
Chapter 2

System Models

In this chapter we introduce some basic elements of (dynamical) system mod-
eling. A system model is an abstraction of an actual real-world system: a
necessarily simplified representation, attempting to capture those aspects es-
sential to explain the system’s behavior. Because we mostly reason about the
model, we quickly adopt the convention that system means the mathematical
system model and we state explicitly when we refer to the physical system it
represents. It is very important to keep the abstraction process in mind how-
ever, and the fact that in most cases, our mathematical abstraction is only
a rough approximation of a physical system. This is generally necessary to
obtain tractable models useful for design purposes. In particular, this issue is
as important when verifying software written in a programming language with
precise semantics, or even digital circuits, where fabrication processes can be
tightly controlled to correspond to models precisely. We will have more to say
about this point in later chapters when we discuss verification and certification
issues.

2.1 General and Input-Output Systems

A general dynamical system Σ is simply a set of signals [PW98]. Namely, Σ is
defined as a triple (T,W,B), where T is a subset of R called the time axis, W
is a set, and B is a subset of the function space WT called the behavior. Note
that WT denotes the set of maps from T to W. It can be quite interesting to
develop a general systems theory from such an abstract point of view [PW98],
but we will adopt a somewhat more operational point of view and directly deal
with some important classes of behavioral descriptions. We can restrict our
attention to a strict subset T of R, in order to simplify the analysis or because
the system behavior at other instants is not interesting for our purposes. This
leads for example to the notion of discrete-time (DT) systems for T = Z or
T = N, which are usually obtained by sampling continuous-time (CT) systems
at a discrete set of points, typically regularly spaced, as discussed in chapter
3. When combining DT and CT models however, or several DT systems with

5

G
u(·) {y(·)}

Figure 2.1: A system with input u and output y.

different sampling periods, we can always embed the time axes back into R for
reasoning about the global system.

Input-Output Systems

We call any function space ST, with S a set, a signal space, and its elements are
called signals. Given two signal spaces U = UT,Y = YT, an input-output system
is a subset of U×Y, i.e., a binary relation between the sets U and Y. Then U is
called the input signal space and Y the output signal space. This is a particular
class of behavioral models, with W = U × Y and B ⊂ U × Y, where we have
explicitly stated which signals are considered as inputs and which signals are
considered as outputs, although this choice is not necessarily natural. Hence an
input-output system is interpreted as a set of possible input/output signal pairs
(u, y) ∈ U×Y. Note that we associate a set (possibly empty) of possible output
signals {y(·)} to an input signal u(·). This allows us to take into account the
presence of unknown or unmodeled initial conditions, as well as other sources
of nondeterminism in the system such as noise.

Input-output methods view systems as black boxes that relate external sig-
nals, independently of any internal state-space representation of these systems,
see Fig. 2.1. They have important applications in linear and nonlinear control,
e.g. in robust control, and are particularly useful for the analysis of large-
scale complex and interconnected systems. Pioneering work in this area was
done by Zames, Sandberg, Popov, Desoer and others. Standard references on
input-output methods include [Wil71, DV09, Saf80].

Signal Spaces

The function spaces U ,Y of most interest for control purposes are usually the
Lp spaces1, 1 ≤ p ≤ ∞. To define these spaces, we equip a set S of signal
values with a norm � · � (typically the Euclidean norm on S = Rn), and we fix
a measure µ on T. Then we define, for p ∈ [1,∞)

Lp(T, S, µ) :=
�
x ∈ ST, µ− measurable

�����

�

T
�x(t)�pµ(dt) < ∞

�
,

1also denoted Lp,Lp,Lp,Ln
p , . . . in various other references. We follow here the more or

less standard notation found in analysis textbooks.

6

and

L∞(T, S, µ) :=
�
x ∈ ST, µ− measurable

�����ess supT
�x(t)� < ∞

�
.

In the usual contexts where these spaces arise, we have S = Rn, for some n ∈ N,
and T = R or R+ is fixed with µ the Lebesgue measure, in which case we denote
Lp(T, S, µ) =: Lp

n
(T), where T can be omitted if it is understood. Hence we

have for example

Lp

n
(R+) =

�
f : R+ → Rn

���
� ∞

0
�f(t)�pdt < ∞

�
,

and the space L∞ consists of functions that are essentially bounded, i.e.,
bounded on their domain of definition except on a set of Lebesgue measure
zero.

If T is a discrete set such as Z or N with µ the counting measure, then we
denote Lp(T,Rn, µ) =: �p

n
, so that, in the case T = Z for example,

�p
n
:=




{xk}k∈Z

�����

�
∞�

k=−∞

�xk�p
�1/p

< ∞




 , p ∈ [1,∞)

�∞
n

:=

�
{xk}k∈Z

������xk� < ∞, ∀k ∈ Z
�
.

The �p spaces arise in the context of discrete-time (DT) systems, the Lp spaces
in the context of continuous-time (CT) systems.

