
Chapter 15

Introduction to Stochastic
Approximation Algorithms

1Stochastic approximation algorithms are recursive update rules that can be
used, among other things, to solve optimization problems and fixed point equa-
tions (including standard linear systems) when the collected data is subject to
noise. In engineering, optimization problems are often of this type, when you
do not have a mathematical model of the system (which can be too complex)
but still would like to optimize its behavior by adjusting certain parameters.
For this purpose, you can do experiments or run simulations to evaluate the
performance of the system at given values of the parameters. Stochastic ap-
proximation algorithms have also been used in the social sciences to describe
collective dynamics: fictitious play in learning theory and consensus algorithms
can be studied using their theory. In short, it is hard to overemphasized their
usefulness. In addition, the theory of stochastic approximation algorithms, at
least when approached using the ODE method as done here, is a beautiful mix
of dynamical systems theory and probability theory. We only have time to give
you a flavor of this theory but hopefully this will motivate you to explore fur-
ther on your own. For our purpose, essentially all approximate DP algorithms
encountered in the following chapters are stochastic approximation algorithms.
We will not have time to give formal convergence proofs for all of them, but this
chapter should give you a starting point to understand the basic mechanisms
involved. Most of the material discussed here is taken from [Bor08].

15.1 Example: The Robbins-Monro Algorithm

Suppose we wish to find the root θ̄ of the function f : R → R. We can use
Newton’s procedure, which generates the sequence of iterates

θn+1 = θn −
f(θn)
f ′(θn)

.

1This version: October 31 2009
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Suppose we also know a neighborhood of θ̄, where f(θ) < 0 for θ < θ̄, f(θ) > 0
for θ > θ̄, and f in nondecreasing in this neighborhood. Then if we start
at θ0 close enough of θ̄, the following simpler (but less efficient) scheme also
converges to θ̄, and does not require the derivative of f :

θn+1 = θn − αf(θn), (15.1)

for some fixed and sufficiently small α > 0. Note that if f is itself the derivative
of a function F , these schemes correspond to Newton’s method and a fixed-
step gradient descent procedure for minimizing F , respectively (more precisely,
finding a critical point of F or root of the gradient of F ).

Very often in applications, we do not have access to the mathematical model
f , but we can do experiments or simulations to sample the function at particular
values of θ. These samples are typically noisy however, so that we can assume
that we have a black-box at our disposal (the simulator, the lab where we do
the experiments, etc.), which on input xθ returns the value y = f(θ)+d, where
d is a noise, which will soon be assumed to be random. The point is that we
only have access to the value y, and we have no way of removing the noise from
it, i.e., of isolating the exact value of f(θ). Now suppose that we still want to
find a root of f as in the problem above, with access only to this noisy black
box.

Assume for now that we know that the noise is i.i.d. and zero-mean. A first
approach to the problem could be, for a given value of θ, to sample sufficient
many time at the same point θ and get values y1, . . . , yN , and then form an
estimate of f(θ) using the empirical average

f(θ) ≈ 1
N

N∑

i=1

yi. (15.2)

With sufficiently many samples at every iterate θn of (15.1), we can reasonably
hope to find approximately the root of f . The problem is that we might spend
a lot of time taking samples at points θ that are far from θ̄ and are not really
relevant, except for telling us in which direction to move next. This can be a
real issue if obtaining each sample is time-consuming or costly.

An alternative procedure, studied by Robbins and Monro [RM51]2, is to
simply use directly the noisy version of f in a slightly modified version of
algorithm (15.1):

θn+1 = θn − γnyn, (15.3)

where γn is a sequence of positive numbers converging to 0 and such that∑
n γn = ∞ (for example, γn = 1/(n + 1)), and yn = f(θn) + dn is the noisy

version of f(θn). Note that the iterates θn are now random variables.
The intuition behing the decreasing step size γn is that it provides a sort

of averaging of the observations. For an analogy in a simpler setting, suppose
2In fact, recursive stochastic algorithms have been used in signal processing (e.g., for

smoothing radar returns) even before the work of Robbins and Monro. However, there was
apparently no general asymptotic theory.
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we have i.i.d. observations ξ1, . . . , ξN of a random variable and wish to form
their empirical average as in (15.2). A recursive alternative to (15.2), extremely
useful in settings where the samples become available progressively with time
(recall for example the Kalman filter), is to form

θ1 = ξ1, θn+1 = θn − γn[θn − ξn+1],

with γn = 1/(n + 1). One can immediately verify that θn = (
∑n

i=1 ξi)/n, for
all n.

