
Chapter 7

Value and Policy Iteration

1For infinite horizon problems, we need to replace our basic computational tool,
the DP algorithm, which we used to compute the optimal cost and policy for
finite horizon problems. We have already encountered in chapter 6 the value
iteration (VI) algorithm, which is similar to the DP algorithm and computes
a sequence of functions converging toward the optimal cost, solution of Bell-
man’s equation. In the first part of this chapter, we discuss the VI algorithm
and some of its refinements in more details. Then we describe another basic
method to solve Bellman’s equation, policy iteration (PI), which in contrast
to VI generates a sequence of improving policies. Throughout this chapter we
consider the simple case of discounted cost problems with bounded cost per
stage.

7.1 Value Iteration

We consider the infinite horizon discounted cost problem with bounded cost per
stage. For this problem, we have seen in chapter 6, lemma 6.3.4 that starting
from a bounded cost function J , the iterates T kJ converge uniformly to the
optimal cost J∗. This algorithm is called the value iteration algorithm, or
sometimes successive approximation. In this section we discuss this algorithm
in more details as well as some of its variations.

Value Iteration with Accelerated Convergence

VI is an iterative method which in general only converges asymptotically to
the value function, even if the state space is finite. In practice it is often very
useful to have methods to accelerate the convergence of this algorithm.

Proposition 7.1.1 (VI with error bounds). For every J ∈ B(X, R) and index
k, we have the lower bounds

J∗ ≥ T k+1J + ck+1e ≥ T kJ + cke ≥ . . .

1This version: October 20 2009

83

and the upper bounds

J∗ ≤ T k+1J + ck+1e ≤ T kJ + cke ≤ . . .

where

ck =
α

1− α
min
x∈X

[T kJ(x)− T k−1J(x)] (7.1)

ck =
α

1− α
max
x∈X

[T kJ(x)− T k−1J(x)]. (7.2)

Note that the constants (7.1) and (7.2) can be computed during the stan-
dard value iteration algorithm. We still follow the same algorithm computing
the iterates T kJ , but we use the additional bounds to detect convergence more
rapidly.

Proof. We show the inequalities for the lower bounds, the upper bounds being
similar. Because J ∈ B(X, R) and we assume a bounded cost per state, we have
that TJ ∈ B(X, R). Next let γ = minx∈X[TJ(x) − J(x)]. We have therefore
J + γe ≤ TJ. Hence by the offset property and the monotonicity property of
lemmas 6.3.1 and 6.3.2, we get TJ + αγe ≤ T 2J. Combining this inequality
with the preceding one, we obtain

J + (1 + α)γe ≤ TJ + αγe ≤ T 2J. (7.3)

Note that c1 = αγ/(1 − α). Repeating this process infinitely many times, we
obtain

J +
γ

1− α
e ≤ TJ + c1e ≤ T 2J + αc1e ≤ . . . ≤ J∗. (7.4)

Now replace J by T kJ to get the first lower bound (from the second term)

T k+1J + ck+1e ≤ J∗.

From the last inequality in (7.3) we have

αγ ≤ min
x∈X

[T 2J(x)− TJ(x)]

and so αc1 ≤ c2.

Hence TJ +c1e ≤ T 2J +c2e, from the second inequality in (7.4) and the second
lower bound follows by replacing J by T k−1J .

Termination Issues

Consider a cost function J : X → R. Consider a policy µ which achieves the
minimum in the equation TµJ = TJ . Now consider the first bound from lemma
7.1.1, for J∗ and Jµ (as usual, results for the latter case are obtained from those
for J∗ by constraining U(x) = {µ(x)})

c1e ≤ J∗ − TJ ≤ c̄1e

c1e ≤ J∗µ − TµJ ≤ c̄1e.

84

Now since TµJ = TJ , we get

‖J∗ − Jµ‖∞ ≤ c̄1 − c1. (7.5)

In practice, we stop VI once the difference (c̄k − ck) is sufficiently small. Then
we can take as an approximation of the optimal cost the median

J̃k = T kJ +
c̄k + ck

2
e, (7.6)

or the average

Ĵk = T kJ +

[
α

n(1− α)

n∑

i=1

(
T kJ(i))− T k−1J(i)

)]
e. (7.7)

Then, using (7.5) with c1 replaced by ck, we have an estimate on the subopti-
mality of the policy µ achieving the minimum in the calculation of T kJ (i.e.,
TµkT k−1J = T kJ). Moreover If the state and control spaces are finite, there
is a finite number of possible stationary policies. In particular there is some
ε > 0 such that any stationary policy which verifies ‖Jµ− J∗‖ < ε is necessary
optimal. The same error bounds (7.5) again then show that after a sufficiently
large number of iterations, we obtain an optimal policy.