The Lp and �p spaces, p ∈ [1,∞], are normed vector spaces (see the remark
below theorem 2.1.1). The p-norm � · �p or � · �Lp of u : [0,∞) → Rn is defined
as

�u�p :=

�� ∞

0
�u(τ)�dτ

�1/p

, 1 ≤ p < ∞

�u�∞ := ess sup
τ≥0

�u(τ)�,

and similarly for other domains of definition, e.g. u : R → Rn, and discrete-
time sequences. With these norms, the Lp spaces are in fact complete, i.e.,
Banach spaces. An important consequence is that contractive maps on these
spaces have a (unique) fixed point. Moreover, L2 is a Hilbert space, with inner
product

�f, g� =
�

f(t)T g(t)dt,

and similarly with
�x1, x2� =

�
xT

1,k x2,k,

for �2.
The most important Lp spaces are those obtained for p = 2, capturing

the notion of power and energy, p = ∞, capturing the worst case behavior of
signals, and p = 1.

7

Relations Between Lp
Spaces

Theorem 2.1.1. [Hölder, Schwarz and Minkowski Inequalities] For p, q ∈
[1,∞], such that

1

p
+

1

q
= 1, i.e., q =

p

p− 1
,

if f ∈ Lp, g ∈ Lq, then fg ∈ L1, and we have the Hölder inequality

�fg�1 ≤ �f�p�g�q. (2.1)

When p = q = 2, this inequality is known as the Cauchy-Schwarz inequality.
Moreover, if f, g ∈ Lp, then f + g ∈ Lp and we have the Minkowski inequality

�f + g�p ≤ �f�p + �g�p,

for all p ∈ [1,∞].

Remark. Note that the Minkowski inequality is crucial in establishing that Lp

is in fact a vector space, by showing that it is stable under addition.
Now suppose that the domain of definition of f , denoted I, has finite

Lebesgue measure |I| < ∞. First, if f ∈ L∞, then
��

I

�f(t)�p
�1/p

≤ �f�∞|I|1/p,

so that f ∈ Lp, for all p ∈ [1,∞]. Next if 1 ≤ r < s < ∞ and f ∈ Ls, then by
the Hölder inequality (2.1) with p := s/r and q = p/(p− 1), we have

�

I

�f(t)�rdt =
�

I

�f(t)�r · 1 dt ≤
��

I

�f(t)�r(s/r)dt
�r/s

|I|1/q,

so that �f�r ≤ �f�s|I|1/qr. In other words, if I has finite measure, then
integrability of �f�p for a function f is more restrictive for larger values of p,
and we have Ls(I) ⊂ Lr(I) for 1 ≤ r < s ≤ ∞.

Typically for us however, the domain of definition of the signals (say R+

or R) does not have finite measure, and these inclusions do not hold in general
any more. For example, t �→ 1 in in L∞(R+) but not in Lp(R+) for any p < ∞.
In fact, for any 1 < p < ∞, we have the following Venn diagram, where all
drawn subsets are non empty

L1

L∞

Lp

Note in particular the following fact.

8

Proposition 2.1.2. If f : R+ → R and f ∈ L1 ∩ L∞, then f ∈ Lp for
p ∈ [1,∞].

Proof. Denote I := {t|�f(t)� ≥ 1}. Then since f ∈ L1, the Lebesgue measure
of I is finite and since f ∈ L∞ we must then have

�
I
�f(t)�pdt < ∞. Now with

Ic the complement of I, we have

∞ >

�

Ic

�f(t)�dt ≥
�

Ic

�f(t)�pdt, for all p ∈ [1,∞).

Together, these two observations give the conclusion.

Example 2.1.1. The function t �→ 1
1+t

, from R+ to R, is in L∞ and L2 but not
in L1. Finish populating the Venn diagram above with examples of functions,
for p = 2.

Extended Lp
Spaces

Integrability of signals on R+ or R is often too strong a requirement for our
purposes, e.g. when dealing with unstable systems. For this reason, we are led
to consider locally integrable functions, i.e., functions that are integrable on
every bounded interval. For T ≥ 0, define the linear operator PT by

(PT f)(t) := fT (t) :=

�
f(t), 0 ≤ t ≤ T,

0, t > T.

PT is a projection since P 2
T
= PT . We say that fT is obtained by truncating f

at T . Define the extended space Lp

e
by

Lp

n,e
(R+) = {f : R+ → Rn|�fT �p < ∞, ∀T ≥ 0}.

That is, f ∈ Lp

e
if fT ∈ Lp for all T ≥ 0.

Example 2.1.2. The function t �→ 1
1+t

is not in L1 but it is in L1
e
.

Note the following facts

(i) ∀f ∈ Lp

e
, the map T �→ �fT �p is monotonically increasing.

(ii) ∀f ∈ Lp, �fT �p → �f�p as T → ∞.

Systems

Causality

Most models used in systems theory are nonanticipative.