This chapter is concerned with recurrences generalizing (15.3) of the form:

θn+1 = θn + γn[f(θn) + bn + Dn+1] (15.4)

where θ0 ∈ Rd is possibly random, f is a function Rd → Rd, bn is a small sys-
tematic perturbation term, such as a bias in our estimator of f(θn), and Dn+1

is a random noise with zero mean (conditioned on the past). The assumptions
and exact definitions of these terms will be made precise in section 15.3. In
applications, we are typically first interested in the asymptotic behavior of the
sequence {θn}.

15.2 The ODE Approach and More Application
Examples

The ODE (Ordinary Differential Equation) method says roughly that if the
step sizes γn are appropriately chosen, the bias terms bn decrease appropriately,
and the noise Dn is zero-mean, then the iterates (15.4) asymptotically track
the trajectories of the dynamical system3

θ̇ = f(θ).

We will give a more formal proof of this fact in the basic case in section 15.3.
Typically for the simplest proofs γn must be decreasing to 0 and satisfy

∑

n

γn = ∞,
∑

n

γ2
n < ∞.

However other choices are possible, including constant small step sizes in some
cases, and in practice the choice of step sizes requires experimentation because
it controls the convergence rate. Some theoretical results regarding convergence
rates are also available but will not be covered here. The ODE is extremely
useful in any case, even if another technique is chosen for formal convergence
proofs, in order to get a quick idea of the behavior of an algorithm. Moreover,
another big advantage of this method is that it can be used to easily create new
stochastic approximation algorithms from convergent ODEs. We now describe
a few more classes of problems where these algorithms arise.

3By definition, ẋ := d
dt x(t)
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Figure 15.1: Consider a flow on a circle that moves clockwise everywhere ex-
cept at a single rest point. This rest point is the unique ω-limit point of the
flow. Now suppose the flow represents the expected motion of some underlying
stochastic process. If the stochastic process reaches the rest point, its expected
motion is zero. Nevertheless, actual motion may occur with positive probability
and in particular the process can jump past the rest point and begin another
circuit. Therefore in the long run all regions of the circle are visited infinitely
often. The long run behavior is captured by the notion of chain recurrence, as
all points on the circle are chain recurrent under the flow.

Brief Review of Some Concepts from Dynamical Systems

Consider an (autonomous) ordinary differential equation (ODE)

ẋ(t) = f(x(t)), x(0) = x0, x(t) ∈ Rd, t ∈ R. (15.5)

We assume that the ODE is well-posed, i.e., for each initial condition x0 ∈ Rd it
has a unique solution x(·) defined for all t ≥ 0 and the map associating an initial
condition x0 to its corresponding solution x(·) ∈ C([0,∞), Rd) is continuous
(for the topology of uniform convergence on compacts). One sufficient condition
for this is to assume that f is Lipschitz, i.e., there exists L > 0 such that

‖f(x)− f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd.

A closed set A ⊂ Rd is an invariant set for this ODE if any trajectory
x(t),−∞ < t < +∞ with x(0) ∈ A satisfies x(t) ∈ A for all t ∈ R. In
the basic convergence theorem in section 15.3, the concept of chain transitiv-
ity appears. A close set A ⊂ Rd set is said to be internally chain transitive
for the ODE if for any x, y ∈ A and any ε > 0, T > 0, there exists points
x0 = x, x1, . . . , xn−1, xn = y in A, for some n ≥ 1, such that the trajectory of
(15.5) starting at xi, for 0 ≤ i < n meets with the ε-neighborhood of xi+1 after
a time greater or equal to T (take x = y in this definition to obtain the notion
of chain recurrence). The small jumps at the points of the chain is a natural
assumption for stochastic approximations, where the noise pushes the iterates
away from the trajectories of the ODE, see Fig. 15.1.

Given a trajectory x(·) of (15.5), the set Ω = ∩t>0{x(s) : s > t}, i.e., the
set of its limit points as t →∞, is called its ω-limit set. Note that Ω depends
on the actual trajectory. It is easy to verify that Ω is an invariant set for the
ODE.
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Def of Lyapunov function for a CT system.
Lasalle’s invariance principle.