Computations in Finite State Spaces

Assume that the sets X,U and W are all finite. Without loss of generality,
assume that X = {1, . . . , n}, and consider the controlled Markov chain formu-
lation, using the transition probabilities pij(u) and the cost function c(i, u, j)
for the cost of using u in state i and moving to state j. Next define the expected
cost per state

c(i, u) =
∑

j∈X

pij(u)c(i, u, j).

Then the DP operators T and Tµ can be written

(TJ)(i) = min
u∈U(i)

c(i, u) + α
n∑

j=1

pij(u)J(j)

 , i = 1, . . . , n

(TµJ)(i) = c(i, µ(i)) + α
n∑

j=1

pij(µ(i))J(j), i = 1, . . . , n.

Note that a function f : X → R can be represented as a vector of length n,
with coordinates {f(i)}1≤i≤n. For the stationary policy µ, define the Markov
transition matrix Pµ = [pij(µ(i))]i,j , i.e. the transition matrix of the Markov
chain X0, X1, . . . obtained once the policy µ is fixed. Let cµ be the vector with
ith coordinate c(i, µ(i)), i.e., the cost of state i under policy µ. Then, repre-
senting a cost function J as the vector [J(1), . . . J(n)]T we can write Bellman’s

85

equation for Tµ as a system of n linear equations, where the unknown is the
vector Jµ, cost vector for the stationary policy µ

Jµ = TµJµ = cµ + αPµJµ

(I − αPµ)Jµ = cµ

Jµ = (I − αPµ)−1cµ.

Here I denotes the n × n matrix. The invertibility of the matrix I − αP
follows directly from the fact that we already know that the system TµJµ = Jµ

has a unique solution2. Thus any method available to solve linear systems of
equations can be used to compute the cost function of a given policy µ. To
compute the optimal value function and policy however, we need to solve a
nonlinear system of equations.

Rate of Convergence of VI with Error Bounds

Consider a problem with a finite state and control space, as in the preceding
paragraph. Assume for simplicity that there is a unique optimal policy µ∗.
Then after a while, the VI

min
µ

TµT k−1J = T kJ

always yields µ∗ and thus the iterations reduce to

J := cµ∗ + αPµ∗J,

which is a linear system of equations. The rate of convergence of the iterations
should then be controlled by the maximum eigenvalue modulus of αPµ, i.e.,
α since Pµ has a unit eigenvalue. When the error bounds are used, the rate
at which J̃k or Ĵk in (7.6) and (7.7) approach J∗ turns out to be governed by
the eigenvalue with the second largest modulus instead, see [Ber07, p.28] and
problems B.3.6, B.4.1.

Variants of Value Iteration

Gauss-Seidel VI In standard VI, we use the same current cost estimate Jk to
update all states at the next iterate Jk+1 = TJk. Instead, we could incorporate
earlier in the computations the new values of the cost for the states that have
already been treated. More precively, with a state space X = {1, 2, . . . , n},
assume that the current cost estimate is J . Then we can start the next iteration
with state 1, defining the mapping F by

FJ(1) = min
u∈U(1)

c(1, u) + α
n∑

j=1

p1j(u)J(j)

 ,

2or purely algebraically: the eigenvalues of αPµ are in the interior of the unit disk - see
Gershgorin’s theorem for example.

86

and we continue updating the states in order, incorporating the new values
FJ(j) already computed

FJ(i) = min
u∈U(i)

c(i, u) + α
i−1∑

j=1

pij(u)FJ(j) + α
n∑

j=i

pij(u)J(j)

 , for i = 2, . . . , n.

This corresponds to the Gauss-Seidel method to solve the nonlinear system of
equations J = TJ . There is some evidence that this method performs roughly
as efficiently as VI with bounds, so that it is a good method to use (note that
it is as easy to compute as standard VI).

Proposition 7.1.2. Let X = {1, . . . , n}, and J, J ′ : X → R. For Gauss-Seidel
Value Iteration, we have

‖FJ − FJ ′‖∞ ≤ αk‖J − J ′‖∞.