Definition 2.1.1. A mapping H : Lp

e
→ Lp

e
is causal (or nonanticipative) if

PTHPT = PTH for all T ≥ 0, i.e.,

(HuT)T = (Hu)T , ∀T ≥ 0. (2.2)

9

Example 2.1.3. Let h ∈ L1 be the impulse response of a linear time-invariant
system H : L2 → L2:

Hu = h ∗ u, ∀u ∈ L2,

i.e.,

(Hu)(t) =

� ∞

−∞

h(t− τ)u(τ)dτ, ∀t ∈ R.

Then H is causal if and only if h(t) = 0 almost everywhere on (−∞, 0).

In words, if H is causal then the responses to the inputs u and uT are the
same up to time T , i.e., the output does not depend on the future values (for
t > T) of the inputs. Note that an equivalent definition of a causal system is

∀u1, u2 ∈ Lp

e
, PTu1 = PTu2 ⇒ PTHu1 = PTHu2. (2.3)

that is, two input signals u1 and u2 which are identical on [0, T] give identical
output responses Hu1 and Hu2 on [0, T]. Indeed, if H is causal according to
definition 2.1.1, then PTHu1 = PTHPTu1 = PTHPTu2 = PTHu2. Conversely,
if (2.3) is satisfied, then because PT (PTu) = PTu, we have PTHPTu = PTHu,
i.e. (2.2).
Remark. Note that systems given in a standard state space form, e.g.

ẋ = f(x, u, t)

y = h(x, u, t)

are always causal, when viewed as input-output systems u(·) �→ y(·).

Induced Norms of Linear Maps

A system H : U → Y is linear if and only if

H(α1u1 + α2u2) = α1Hu1 + α2Hu2, ∀u1, u2 ∈ U .

It is well-know that if H : Lp → Lq is linear, then there exists a function h(·, ·)
such that

(Hu)(t) =

� +∞

−∞

h(t, τ)u(τ)dτ.

Moreover if H is time-invariant, then in fact we have

(Hu)(t) =

� +∞

−∞

h(t− τ)u(τ)dτ = (h ∗ u)(t).

For the set L(U ,Y) of linear operators between the normed vector spaces
U and Y with norms � · �U and � · �Y , we define the induced norm on L(U ,Y)
by

||H|| = sup
u �=0

�Hu�Y
�u�U

= sup
�u�U=1

�Hu�Y
�u�U

.

10

This provides a norm for linear systems. Indeed, consider H a SISO causal
linear time-invariant system with impulse response h. Assume that �h�1 < ∞.
Then H maps L∞ to L∞ and its induced norm as a map of L(L∞, L∞) is
�H�∞→∞ = �h�1. One part of this statement is easy, namely since

|(Hu)(t)| ≤
�

t

0
|h(t− τ)u(τ)|dτ ≤ �u�∞

�
t

0
|h(t− τ)|dτ ≤ �h�1�u�∞,

we have �H�∞→∞ ≤ �h1�. The bound is approached arbitrarily closely
by an appropriate choice of input signals. We can also consider H as a
map in L(L2, L2). Note that since �h�1 < ∞, its Fourier transform ĥ is
well-defined and one can show that the induced norm of H in this case is
�H�2→2 = sup

ω∈R |ĥ(jω)|. The reader should refer to standard references on
linear systems for more details and the corresponding MIMO results.

Lp
Stability

Definition 2.1.2. A mapping H : Lp

e
→ Lp

e
is Lp stable if there exists a class

K function α, defined on [0,∞), and a nonnegative constant β, such that

�(Hu)T �p ≤ α(�uT �p) + β, ∀u ∈ Lp

e
and T ≥ 0.

We say that H is finite gain Lp stable if there exist nonnegative constants γ
and β such that

�(Hu)T �p ≤ γ�uT �p + β, ∀u ∈ Lp

e
and T ≥ 0. (2.4)

The smallest γ such that (2.4) holds is called the gain of H, denoted γ(H)

γ(H) = inf{γ ∈ R+|∃β s.t. (2.4) holds}.

Remark. Clearly a system that is finite-gain Lp stable is Lp stable.

Note that if H is causal, then condition (2.4) can be replaced by

�Hu�p ≤ γ�u�p + β, ∀u ∈ Lp (not Lp

e
!), (2.5)

where the T subscripts are dropped. Indeed (2.4) always implies (2.5). Con-
versely, if (2.5) holds, then it holds for functions of the form PTu1, and then
use PTHPT = PTH.

Example 2.1.4. Let H be a causal linear time-invariant system with inte-
grable impulse response h, i.e., �h�1 < ∞, as in the previous paragraph. Then
H is finite-gain L1 and L∞ stable with gain �h�1 in both cases, hence this
assumption guarantees that H is finite gain Lp stable for all p ∈ [1,∞] by
Proposition 2.1.2. In particular, the assumption also ensures that the Fourier
transform ĥ of h is well defined, and it is well-known then that H is finite gain
L2 stable with gain sup

ω∈R |ĥ(jω)|.