Stochastic Gradient Algorithms

The simplest set-up where stochastic approximation algorithms arise is in the
context of noisy versions of optimization algorithms. Consider the Robbins-
Monro scheme, but not the function for which we wish to find a root is itself
the gradient of another function f . That is, we consider a gradient descent
iteration of the type

xn+1 = xn + γn[−∇f(xn) + Dn+1],

where f is a continuously differentiable function we want to minimize. We do
not have access to the gradient of f directly however, only to a noisy version
of it. The limiting ODE is then

ẋ(t) = −∇f(x(t)), (15.6)

i.e., describes a gradient flow, and such dynamical system are among the sim-
plest ones to study. Indeed, f itself serves as a Lyapunov function to study
convergence:

d

dt
f(x(t)) = −‖∇f(x(t))‖2 ≤ 0,

where the inequality is strict when ∇f(x(t)) -= 0. The set of equilibria of
(15.6) is H = {x : ∇f(x) = 0}. By Lasalle’s invariance principle, the only
limit sets that can occur as ω-limit sets for (15.6) are subsets of H, and the
ODE method tells us that the iterates converge almost surely (a.s.) to such an
invariant set. Moreover, they avoid convergence to critical points ∇f(x) = 0
that are either maxima or saddle-points, as these represent unstable equilibria
of the ODE. In particular if f has only isolated local minima, we can expect
that the iterates {xn} converge to one of them. In another variation, f is not
smooth and the noisy gradients must be replaced by noisy subgradients. The
theory uses a limiting differential inclusion instead of a limiting ODE to prove
a.s. convergence.

Often we do not even have access to the gradient of f , but must compute
it approximately, say using finite differences. We obtain then an algorithm of
the type

xn+1 = xn + γn[−∇f(xn) + bn + Dn+1],

where {bn} is the additional error in the gradient estimation. If we have
supn ‖bn‖ < ε0 for some small ε0, then the iterates converge a.s. to a small
neighborhood of some point in H, in fact of a local minimum. The first such
scheme goes back to Kiefer and Wolfowitz [KW52], who used a central differ-
ence approximation. Denoting vi the ith coordinate of a vector v ∈ Rd, and ei

the ith unit vector in Rd, we have

xi
n+1 = xi

n + γn

[
−

(
f(xn + δei)− f(xn − δei)

2δ

)
+ Di

n+1

]
,
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where δ > 0 is a small positive scalar. An issue with this algorithm is that it
requires 2d function evaluations, and using one-sided differences still requires
d+1 function evaluations, which might still be too costly. A nice development in
this context is the simultaneous perturbation stochastic approximation (SPSA)
due to Spall. A basic version of this method considers random variables ∆n ∈
Rd i.i.d., with ∆n independent of D1, . . . , Dn+1 and x0, . . . , xn and P (∆i

m =
1) = P (∆i

m = −1) = 1
2 . Then replace the algorithm above by

xi
n+1 = xi

n + γn

[
−

(
f(xn + δ∆n)− f(xn)

δ∆i
n

)
+ Di

n+1

]
,

which requires only two function evaluations. By Taylor’s theorem, for each i,

f(xn + δ∆n)− f(xn)
δ∆i

n

≈ ∂f

∂xi
(xn) +

∑

j #=i

∂f

∂xi
(xn)

∆j
n

∆i
n

.

Now the expected value of the second term above is zero, and so it acts just like
another noise term that can be included in Dn+1 for the purpose of analysis.

A type of applications quite close to our subject considers the optimization
of an expected performance measure

J(θ) = Eθ[f(X)],

where X is a random variable with a distribution Fθ that depends on a pa-
rameter θ to be adjusted in order to minimize J(θ) (in our context, θ is a
policy). Now it is typically difficult to compute J(θ), but if we fix θ = θn,
we can generate samples f(X) with X distributed according to Fθn . Suppose
that the laws µθ corresponding to Fθ (i.e., µθ([−∞, x)) = Fθ(x) for real values
random variables) are all uniformly continuous with respect to a probability
measure µ, i.e., dµθ(x) = Λθ(x)dµ(x), where the likelihood ratio Λθ(x) (or
Radon-Nykodym derivative) is continuously differentiable in θ. Then

J(θ) =
∫

f(x)dµθ(x) =
∫

f(x)Λθ(x)dµ(x).