Furthermore FJ∗ = J∗ and limk→∞ ‖F kJ − J∗‖∞ = 0. Finally, if J verifies
J ≤ TJ ≤ J∗, then

T kJ ≤ F kJ ≤ J∗.

The last result of the preceding proposition says that Gauss-Seidel VI per-
forms always at least as well as VI if the initial choice J verifies J ≤ TJ ≤ J∗.

Proof. Using the result for T , we know that

|FJ(1)− FJ ′(1)| ≤ α‖J − J ′‖∞.

Then, again using the result for T we have

|FJ(i)− FJ ′(i)| ≤α max{|FJ(1)− FJ ′(1)|, . . . , |FJ(i− 1)− FJ ′(i− 1)|,
|J(i)− J ′(i)|, . . . , |J(n)− J ′(n)|}.

The result then follows by a straightforward induction. The equation FJ∗ = J∗

follows from the definition of J and the result for T . The convergence property
follows from there and the inequalities above. The last result uses the definition
of F , the monotonicity property of T , and a straightforward induction.

Asynchronous VI This algorithm is like Gauss-Seidel value iteration but
the states are not updated in order. Instead, the algorithm picks out an infinite
sequence of states x0, x1, x2, . . . such that every state in X occurs infinitely
often. This is useful in an implementation of VI using parallel computations,
where each processor can work on updating a component of the value function
and transmits its result to the other processors when it is done. The process can
be asynchronous and will still converge as long as all processors keep updating
their values. Convergence of asynchronous VI is proved by showing that the
iterations between two time periods at which all states have been updated at
least once more form a contraction.

87

Real-Time VI This algorithm is like asynchronous value iteration, but the
sequence of states is generated by simulating the system. A difference with
asynchronous VI however is that we are not guaranteed to update each state
an infinite number of times. The algorithm is as follows

1. Start with x0 arbitrary and some initial cost vector J0.

2. At stage k in state xk and with current cost approximation Jk, compute
the one-step lookahead control

uk ∈ arg min
u∈U(xk)

∑

y∈X

pxky(u)(c(xk, u, y) + αJk(y)

 .

3. Update J for the state xk according to

Jk+1(x) =

{∑
y∈X pxy(uk)(c(x, uk, y) + αJk(y)), if x = xk

Jk(x), otherwise.

4. Perform a transition to the next state xk+1 = f(xk, uk, wk). Repeat from
2.

Theorem 7.1.3. Assume |X| is finite. If J0 ≤ J∗ then there exists a time k̄
(random, but with k̄ < ∞ almost surely) such that the controls uk are optimal
for all k ≥ k̄.

Note that for RTVI we do not necessarily have Jk → J∗. The result con-
cerns sample paths of the algorithm, and the theorem only says that eventually
we will be making optimal decisions along each path. The process does not
necessarily explore the whole state space, so at the end we do not necessarily
obtain a globally defined optimal policy, unless more assumptions are made re-
garding communication between states. For very large state space, the theorem
suggests that RTVI can be used to find an optimal policy for a small subset of
the total state space. A few more remarks on the assumption J0 ≤ J∗. This
assumption means that we are optimistic about the cost-to-go function at each
state, so we have incentives to go to each state. Also, from the monotonicity
property of T and TJ∗ = J∗, we get that all iterates verify Jk ≤ J∗.

Proof. Consider a sample path followed by the RTVI algorithm. Since the state
space is finite, there exists a finite time k after which all the states visited by
this path are visited infinitely often. Denote this set by X̃. On this set, we are
essentially doing asynchronous value iteration so there is some vector J∗

X̃
such

that
Jk(x) → J∗

X̃
(x), ∀x ∈ X̃.

Moreover there is an actual policy π (defined on all X) such that Jπ(x) = J∗
X̃
(x)

for all x ∈ X̃. Hence we have

J∗
X̃
(x) ≥ J∗(x) ≥ Jk(x), ∀x ∈ X̃,

88

where the last inequality follows from our discussion after the statement of the
theorem. Together with the convergence result, we get J∗

X̃
(x) = Jπ(x) for all

x ∈ X̃. Overall, the iterates Jk converge to a function J̃ such that

J̃(x) = J∗(x) ∀x ∈ X̃

J̃(x) ≤ J∗(x) ∀x ∈ X̃c.

Hence the controls chosen by the RTVI algorithm become optimal among poli-
cies that do not leave ∀x ∈ X̃. Now consider a policy which in some state x ∈ X̃
choses a control u with pxy(u) > 0 for some y ∈ X̃c. The optimal cost-to-go
from y verifies J∗(y) ≥ J̃(x) and so the RTVI policy also performs at least as
well as this policy.