11

Remark. The definition of the gain of a system given above is perhaps not
very satisfying, as system responses depend on the initial condition x0, which
does not appear in the definition. Hence one a priori can obtain a different
gain for different initial conditions. In many cases, it turns out that the bias
term β allows us to obtain a gain value independent of the initial condition
(e.g. for linear system). An alternative definition of the gain of a (possibly
multivalued) system can be given as follows. The Lp gain of an input/output
system S ⊂ Lp

e
(Rm)× Lp

e
(Rq) is

inf

�
γ ≥ 0

��� inf
T≥0

�
T

0
γp�u(t)�p − �y(t)�pdt > −∞, ∀(u, y) ∈ S

�
.

Incremental Lp
stability

Definition 2.1.3. A mapping H : Lp

e
→ Lp

e
is said to be incrementally finite

gain Lp stable if

1. H(0) ∈ Lp, where 0 is the identically zero input.

2. For all T > 0 and u1, u2 ∈ Lp

e
, there exists γ > 0 such that

�(Hu1 −Hu2)T �p ≤ γ�u1,T − u2,T �p.

Note that an incrementally finite gain stable operator is also finite gain
stable since

�(Hu)T �p ≤ γ�uT �p + �H(0)�p.
The two notions coincide for linear systems.

Small-Signal Finite Gain Lp
Stability

Definition 2.1.4. A mapping H : Lp

e
→ Lp

e
is small signal finite gain Lp stable

if there exists r > 0 and γ, β ≥ 0 such that

�uT �∞ < r ⇒ �(Hu)T �p ≤ γ�uT �p + β, ∀T ≥ 0.

2.2 State Space Model Realizations of Input-Output
Systems

As mentioned earlier, input-output models are black-box models. They re-
late input and output signals independently of any description of the internal
mechanisms producing these signals. As a result, they are of fundamental im-
portance to reason about connected and large-scale systems, since the size and
complexity of an overall model grows slowly with the number of components
in this framework. To carry actual system-related computations however, it
is often necessary to describe a component’s internal mechanisms by means of
state space models. First, recall the following more-or-less rigorous definition
of state.

12

+

C

R0

R1V

I

Figure 2.2: An electrical circuit.

Definition 2.2.1. The state of a system at time t is the information required
at time t so that the output for all t� ≥ t is determined from this information
and the knowledge of the inputs for t� ≥ t.

State space models can be obtained directly by reasoning from first princi-
ples, or by fitting parameters via black-box system identification procedures,
which analyze output signals obtained from test input signals. In the later case,
the approximate nature of the models is clear, since often no attempt is made
to justify the chosen structure of a state space model beyond the fact that
it exhibits reasonable predictive power. Most state space models considered
in these notes however, in particular those used for computing components
and software, rely on first principle reasoning. Models of software and cir-
cuits can be quite precise, even though in this domain abstractions exist as
well (e.g. when assuming that digital signals switch instantaneously). But
for most physical systems controlled by these software and hardware compo-
nents, first principle reasoning typically leaves certain behaviors unmodeled
(e.g. high-order dynamics) in order to obtain reasonably tractable models. It
is important to make sure that these unmodeled components do not invalidate
the system design, either by employing robust design methods or by using a
posteriori testing procedures.

Consider for example the electrical circuit shown on Fig. 2.2, where we
are interested in the relationship between I as an input signal and V as an
output signal 2. If we did not know the composition of the circuit, we could
try various test signals I and observe the behavior of the signal V , in order
to fit the parameters of a model. On the other hand, if we have access to the
composition of this circuit and know the parameters of its various components,
we can model the relationships between signals as

dVC

dt
= − 1

R1C
VC +

1

C
I (2.6)

V = R0I + VC , (2.7)

where VC is the voltage across the capacitor. It is likely that the physical
components do not behave exactly as predicted by these equations and that the
knowledge of the values of the capacitances and resistances is not perfect (recall

2This choice of input and output signals is arbitrary. See [PW98] for an intrinsic way of
partitioning signals between free inputs and bound outputs.

13

for example that resistance values are usually associated with a tolerance), but
for many purposes such a model is precise enough. Here the variable VC is an
internal state variable that is used to explain the input-output relation between
I and V .

Linear Time-Invariant State Space Models

Continuous-Time Systems

Generalizing (2.6), (2.7), a continuous-time linear time invariant (LTI) state
space model defines a system with m-dimensional input u and p-dimensional
output y related by

ẋ(t) = Ax(t) +Bu(t), (2.8)
y(t) = Cx(t) +Du(t), (2.9)

for t ∈ T = R+ or R and x(0) = x0 ∈ Rn, where A,B,C,D are real matri-
ces of appropriate dimensions. In general, solutions of differential equations
ẋ = f(x, t) are understood in the sense of Caratheodory, i.e., as absolutely
continuous functions satisfying the integral equation

x(t) = x(0) +

�
t

0
f(x(τ), τ)dτ,

where x(0) ∈ Rn is an “initial condition” parameter. Hence such a solution
satisfies the differential equation almost everywhere. A common notation for
the system G defined by (2.8), (2.9) is

G =

�
A B
C D

�
.