If the interchange of expectation and differentiation can be justified, then

d

dθ
J(θ) =

∫
f

d

dθ
Λθdµ,

and the stochastic approximation

θn+1 = θn + γn[f(Xn+1)
d

dθ
Λθ(Xn+1)|θ=θn ]

will track the ODE
θ̇(t) =

d

dθ
J(θ),

which is again a gradient flow converging asymptotically to a local minimum of
J . This method is called the likelihood ratio method and is used in stochastic
control to do gradient descent in the space of policies, see section 17.6. Another
close idea is infinitesimal perturbation analysis (IPA).
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Stochastic Fixed Point Iterations

A stochastic approximation of the form

xn+1 = xn + γn[F (xn)− xn + Dn+1] (15.7)

can be used to converge to a solution x∗ of the equation F (x∗) = x∗, i.e., to a
fixed point of F . The limiting ODE of (15.7) is

ẋ(t) = F (x(t))− x(t). (15.8)

We consider the case where F is an α-contraction (0 ≤ α < 1) with respect to
a weighted norm on Rd

‖x‖p,w :=

(
d∑

i=1

wi|xi|
)1/p

,

or ‖x‖∞,w := maxwi|xi|,

where w = [w1, . . . , wd]T with wi ≥ 0 for all i. Recall the Banach fixed point
theorem 6.4.1 which says that a contraction has a unique fixed point. To
analyze the behavior of the ODE (15.8), where F is an α-contraction with
fixed point x∗, we consider the Lyapunov function V (x) = ‖x − x∗‖p,w for
x ∈ Rd (the notation includes the case p = ∞). Note that the only equilibrium
of (15.8) is x∗ and the only constant trajectory is x(·) ≡ x∗.

Theorem 15.2.1. The function t → V (x(t)) is a strictly decreasing function
of t for any non-constant trajectory of (15.8).

Corollary 15.2.2. x∗ is the unique globally asymptotically stable equilibrium
of (15.8).

Proof of the theorem. We start with the case 1 < p < ∞. Define sgn(x) =
+1,−1, or 0 depending on whether x > 0, x < 0, or x = 0. For x(t) -= x∗, we
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have
d

dt
V (x(t))

=
1
p

(
d∑

i=1

wi|xi(t)− x∗i |p
)(1−p)/p

×

p

(
d∑

i=1

wisgn(xi(t)− x∗i )|xi(t)− x∗i |p−1 ẋi(t)

)

=‖x(t)− x∗‖1−p
p,w

(
d∑

i=1

wisgn(xi(t)− x∗i )|xi(t)− x∗i |p−1(Fi(x(t))− xi(t))

)

=‖x(t)− x∗‖1−p
p,w

(
d∑

i=1

wisgn(xi(t)− x∗i )|xi(t)− x∗i |p−1(Fi(x(t))− Fi(x∗)

)

− ‖x(t)− x∗‖1−p
p,w

(
d∑

i=1

wi|xi(t)− x∗i |p−1sgn(xi(t)− x∗i )(xi(t)− x∗i )

)

=‖x(t)− x∗‖1−p
p,w

(
d∑

i=1

wisgn(xi(t)− x∗i )|xi(t)− x∗i |p−1(Fi(x(t))− Fi(x∗)

)

− ‖x(t)− x∗‖p,w

≤‖x(t)− x∗‖1−p
p,w ‖x(t)− x∗‖p−1

p,w ‖F (x(t))− F (x∗)‖p,w − ‖x(t)− x∗‖p,w

≤− (1− α)‖x(t)− x∗‖p,w,

where the first inequality is obtained using Hölder’s inequality, valid for 1 <
p < ∞. Hence the time derivative is strictly negative for x(t) -= x∗, which
proves the claim for 1 < p < ∞. The inequality can be written, for t > s ≥ 0,
as

‖x(t)− x∗‖p,w ≤ ‖x(s)− x∗‖p,w − (1− α)
∫ t

s
‖x(τ)− x∗‖p,wdτ.

The claim then follows for p = 1 and p = ∞ by continuity of p → ‖x‖p,w on
[1,∞].