Using Value Iteration to Prove Properties of the Value
Function

For finite horizon problems, we have used backward induction reasoning ex-
tensively to prove various properties of the value function and optimal policy.
Value iteration can be used to replace the DP algorithm in this context as well,
i.e., for the theoretical investigation of the properties of the solution. A typical
example of this method is provided in [Ber07, vol. II p. 17], where value itera-
tion is used to show that an optimal policy in a machine replacement problem
has the form of a threshold policy.

Q-Value Iteration

If J∗ is known, then an optimal policy can be computed as

µ∗(x) = arg min
u∈U(x)

E
[
c(x, u, w) + αJ∗(f(x, u, w))

∣∣∣x
]
.

This motivates the definition of the Q-factors

Q∗(x, u) := E
[
c(x, u, w) + αJ∗(f(x, u, w))

∣∣∣x
]
, ∀(x, u). (7.8)

Then if the Q-factors are known, an optimal control at state x is obtained
by computing minu Q∗(x, u). Minimize over u in (7.8) and recall Bellman’s
equation to see that

J∗(x) = min
u∈U(x)

Q∗(x, u)

and so the Q-factors satisfy the fixed point equation

Q∗(x, u) = E
[
c(x, u, w) + α min

ū∈U(f(x,u,w))
Q∗(f(x, u, w), ū)

∣∣∣x
]
. (7.9)

Q∗ is the unique solution of this equation. We can define an operator F similar
to T

(FQ)(x, u) = E
[
c(x, u, w) + α min

ū∈U(f(x,u,w))
Q∗(f(x, u, w), ū)

∣∣∣x
]
.

89

In the case of countable state spaces, this gives

(FQ)(x, u) =
∑

y∈X

pxy(u)
(
c(x, u, y) + α min

ūU(y)
Q(y, ū)

)
.

Then (7.9) can be rewritten more succinctly Q∗ = FQ∗, the equivalent of
Bellman’s equation. It turns out that F is also an α-contraction for ‖ ·‖∞, it
has a unique fixed point which is Q∗, and various value iterations algorithms
converge to Q∗: Q-Value Iteration, i.e., Qk+1 = FQk, Gauss-Seidel Q-VI and
asynchronous Q-VI. Also we can apply Real-Time Q-Value Iteration.

Approximate VI in Infinite State Spaces

The value iteration algorithm converges in problems with infinite state and
control spaces. However in these problems as well as in problems with a finite
but very large state space, VI might be implementable only approximately.
That is, for a function J , we might only be able to compute a function J̃ such
that ‖J̃ − TJ‖∞ ≤ ε, for some ε > 0. For example, we might compute TJ(x)
for some state x and obtain J̃ on X by interpolation or least-squares fit. The
approximate VI algorithm under the condition

‖Jk+1 − TJk‖∞ ≤ ε, ∀k ≥ 0 (7.10)

approaches J∗ within ε/(1− α). Indeed we have

TJ0 − εe ≤ J1 ≤ TJ0 + εe.

Now assume we have proved

T kJ0 − ε(1 + α + . . . + αk−1)e ≤ Jk ≤ T kJ0 + ε(1 + α + . . . + αk−1)e

Applying T to this relation

T k+1 − αε(1 + α + . . . + αk−1)e ≤ TJk ≤ T k+1J0 + αε(1 + α + . . . + αk−1)e.

Now using (7.10), we get

T k+1 − ε(1 + α + . . . + αk)e ≤ Jk+1 ≤ T k+1J0 + ε(1 + α + . . . + αk)e,

and so this relation is true for all k by induction. Taking limits

J∗ − ε

1− α
e ≤ lim inf

k→∞
Jk ≤ lim sup

k→∞
Jk ≤ J∗ +

ε

1− α
e.

90

7.2 Policy Iteration

The policy iteration algorithm generates a sequence of improving stationary
policies. The algorithm is as follows.

1. (Initialization) Start with an initial stationary policy µ0.

2. (Policy Evaluation) Given the stationary policy µk, compute its cost Jµk

by solving the linear system of equations

(I − αPµk)Jµk = cµk .

3. (Policy Improvement) Obtain a new stationary policy µk+1 satisfying

Tµk+1Jµk = TJµk .

In other words, we have

µk+1(x) ∈ arg min
u∈U(x)

E[c(x, u, w) + αJµk(f(x, u, w))|x].