The transfer matrix of this linear state space model is the maximal analytical
extension of

G(s) = D + C(sI −A)−1B,

defined for all complex s, except possibly at some eigenvalues of A. In addition,

G(∞) := lim
|s|→∞

H(s) = D.

Discrete-Time Systems

DT LTI state space models are defined analogously for T ⊂ Z, replacing differ-
ential equations by difference equations, to get

x[k + 1] = Ax[k] +Bu[k], (2.10)
y[k] = Cx[k] +Du[k]. (2.11)

14

B

D

1/s A

C

x(t)ẋ(t)+

+

f(t)

y(t)

Figure 2.3: An LTI state space model.

Nonlinear Continuous State Space Models

Physical systems exhibiting certain types of behaviors (e.g. chaos, bifurcations,
etc.) cannot be modeled by linear systems. In this case, we might want to use a
nonlinear state space model, perhaps time-varying, e.g. of the continuous-time
form

ẋ = f(x, u, t) (2.12)
y = h(x, u, t), (2.13)

with x(0) given. Additional assumptions are made on f to obtain reasonable
notions of solutions. Similarly, in discrete-time we can model a nonlinear sys-
tem using the difference equation

xk+1 = f(xk, uk, k), x0 given,
yk = g(xk, uk, k).

In general, nonlinear systems can exhibit extremely complex behaviors. In
fact, very simple one dimensional discrete recurrences can exhibit chaotic be-
havior, e.g. the logistic map

xk+1 = rxk(1− xk),

for certain values of r. As a result, one must generally start by identifying spe-
cial classes of interesting nonlinear systems relevant for a problem of interest
and amenable to analysis, and develop analysis and synthesis tools dedicated
to these special cases. Moreover, an often adequate solution from the com-
putational and robustness point of view is to try to approximate a nonlinear
system by a linear time-invariant one plus some perturbation term that is only
approximately characterized. This is the basic principle of the field of robust
control.

Nondeterminism

The previous linear and nonlinear models produce essentially a unique output
once an initial condition and an input are given. More realistic models attempt

15

to directly include some notion of perturbation, either in a stochastic or deter-
ministic framework. In such models, dynamics can be perturbed, and output
measurements can be noisy. One way of capturing uncertainty is by using dif-
ferential inclusions rather than differential equations as in (2.12), (2.13). More
precise information can be given in the form of probabilistic transition systems
and output maps. See also definition 2.2.2. For example, we can have a DT
model

xk+1 = f(xk, uk, wk, k), x0 given, (2.14)
yk = g(xk, uk, vk, k), (2.15)

where wk and vk are uncertain vectors perturbing the dynamics and observa-
tions respectively.

Transition Systems and Automata

In computer science, system models (for software, hardware and physical sys-
tems) are often expressed in the form of transition systems. Many variations of
such models exist, depending on the problem of interest, and the terminology
also tends to differ slightly depending on the application area. In particular,
transition systems are sometimes also called automata, but many authors re-
serve the latter term for certain specific types of transition systems (e.g. finite
number of states and transitions, resulting in a finite-state machine, presence of
initial and final or marked states). From the computational point of view, the
situation is roughly as follows: in engineering (in particular control engineer-
ing here), LTI models are preferred because many things about them can be
computed using linear algebra (this also includes convex optimization methods
such as semi-definite programming). Computer science tends to focus on finite
finite automata for which many algorithms are also available, e.g. based on the
graph representation of the automata or more advanced data structures such
as Binary Decision Diagrams (BDDs).

The theoretical investigations of the properties of automata, e.g. related
to the language generated by an automaton, to reachability, safety and live-
ness properties, or various notions of compositions, have focused on somewhat
different issues than classical control theory, and these ideas are useful in the
study of NECS. Moreover, differential and difference equations have tradition-
ally been used in control engineering to model time-driven processes. In the
analysis of complex systems involving say human operators and computers, it
is important to also be able to efficiently model asynchronous occurrences of
discrete events, resulting in Discrete-Event Systems [CL08] and event-driven
processes, or hybrid systems combining time-driven and event-driven dynam-
ics. Finally, automata-based models are convenient to study general finite state
models, whereas the models presented so far are mostly used for continuous
state spaces. Note however that difference equation models are useful to study
certain discrete models with special structure as well, e.g. queueing systems
and even general types of finite state Hidden Markov Models [EAM94].

16

We start with the following extremely general notion of transition system,
a constrain it later as computational aspects become important.

Definition 2.2.2. A (Moore) transition system TS is a tuple (X,X0, U,−→
, Y, L) consisting of

• a set of states X (not necessarily finite or even countable)

• a set of initial states X0 ⊆ X

• a set of inputs U (not necessarily finite or even countable)

• a transition relation −→ ⊆ X × U ×X

• a set of outputs Y

• a set-valued output map L : X → 2Y .

