-equation (convexity
lost) and we can try to find an other minimum to the variational problem
corresponding to (6.29). Therefore we see that there is a possibility of unstability
only in the v-direction, the w-direction is stable as expected.
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Table 6.1: Numerical factor in the upper bound of the critical load (IeB0)c,
with Fourier expansions.

Nb. Terms s.s. beam clamped beam
1 8786.8 232860
5 8782.6 227410
10 8782.6 227271
30 8782.6 227248
50 8782.6 227247

6.5.3 Critical Loads for the Instability in the v-direction

Simply Supported Beam Moving Up

It is proved in annexe D that the critical load IeB0 below which a non trivial
solution ṽ exists is given by (for the s.s. beam):

(IeB0)2
c,free =

24E2d2IyyIzz
L8

min
v,v(0)=v(1)=0

∫ 1

0
v,2yy dy∫ 1

0
y(y − 1)(y2 − y − 1)v2dy

(6.34)

For the clamped beam, we will need to add to the space of test functions
the essential boundary conditions v,x (0) = v,x (1) = 0.

A first approximation of this load for the s.s. beam is given by taking a test
function v = A1sin(πx). Then we obtain the following expression:

(IeB0)2
c,free ≤

24E2d2IyyIzz
L8

10π8

2π4 + 5π2 + 15
≈ 8787

E2d2IyyIzz
L8

N.m−1

Using a more complete Fourier expansion of v =
∑n
i=1Ansin(nπx) leads to

sligthly lower results for the numerical factor (see table 6.1) but the convergence
is very quick.

Clamped Beam Moving Up

For the clamped beam, the critical load is given by:

(IeB0)2
c,clamped =

24E2d2IyyIzz
L8

min
v, v(0) = v(1) = 0
v,x (0) = v,x (1) = 0

∫ 1

0
v,2yy dy∫ 1

0
y2(y − 1)2v2dy

(6.35)
Here we first try a test function v(x) = A1(1− cos(2πx)) and we get:

(IeB0)2
c,clamped ≤

24E2d2IyyIzz
L8

2560π8

16π4 + 945
≈ 232860

E2d2IyyIzz
L8

N.m−1
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Figure 6.2: Convergence of the numerical prefactor, for the simply supported
and clamped beams.

6.6 Numerical Results

As an example we compute the upper limits obtained for the load in the case
of the beam moving up. The beam had a thickness of 1 µm, a width of 5 µm,
a length of 300 µm and is made out of aluminum (E = 70 GPa). We suppose
d = 30 µm.

We obtain then, for the simply supported beam:

(IeB0)c,free ≤ 2.56× 10−3 A.T

This shows that the system is quite unstable in the range of values considered so
far. But this is due mostly to a large exageration of the geometric nonlinearities
of the field created here by thin plates. In the case of a doubly clamped beam,
the structure is of course more stable:

(IeB0)c,clamped ≤ 66.3× 10−3 A.T

55



56



Conclusion
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Part IV

Appendix
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Appendix A

Demonstration of the
Maxwell’s Theorem

For an infinitely small increment of time, and a displacement or deformation of
a lineic circuit in a uniform and permanent magnetic field (see fig. A.1):

(St)
⋃

(Σ)
⋃

(St+dt) is a closed surface therefore
∫∫
Be.next δS = 0, which

can be decomposed (the normal vector n is oriented relatively to the direction
of the current i in the circuit):∫∫

St+dt

Be.n δS − δφec −
∫∫

St

Be.n δS = 0

Φe(t+ dt)− Φe(t) = δφec if Be permanent
dΦe = δφec

Figure A.1: Infinitely small Displacement/Deformation of a lineic circuit in a
uniform and permanent magnetic field.
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Appendix B

Complex Potential Due to a
Line Current

We know that the magnetic field created by a line current is:

B =
µ0µi

2πr
(B.1)

with i the current in the line and r the distance to the line.
The flux passing between two points at radii r1 and r2 is∫ r2

r1

µ0µi

2πr
dr =

µ0µi

2π
[logr]r2r1

the flux function is proportional to this and usually expressed in a form inde-
pendent of µ0µi as:

φ =
1

2π
logr (B.2)