If the policy does not change, then stop. Otherwise repeat the process
from step 2.

Note that when the algorithm stops, we have µk+1 = µk and so Jµk =
TµkJµk = Tµk+1Jµk = TJµk , hence the policy µk is optimal by theorem 6.5.1.
The convergence of value iteration is based on the following result.

Proposition 7.2.1. Let µ and µ̄ be stationary policies such that Tµ̄Jµ = TJµ,
that is, for all x ∈ X

E[c(x, µ̄(x), w) + αJµ(f(x, µ̄(x), w))] = min
u∈U(x)

E[c(x, u, w) + αJµ(f(x, u, w))].

Then Jµ̄ ≤ Jµ. Moreover if µ is not optimal, strict inequality holds in this
inequality for at least one state.

Proof. We have TµJµ = Jµ by theorem 6.5.1, and Tµ̄Jµ = TJµ by hypothesis.
We also clearly have TµJµ ≥ TJµ, so finally Jµ ≥ Tµ̄Jµ. Apply Tµ̄ on both sides
of the inequality repeatedly and use the monotonicity of Tµ̄ and the convergence
of value iteration to get

Jµ ≥ Tµ̄Jµ ≥ T 2
µ̄Jµ ≥ . . . ≥ Jµ̄.

If Jµ = Jµ̄ then Jµ = Jµ̄ = Tµ̄Jµ̄ = Tµ̄Jµ = TJµ. So Jµ = J∗ by unicity of
the solution of Bellman’s equation (theorem 6.5.1). Thus µ must be optimal.
Hence if µ is not optimal, we must have Jµ̄(x) < Jµ(x) for some state x.

Corollary 7.2.2. If |X| and |U(x)| are finite for all x, the policy iteration
algorithm finds an optimal stationary policy in a finite number of steps.

91

Proof. Under the assumptions, there is only a finite number of possible station-
ary policies, and the PI algorithm is strictly improving as long as an optimal
policy is not found.

The main advantage of PI over VI is this finite time convergence (for finite
spaces). On the other hand, it requires finding the exact value of Jµk in each
policy evaluation step, which is not attractive when the state space is large
(we need to solve at each step a large linear system). In some problems, we
can improve the computational properties of PI by showing that it generates a
sequence of policies with attractive features, for example threshold policies (ee
problem B.4.3). As a first variant of PI, we can replace the exact computation
in the policy evaluation step by an iterative approach using the value iteration
algorithm TµkJ → Jµk . This is called the modified policy iteration algorithm.
Error bounds and Gauss-Seidel VI iteration can be used at this step. In general,
at the kth policy evaluation step, we have a policy µk whose cost Jµk is only
approximated using mk value iteration steps, to obtain an approximation Jk.
Then the next policy µk+1 is defined as Tµk+1Jk = TJk. If mk = 0 for all k,
we obtain the value iteration method (in this case, start with some arbitrary
function J0). If mk = ∞ for all k, this is the policy iteration algorithm.
Experience suggests to take mk ≥ 1. Note that the iterations J := TµJ are
still much less computationally expensive thant J := TJ if the number of
controls available at each state is large. The convergence of the modified policy
iteration, including an asynchronous version of this algorithm, can be found in
[Ber07, vol. II, p.44].

Approximate Policy Iteration

For infinite or very large state spaces, the policy evaluation step and the policy
improvement steps might only be implementable approximately, similarly to
the situation for value iteration. Hence we are led to consider algorithms gen-
erating a sequence of stationary policies {µk} and approximate cost functions
{Jk} such that the policy evaluation step produces Jk with

‖Jk − Jµk‖∞ ≤ δ, k ≥ 0,

and the policy improvement step produces µk + 1 such that

‖Tµk+1Jk − TJk‖ ≤ ε, k ≥ 0,

for some ε, δ > 0, and starting from an arbitrary stationary policy µ0. It turns
out then that the sequence of policies generated by this algorithm satisfies the
following performance bound

lim sup
k→∞

‖Jµk − J∗‖ ≤ ε + 2αδ

(1− α)2
.

This bound is proved in [Ber07, vol. II, p.48]. At some point, the iterates Jµk

typically oscillate in a neighborhood of the optimum J∗. Unfortunately the

92

fact that the size of this neighborhood is proportional to (1− α)−2 is not very
good for α close to 1. Yet it turns out that this bound cannot be improved in
the general case.

93