The transition system is called finite if X and Y are finite. The system
starts in one of the initial states (non-determinism is introduced if X0 con-
sists of more than one state), and evolves according to the transition relation.
Namely, a transition (x, u, x�) ∈−→, denoted in the following x

u−−→ x�, means
that the system initially in state x is subject to an input or event u and moves
to the state x�. When the transition system is finite, we can represent it as a
graph with nodes associated to states and edges associated to triplets of the
transition relation and labeled by the input value. It is sometimes useful to
have a special input label, denoted τ , with U = U �∪{τ} and τ /∈ U �, to denote
transitions occurring in the absence of an observable input, called silent transi-
tions (these transitions are similar to �-transitions in the standard terminology
for nondeterministic automata). The set U � then denotes the observable inputs.
Note that we allow non-determinism in the dynamics, since there can be several
states x� ∈ X associated to a given pair (x, u) by the transition relation. In
the graph representation, this means that we allow several edges labeled with
the same input value u starting from a node x. Nondeterministic choices in
particular are useful to model the parallel execution of independent activities,
unknown or unpredictable environments (e.g., a human user), as well as for ab-
straction purposes and to leave certain aspects of the system unspecified, e.g.
in early design phases to leave several options for the possible final behaviors.

The set-valued map L means that in state x, there is a set of possible
observable outputs L(x), with possible non-determinism introduced to model
sensor uncertainty for example. If L is a single-valued map (deterministic
observations), with output y in state x, then we use the standard notation
L(x) = y instead of L(x) = {y}. The case of full state observation corresponds
to L(x) = x, i.e., L is the identity map. Allowing non-determinism in the
output map is done for convenience, but is not strictly necessary. We then
obtain models similar to (2.14), (2.15) and to the way Hidden Markov Models
(HMM) are formulated in the probabilistic setting for example. However, we
could have pushed all the non-determinism in the transition relation, so that

17

starting from a transition x
u−−→ x� with say L(x�) = {y1, y2}, we split the

transition into two transitions x
u−−→ x�

1 and x
u−−→ x�

1 with L(x�
1) = y1 and

L(x�
2) = y2.

Remark. The name Moore transition system is not really standard, and is used
here by analogy with the definition in the finite state case of Moore automaton,
which is just a finite state automaton with outputs associated to states. With
input-output transition systems in general, there is an alternative way of intro-
ducing outputs, namely by associating outputs to transitions rather than states.
Both conventions are used (including, e.g., in the theory of controlled Markov
chains). Then the transition relation becomes a relation on X × U × Y ×X,
denoted x

u/y−−−−→ x�, and in the graphical representation the edges are now
labeled by input-output pairs. The corresponding automata are usually called
Mealy automata. It is not hard to see that the two types of representations are
equivalent.

Exercise 1. Show that Moore and Mealy transition systems are equivalent
ways of describing input-output behaviors, and in fact both can be represented
as automata with trivial output set, i.e., with Y a singleton. Again, this can be
exploited to develop general computational tools but is not necessarily conve-
nient for modeling purposes. Hint: starting say with a Moore transition system,
convert it to an equivalent Mealy transition system, and then reinterpret U×Y
as the new input set.

Note again the generality of the definition 2.2.2. For example, one can
represent a system described by a differential inclusion or a controlled dif-
ferential equation using such a transition system. For simplicity, consider a
time-invariant control system obeying a given controlled differential equation.
Define the set of inputs as the set of pairs (T, u|[0,T]), where u|[0,T]) denotes the
restriction of an admissible input signal to the interval [0, T]. Then two states
x and x� are related by a transition if there exists T ≥ 0 and an input signal
u|[0,T] driving the state from x to x�. Note here that we have an uncountable
number of states and generally an uncountable number of transitions out of
every state. By fixing T in the input set to a fixed value, one also obtains
a discrete-time, regularly sampled version of the continuous-time system. Of
course, by using this device we are forgetting the nice algebraic and computa-
tional properties potentially associated with the differential equation, hence no
progress has been made unless we can simplify again the resulting transition
system, say to a computationally tractable finite system. This idea is explored
later when we discuss notions of equivalence and approximation of transition
systems, in particular simulation and bisimulation relations.

Also, keep in mind that the output set Y in definition 2.2.2 can be quite
general. In particular, it can consist of atomic logic propositions that are true
for the associated states. L is then called a labeling function. Then, given Φ
a propositional logic formula, the state x verifies Φ if the evaluation of L(x)
makes the formula true (denoted L(x) |= Φ). This view can be exploited to
specify and verify properties along the possible trajectories of a system modeled

18

as a transition system, an idea discussed in a later chapter and known as model-
checking [BK08].

Remark. Another widely used term is Kripke structure. Normally, a Kripke
structure is a finite state Moore transition system with a single label in the
input vocabulary (i.e., the input labels are irrelevant) and with L a labeling
function (i.e., the outputs are logic propositions).

We finish this section on transition systems with a few general definitions.
For x ∈ X and u ∈ U , define the sets of direct u-successors and direct successors
of x as

Post(x, u) = {x� ∈ X|x u−−→ x�}, Post(x) =
�

u∈U

Post(x, u).

Similarly, the sets of direct u-predecessors and direct predecessors of x are
defined as

Pre(x, u) = {s� ∈ X|x� u−−→ x}, P re(x) =
�

u∈U

Pre(x, u).