Explanation of Collective Behaviors

Learning in Games One well studied learning mechanism for games is the
“fictitious play” model introduced by Brown [Bro51]. In the simplest setting,
let us consider two agents that play repeatedly a game in which two strategy
choices are available for each of them at each time, say {s1, t1} for agent 1
and {s2, t2} for agent 2. If the (noncooperative) agents choose a strategy pair
(ξ1

n, ξ2
n) at time n, agent i receives a payoff hi(ξ1

n, ξ2
n), for i = 1, 2. Define the

empirical frequency for each player

νi(n) :=
∑n

t=1 1{ξi
t = si}

n
, i = 1, 2;n ≥ 0,
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i.e., νi(n) is the frequency with which player i played strategy 1 up to time
n. In the fictitious play model, an agent records the empirical frequency of its
opponent and plays at each stage the best response assuming the the opponent
chooses its strategy randomly according to its empirical frequency4. This best
response for player i is a map fi(p−i) : [0, 1] → [0, 1] which, based on the
one stage game, prescribes the probability with which player i should choose
its strategy si if the probability that its opponent chooses s−i is p−i. In the
model, the empirical frequencies then evolve according to

νi(n + 1) = νi(n) +
1

n + 1
(1{ξi

n+1 = si}− νi(n)), i = 1, 2

and the corresponding ODE is

ν̇1(t) = f1(ν2(t))− ν1(t)
ν̇2(t) = f2(ν1(t))− ν2(t).

An equilibrium of this ODE is by definition a Nash equilibrium, and so the goal
is to understand under which circumstances the fictitious play model converges
to the players playing a Nash equilibrium. The 2 player 2 strategy case is
fairly well understood, but in general the ODEs obtained from game theoretical
models can have quite complex dynamics and further assumptions of the right
hand side must typically be made.

Averaging (Consensus) Under Stochastic Perturbations Another well-
studied algorithm is the averaging algorithm in a multiagent system. We have
n agents starting with an initial value xi(0), i = 1, . . . , n. Often the problem
is motivated by saying that the agents should asymptotically one a common
value, but from an engineering perspective this is not well defined. First we
need to rule out the trivial solution that has all agents agree on (say) 0. In the
distributed algorithm literature, this is usually done by requiring that the final
value be one of the initial value. Then in the synchronous setting considered
here, there is again a trivial algorithm that chooses the maximum of the initial
values. Most of the recent related literature instead studies variants of the
following successive averaging scheme

xi(k + 1) = xi(k) + ε
∑

j∈Ni

(xj(k)− xi(k)), i = 1, . . . , n, (15.9)

where Ni represents the neighbors of i as specified by a graph for example,
and ε is a small positive constant used to obtain convergence. This variant is
often justified by saying that terminal value is required to be the average of
the initial values, but perhaps a more convincing argument is it see this simple
update rule as again an explanation of opinion formation in social systems,
much like fictitious play, instead of a practical engineering tool.

4This is clearly not an optimal strategy. The point is that the economics literature
attempts to argue that it is a reasonable model of observed behavior.
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Now we can consider many variations of the basic averaging rule (15.9).
For example, suppose that at period k the communication link from j to i fails
with probability 1− pij . This probability can be made dependent on the past
and time dependent without change, but for simplicity, let us assume here that
the failures are i.i.d. Moreover, let’s assume that the difference xj(k)−xi(k) in
(15.9) is also perturbed by a zero mean noise νij(k) (due say to quantization or
communication errors), independent of the random link failures. The perturbed
averaging rule becomes then

xi(k + 1) = xi(k) + εk

∑

j∈Ni

[δij(k + 1)(xj(k)− xi(k) + νij(k + 1))], i = 1, . . . , n.

where {δij(k)}k is i.i.d. Bernoulli, with P (δij(k) = 1) = pij , and we allow for a
time-varying (typically diminishing) step size εk. Under broad conditions, this
stochastic approximation tracks asymptotically the corresponding ODE

ẋi(t) =
∑

j∈Ni

pij(xj(t)− xi(t)).

Note that the set of equilibria of this equation is the one-dimensional subspace
x1 = . . . = xn under reasonable conditions on the underlying connectivity
graph and failure probabilities, hence consensus is obtained asymptotically.
However, the choice of step sizes, as often in such simple stochastic approxi-
mation algorithms, has a strong influence on the practical (transient) behavior
of the trajectories, see Fig. 15.2. One can also study asynchronous versions of
the averaging algorithm using the ODE method, which is perhaps more useful
from an engineering point of view.