The potential function ψ (total scalar potential) and the flux function can
be derived from each other (see [40]) and are related by the Cauchy-Riemann
equations. In polar coordinates, we get:

ψ =
∫
r
∂φ

∂r
dθ =

1
2π

θ + f(r)

From symmetry, ψ is a function of θ only and f(r) is equal to an arbitrary
constant which can be ignored, so the potential function can be expressed:

ψ =
1

2π
θ (B.3)

It is now apparent that (B.2) and (B.3) can be combined to form the complex
magnetic potential:

w = φ+ jψ =
1

2π
log(rejθ) =

1
2π

logt (B.4)
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Appendix C

Expression of the Flux
Function and its Derivatives

In the space between the two plates (−d ≤ v ≤ d) in chapter 6, the magnetic
flux function is given by:

φ(v, w) =
ψ0

2π
arccosh(f(v, w))× sign(v) (C.1)

f(v, w) =
v2

d2
+
w2

d2
+

√
w4

d4
+

2w2

d2
+

2v2w2

d4
+ (1− v2

d2
)2 (C.2)

In order to derive the equilibrium and stability equations, we need to derive
up to the second derivatives of this flux function. The expressions are given
below, and the simplifications arising in the case of the derivation along the
fundamental solution are found in the concerned chapter.

First Derivative:

∂φ

∂w
(v, w) =

ψ0v
√
v2 + w2 − d2 +

√
(v2 + w2 + d2)2 − 4v2d2

π
√
v2 + w2 + d2 − 4v2d2

√
v2 + w2 + d2 +

√
(v2 + w2 + d2)2 − 4v2d2

∂φ

∂w
(v, w) =

ψ0w
√
v2 + w2 + d2 +

√
(v2 + w2 + d2)2 − 4v2d2

π
√
v2 + w2 + d2 − 4v2d2

√
v2 + w2 − d2 +

√
(v2 + w2 + d2)2 − 4v2d2

Second Derivative:
Given the complexity of the expression for the first partial derivatives, the

second partial derivatives were computed using MAPLE and the (long) expres-
sions are not given here. These expressions are greatly simplified when we con-
sider them on the fundamental solution where v = 0 and provide the stability
equations given in chapter 6.
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Appendix D

Variationnal Problem for
the Transverse Direction
Stability

D.1 Problem Formulation

In this part, we justify the use of the Rayleigh’s quotient in the derivation of
the critical load for the stability in chapter 6. Consider the following problem:

Find min
v∈V

∫ 1

0
v,2xx dx∫ 1

0
f(x)v2dx

(D.1)

V =
{
v s.t.

∫ 1

0
v2dx <∞,

∫ 1

0
v,2xx dx <∞

v(0) = v(1) = 0

}
, f continuous > 0 on ]0, 1[

And assume first that we know that a minimizing function ṽ exists, and let
us call λ the value of the minimum. Let us proove that ṽ is solution of the
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differential equation of interest (6.29).

Let ε ∈ R, v ∈ V then ṽ + εv ∈ V
We have by definition:

∫ 1
0 (ṽ,xx+εv,xx)2dx∫ 1

0 f(x)(ṽ+εv)2 ≥ λ

Expanding this formula, using the definition of ṽ, we get:
∀ε,∀v ∈ V, ε2

∫ 1

0
(v,2xx−λf(x)v2)dx+ 2ε

∫ 1

0
(ṽ,xx v,xx−λf(x)ṽv)dx ≥ 0

Because we allow the sign of ε to change, and because the sign
of the expression is controlled by the last term for ε sufficiently small,
we have necessarily:
∀v ∈ V,

∫ 1

0
(ṽ,xx v,xx−λf(x)ṽv)dx = 0

After an integration by parts:
∀v ∈ V,

∫ 1

0
(ṽ,xxxx−λf(x)ṽ)vdx+ [ṽ,xx v,x ]10 − [ṽ,xxx v]10 = 0

The last term disappears by definition of V , and we deduce:
ṽ,xxxx−λf(x)ṽ = 0
ṽ,xx (0) = ṽ,xx (1) = 0 (and ṽ(0) = ṽ(1) = 0 because ṽ ∈ V )

Note that for the clamped beam, we would need to add the condition
v,x (0) = v,x (1) = 0 to the definition of V, space of test functions.