The notation is extended to sets in a straightforward way. For S ⊂ X,

Post(S, u) =
�

x∈S

Post(x, u), Post(S) =
�

x∈S

Post(x),

P re(S, u) =
�

x∈S

Pre(x, u), P re(S) =
�

x∈S

Pre(x).

A state x of a transition system is called terminal is it does not have any
outgoing transition, i.e., if Post(x) = ∅. For reactive systems, the types of
systems we are interested in for control applications and are supposed to run
continuously, this is generally something that must be detected and avoided.
In such a state, the system is said to be in deadlock. Finally, we have the
following notions of determinism.

Definition 2.2.3. A transition system is called input-deterministic if L|X0

is injective, and |Post(x, u)| ≤ 1 for all states x ∈ X and inputs u ∈ U .
Hence observing the initial output and all the subsequent inputs allows us to
reconstruct the state trajectory with certainty. It is called output-deterministic
if L|X0 is injective and |Post(x)

�
{x� ∈ X|L(x�) = A}| ≤ 1 for all states x ∈ X

and output sets A ⊂ Y . In other words, for any state x and inputs u�, u�� with
x

u
�

−−−→ x� and x
u
��

−−−→ x�� and the same observations L(x�) = L(x��), we must
have x� = x��. Hence if L is a single valued map, observing the sequence of
outputs allows us to reconstruct the state trajectory with certainty. Similarly
if L is a labeling function and we can observe in each state all the propositions
that are true.

19

Timed and Hybrid Automata

For all practical purposes, the transition systems of definition 2.2.2 cannot be
manipulated at this level of generality. Indeed, in general as modeling ex-
pressiveness increases, so do the associated computational costs. Because the
definition places no restriction on the state space or the transitions, essentially
any type of system can be modeled in this framework, but one cannot develop
computational tools to answer basic questions about or even just store such
general models. Finite transition systems can be manipulated relatively easily
on a computer, but seem a priori insufficient for control purposes. In particular,
it is not immediately clear how to record the precise timing of asynchronous
events using state transition systems with a finite or even countable state space.
When used directly for modeling purposes, finite state transition systems usu-
ally only record the ordering of events, in untimed models or perhaps regularly
sampled models with fixed sampling period. Note however that such models
are sufficient for some purposes, e.g. reachability analysis. Moreover it turns
out that certain types of hybrid transition systems with state variables evolv-
ing both in continuous-time and via instantaneous discrete updates (events)
are for various purposes equivalent to finite transition systems, a topic that
we revisit later when we discuss simulation relations between automata. In
this case, the original hybrid system formalism is used for modeling purposes,
and assuming that certain restrictions are enforced on the type of admissible
models, the model can sometimes be automatically transformed into a (usually
very large) finite state system, adapted to computer operations.

A well-known class of such hybrid models is the class of timed automata
introduced by Alur and Dill [AD94]. Other models of timed automata exist, see
e.g. the references in [CL08, chapter 5]. Timed automata are finite transition
systems with additional state variables called clocks, which are used to control
the timing of the transitions. With such models, questions such as transition
before a certain deadline, the number of events in a given time interval or the
time spent in a particular state can be considered. Clearly, such questions are
of critical importance in real-time systems such as control systems. Note that
for synchronous discrete-time systems, standard discrete transition systems
are sufficient. The advantage of timed automata is the possibility to model
continuous-time systems in an efficient way, i.e. without employing say a very
fine time discretization that would lead to a very large transition system. These
models are also particularly useful for asynchronous systems.

Clock variables in timed automata are simply state variables verifying the
differential equation ẋ = 1, with the additional possibility of resetting these
variables during transitions between discrete states. These discrete states are
also called modes. Hybrid automata greatly generalize timed automata by al-
lowing general differential and algebraic equations in each mode, together with
instantaneous mode switches as in timed automata. Hybrid automata are ex-
tremely expressive models but as a result many associated computational issues
arise, such as the undecidability of certain reachability questions, possibility of
generating non-physical behaviors such as Zeno behaviors, etc. Hence hybrid

20

automata should be used with care, because it is not always clear what is
gained by describing a system as a hybrid automaton if computational issues
are not discussed. In other words, trivializing the modeling problem generally
comes at a high computational price. Still, hybrid automata form a popular
class of hybrid system models and we give a formal definition below. The var-
ious elements of the model are often further constrained to try to improve the
computational properties. Refer to the discussion in class for more details.

Definition 2.2.4. A hybrid automaton is a tuple

(Q,X,E,U, Y, f, φ, Inv,Guard, ρ, q0, X0),

where

• Q is a set of discrete states, also called modes or locations

• X is a continous state space, e.g. Rn

• E is a finite set of input events

• U is a set of admissible continuous controls

• f is a vector field for each mode: f : Q×X × U → X

• φ is a discrete state transition function φ : Q×X × E → Q

• Inv is a set defining an invariant condition for each mode, Inv ⊆ Q×X

• Guard is a set defining a guard condition for each transition Guard ⊆
Q×Q×X

• ρ is a reset function for each transition and input event: ρ : Q×Q×X ×
E → X

• L : Q×X → 2Y is an output or labeling function.