15.3 Basic Convergence Analysis via the ODE Method

We will discuss a basic convergence analysis result, first for a special case of
the stochastic recurrence (15.4) with no bias term bn

xn+1 = xn + γn[f(xn) + Dn+1], n ≥ 0, x0 prescribed (x0 can be random).
(15.10)

The following assumptions are made for the analysis

1. The map f : Rd → Rd is Lipschitz: ‖h(x) − h(y)‖ ≤ L‖x − y‖ for some
0 < L < ∞.

2. The stepsizes are positive scalars satisfying
∑

n

γn = ∞,
∑

n

γ2
n < ∞.

3. {Dn} is a martingale difference sequence with respect to the increasing
family of σ-fields (filtration, or history generated by the sequence of ran-
dom variables)

Fn = σ(xm, Dm, m ≤ n) = σ(x0, D0, . . . , Dn), n ≥ 0.
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(a) εk = 10−3. (b) εk = 10−2.

(c) εk = 10−2/(1 + 0.01k). (d) εk = 10−2/(1 + 0.05k).

Figure 15.2: Transient behavior of the local averaging algorithm for different
choices of step sizes. If we choose a constant step size, increasing it improves the
convergence speed but the communication noise is not well filtered. Decreasing
step sizes for larger values of k improves the asymptotic filtering property of
the algorithm, but can also reduce the convergence speed if decreasing too
fast. In fact for constant step sizes in this problem, we only obtain asymptotic
convergence in a neighborhood of the limit set of the ODE.

This means that
E[Dn+1|Fn] = 0 a.s., n ≥ 0. (15.11)

Furthermore {Dn} are square-integrable with

E[‖Dn+1‖2|Fn] ≤ K(1 + ‖xn‖2) a.s., n ≥ 0,

for some constant K.

4. The iterates of (15.10) remain bounded a.s., i.e.,

sup
n
‖xn‖ < ∞, a.s.

The “assumption” 4 is not easy to establish in general, and specific tech-
niques must be developed to verify it for different problems. Sometimes the
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analysis is done by artificially forcing the iterates to remain bounded in (15.10)
(say by truncation), which can actually be a useful device in applications. This
requires to consider a limiting ODE with reflection terms on the domain bound-
ary [KY03]. But for general unbounded state spaces this is a stability assump-
tion that must be proved separately perhaps via other means than the ODE
method, e.g. a method based on stochastic Lyapunov functions [KY03]. Under
the stability assumption, the iterates (15.10) are expected to track asymptoti-
cally the ODE

ẋ(t) = f(x(t)), t ≥ 0. (15.12)
Assumption 1 ensures that this ODE has a unique solution for each x(0), which
depends continuously on x(0). The martingale difference assumption (15.11) is
a more precise definition of our earlier assumption of zero-mean noise Dn. We
allow conditioning on the past iterates, so this is a quite general set-up. Any
deterministic trend in the noise should be captured in f or the bias terms bn

in (15.4).
To make the idea that the stochastic approximation asymptotically tracks

the trajectories of the ODE more formal, first define the sequence of times

t0 = 0, tn =
n−1∑

m=0

γm.

We construct a continuous time trajectory x̄(t) interpolating the iterates {xn}
at times {tn} and show that this trajectory almost surely approaches the solu-
tion set of the ODE (15.12). That is,

x̄(tn) = xn, n ≥ 0,

and x̄ is piecewise linear, which defines it on the intervals [tn, tn+1]. We see
now that the assumption

∑∞
m=0 γm = ∞ is necessary in order to cover the

whole time axis and be able to track the ODE asymptotically. Next define for
s ≥ 0 the unique solution xs of the ODE (15.12), defined for t ≥ s, with initial
condition xs(s) = x̄(s).

We now give a relatively general set of results, mostly without proofs.

Lemma 15.3.1. For any T > 0,

lim
s→∞

sup
t∈[s,s+T ]

‖x̄(t)− xs(t)‖ = 0, a.s.

Thus as s → ∞, the interpolated trajectory x̄ starting from s remains
arbitrarily close to a trajectory of the ODE, a formalization of the idea that
the noise becomes asymptotically too weak to push the iterates away from
the trajectories of the ODE. A general convergence theorem for stochastic
approximations is given below.