Two points remain to finish the demonstration. We want to show that λ is
the smallest value for which we have a non trivial solution to the differential
equation, and we still need to study the problem of the existence of a minimizing
funtion.

Suppose ∃ v̂ 6= 0 and λ̂ s.t.
v̂,xxxx−λ̂f(x)v̂ = 0
v̂,xx (0) = v̂,xx (1) = v̂(0) = v̂(1) = 0

Thus ∀ v ∈ V :
∫ 1

0
v̂,xxxx vdx−

∫ 1

0
λ̂f(x)v̂vdx = 0

∀ v ∈ V :
∫ 1

0
v̂,xx v,xx dx−

∫ 1

0
λ̂f(x)v̂vdx = 0

Take v = v̂ : λ̂ =
∫ 1
0 v̂,

2
xxdx∫ 1

0 f(x)v̂2dx
≥ minv∈V

∫ 1
0 v,

2
xxdx∫ 1

0 f(x)v2dx

That is λ̂ ≥ λ
We see that λ is actually the smallest value for which we can have a non trivial
solution for our differential equation (and therefore it is called critical load in
the mechanical analysis).

Existence of the minimizing function. The denominator functional
being positive definite, it induces an inner product and the problem can easily
be linked to the following:

Find the minimimum of
(Hu, u)
(u, u)
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The positive definite functional (Hu, u)/(u, u) has zero for lower bound and
thus has a greatest lower bound λ1. Thus there exist a minimizing sequence of
functions w1, . . . , wn, . . . such that:

(Hwi, wi)
(wi, wi)

→ λ1

But we have no garanty a priori that an admissible function u1 actually realizes
this minimum. However, the existence of this minumizing function could be
proven using a more precise study of the functional space V, that we do not
carry here. ([42]).

D.2 Numerical Determination of the Critical Load

In order to approach the value of the minimum, we use Fourier Series with an
increasing number of terms as test functions. An argument of density should
proove that when the number of terms of the Fourier series becomes infinite,
the Rayleigh’s ratio reaches the real minimum. The minimization becomes a
minimization on the coefficients of the series, and thus the problem becomes a
classical problem of minimizing quadratic functions.

For the case considered so far, let v =
∑N
k=1Aksin(kπx) (for a clamped

beam, we would take v =
∑N
k=1Ak(1− cos(2kπx)) ). Therefore we get:∫ 1

0

v,2xx dx = π4
N∑
k=1

N∑
l=1

AkAlk
2l2
∫ 1

0

sin(kπx)sin(lπx)

= π4
N∑
k=1

N∑
l=1

AkAlk
2l2Ck,l

∫ 1

0

f(x)v2dx =
N∑
k=1

N∑
l=1

AkAl

∫ 1

0

f(x)sin(kπx)sin(lπx) =
N∑
k=1

N∑
l=1

AkAlDk,l

Let us call a = [A1A2 · · ·AN ]T , C = (Ck,l)1≤k,l≤N , D = (Dk,l)1≤k,l≤N . The
numerical problem becomes:

Find min
a∈RN

aT .C.a

aT .D.a
, C and D positive definite.

The positive definitiveness of C and D comes from the positive definiteness
of the original operators on the space function V (recall that f(x) > 0 on ]0, 1[
and to show that the numerator is definite, use the boundary conditions on v).
Because D is positive definite, it induces an inner product and this minimization
problem can further be related to the classical result:

min
a

aT .M.a

aT .a
= min{λ, λ eigenvalue of M}

The numerical calculation is done as follows:
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• Compute the square root ∆ of D: D = ∆T .∆ (∆ exists because D > 0)

• By positive definiteness again, ∆−1 exists. Compute it.

•

min
a

aT .C.a

aT .D.a
= min

a

(∆a)T .(∆−1)T .C.∆−1.(∆a)
(∆a)T .(∆a)

= min{eigenvalues of ((∆−1)T .C.∆−1)}

Therefore we see that the computation of the minimum becomes a problem of
determining the smallest eigenvalue of a certain matrix. Note also that because
of the orthogonality of the sine functions, C is diagonal here. We determined
the general form of Ck,l and Dk,l with MAPLE.
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