• q0 is an initial discrete state

• x0 is an initial continuous state.

Guards are condition under which a transition is allowed. Invariants are
conditions that must be satisfied by the continuous state is a particular mode.
Violation of this condition forces the state to take one of the transitions allowed
by the guard conditions. Of course, certain relationships must be enforced
between guards and invariants in order to have a well-posed model. Finally, we
can have additional sources of non-determinism in the hybrid automaton model,
by say defining discrete transitions as φ : Q×X × E → 2Q, reset functions as
ρ : Q × Q × X × E → 2X , and allowing sets of initial conditions. Note that
it is straightforward to unfold a hybrid automaton and view it as a transition
system as in definition 2.2.2, at least as long as one allows uncountably many
states and transitions.

21

For timed automata, in addition to the restrictions on the vector fields
mentioned above, there are restrictions on the form of the guard and invariant
conditions. Namely, these conditions must be of the form

cond ::= x < c
��� x ≤ c

��� x > c
��� x ≥ c

��� cond ∧ cond.

Moreover, the reset functions are only allowed to set clock variables back to 0.

Computational Tools

Two popular tools for creating and model-checking timed automata are UP-
PAAL [UPP] and KRONOS [Yov97]. Various tools for the manipulation of
hybrid systems can be found on the hybrid system tools repository [Hyb].

2.3 Composing Systems

Composing Input-Output Systems

Composing input-output systems is straightforward, and the methods available
in this framework tend to be compositional as well, in the sense that

• the complexity of the system grows modestly when we compose subsys-
tems. For example, composing two systems with n inputs and n outputs
in series produces a new system with n inputs and outputs. The complex-
ity of characterizing the relationships between the new global inputs and
outputs often grows reasonably with the number of subsystems (e.g. lin-
early). Consider for example the fact in the previous series connection, if
the two subsystems have gain bounded by γ1 and γ2 then we immediately
know that the connected system has gain bounded by γ1γ2.

• input-output analysis methods tend to focus on properties that are pre-
served under composition, e.g. passivity.

Note however that input-output connections typically rely on an idealization
which consists in assuming that the behavior of a component is not modified
when its output signals are used as inputs of another component. In practice, a
component’s behavior does depend on the load it is driving. However, engineers
typically try to limit this phenomenon as much as possible, precisely to allow
modular designs. For example, electronic systems have high input impedance
and low output impedance for this purpose, and buffer circuits are available.

Review series, parallel and feedback connections, including the correspond-
ing operations on the transfer functions for LTI systems. We will discuss in
the next chapter how to connect continuous-time and discrete-time systems.

22

Composing State-Space and Transition Systems

The behavior of state-space models with respect to composition is much worse
than for input-output models, with state space sizes that tend to grow expo-
nentially with the number of subsystems. Note that for continuous state-space
systems, the dimensions of the subsystems add. But discretizing the state space
X ⊂ Rd of a continuous system for computational purposes leads to a number
of state that grows exponentially with the dimension d.

We consider the following standard notion of composition of transition sys-
tems [BK08], called composition by handshaking, by synchronous message pass-
ing or simply parallel composition. Note that other types of compositions can
be considered and useful.

Definition 2.3.1. Let TSi = (Xi, X0,i, Ui,−→i, Yi, Li), i = 1, 2 be two tran-
sition systems and H ⊂ U1 ∩ U2. The transition system TS1||HTS2 is defined
as

TS1||HTS2 = (X1 ×X2, U1 ∪ U2,→, X0,1 ×X0,2, Y1 ∪ Y2, L),

where L((x1, x2)) = L1(x1) ∪ L2(x2) and where the transition relation → is
defined by the rules

• interleaving for u /∈ H:

x1
u−−→ x�

1

(x1, x2)
u−−→ (x�

1, x2)

x2
u−−→ x�

2

(x1, x2)
u−−→ (x1, x�

2)

• handshaking for u ∈ H:

x1
u−−→ x�

1 x2
u−−→ x�

2

(x1, x2)
u−−→ (x�

1, x
�
2)

In other words, in the system TS1||HTS2, the transition systems synchro-
nize on the inputs in H. We abbreviate the notation to TS1||TS2 if H = U1∩U2.
The operation ||H is obviously commutative, but also associative. Hence the
composition of more than 2 transition systems TS1||HTS2||H · · · �HTSn is de-
fined immediately, for H ⊆ U1 ∩ · · · ∩Un. Note however that associativity does
not hold if H is not the same in the different operations, i.e.

TS1||H(TS2||H�TS3) �= (TS1||HTS2)||H�TS3

in general for H �= H �.
Remark. Recall also that for automata the product construction has implica-
tions in terms of basic language operations, in particular for language intersec-
tion and union (the two differ only by the choice of marked or final states in
the product automaton).

23