Theorem 15.3.2. Assume that the assumptions 1-4 are satisfied. Then almost
surely, the sequence {xn} generated by (15.10) converges to a (possibly sample
path dependent) compact connected internally chain transitive invariant set of
the ODE (15.12).
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Note that the chain transitive invariant set of the theorem can be much
larger than the ω-limit set of the ODE, because it must essentially be “stable
under small perturbations”, recall Fig. 15.1. In practice, Lyapunov functions
are useful for further narrowing down the potential candidates for the limit
set. Suppose that we have a Lyapunov function V : Rd → [0,∞), continuously
differentiable, such that lim‖x‖→∞ V (x) = ∞, H = {x ∈ Rd : V (x) = 0} -= ∅,
and d

dtV (x(t)) = 〈∇V (x), f(x)〉 ≤ 0 with equality if and only if x ∈ H. Then
we have the following corollary, under the same assumptions as for the theorem.

Corollary 15.3.3. Almost surely the sequence {xn} converges to an internally
chain transitive invariant set contained in H.

Proof. Consider a sample sequence x0, x1, . . . (on the probability 1 set where
the assumptions are satisfied). Let C ′ = supn ‖xn‖ and C = sup‖x‖≤C′ V (x).
Define the level sets of V by Ha = {x ∈ Rd : V (x) < a}, and note that
x̄(t) ∈ H̄C for all t ≥ 0, where H̄a is the closure of Ha. Fix 0 < ε < C/2. Then
let

∆ := min
x∈H̄C\Hε

|〈∇V (x), h(x)〉| > 0.

∆ > 0 is a consequence of H̄C \Hε being compact and ∇V and h continuous.
Hence any trajectory of the ODE starting in HC reaches Hε in time at most
T := C/∆. By uniform continuity of V on compact sets, we can choose δ > 0
such that for x ∈ H̄C and ‖x − y‖ < δ, we have |V (x) − V (y)| < ε. Then by
lemma 15.3.1, there is a t0 such that for all t ≥ t0, sups∈[t,t+T ] ‖x̄(s)−xt(s)‖ <
δ. Hence for all t ≥ t0, we have |V (x̄(t + T )) − V (xt(t + T ))| < ε. Since
xt(t + T ) ∈ Hε, we obtain x̄(t + T ) ∈ H2ε. So for all t ≥ t0 + T , x̄(t) ∈ H2ε.
Since ε can be chosen arbitrarily small, it follows that x̄(t) → H as t →∞.

The following corollary is immediate.

Corollary 15.3.4. If the only internally chain transitive invariant sets for
(15.12) are isolated equilibrium points, then {xn} a.s. converges to a possibly
sample path dependent equilibrium point.

Remark on the assumption
∑∞

n=0 γ2
n < ∞

Consider the cumulative noise term

ζn =
n−1∑

m=0

γmDm+1, n ≥ 1.

in (15.10). We want to show that the effect of noise becomes negligible asymp-
totically, as this is a basic ingredient to prove lemma 15.3.1. Note that ζn is a
(zero mean) martingale, i.e.

E[ζn+1|Fn] = ζn, n ≥ 1,
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which follows immediately from assumption 3. The definition of a martingale
also requires ζn to be Fn measurable, which is immediate, and integrable. In
fact in this case ζn is even square integrable, i.e., E[‖ζn‖2] < ∞ for all n, which
is a consequence of assumptions 1 and 3. Moreovever,

∑

n≥0

E[‖ζn+1 − ζn‖2|Fn] =
∑

n≥0

γ2
nE[‖Mn+1‖2|Fn]

≤
∑

n≥0

γ2
nK(1 + ‖xn‖2), a.s.

≤ K(1 + B2)




∑

n≥0

γ2
n



 < ∞, a.s.

where B = supn ‖xn‖ < ∞ from assumption 4. We can then apply the Mar-
tingale convergence theorem to conclude that ζn converges almost surely as
n → ∞. In particular, the noise entering in the iterations after time K, i.e.,∑∞

n=K γnDn+1, vanishes as K → ∞. This ensures that the effect of the noise
indeed becomes asymptotically negligible. Note here that this property re-
lies on the assumption

∑
n≥0 γ2

n < ∞, which is important to obtain a general
theorem5.

5The case of constant step sizes, which does not satisfy this assumption, is also well
studied

142


