ESE601 - Hybrid Systems
Discrete Systems Review

George J. Pappas

Department of Electrical and Systems Engineering

University of Pennsylvania

pappasg@seas.upenn.edu

Contents

Examples (5)

Transition systems and automata (6)
Languages and regular expression (6)
Reachability and blocking property (5)
Composition of automata (5)

/O automata (5)

A vending machine

1. Insert coin(s)
2. Choose tea or coffee

3. Put the cup on the
tray

4. Drink is ready

Printer data buffer

/ batain N\ o
A 8 u

q‘ printer <‘>
Pataout / n<.> overfl

)
t
ou
t
ou

A printer

fix

[
~
— |O
-
y
=

The printer receives data from the buffer, and print it out. Once
the printout is ready, the printer is ready to receive new data.
While printing, the paper can jam and need to be fixed before
the printing process can resume.

A slot machine

1. Insert coin
2. Pull handle

3. Win if the combination is good,
otherwise Ioaﬁ.

Modeling recap

Events are time-abstract.

Just like modeling of continuous systems, the
level of detall Is ‘modeler dependent’.

Events are not necessarily equipped with any
notion of ‘internal-external’ or ‘input-output’.

Compositionality Is possible (to be discussed
later).

There can be non-determinism.

Transition systems

e A transition system S = (Q, A,—,Y, (:), Qo), where:
() is the set of states,
A is the set of labels,
—C) X A x () is the set of transitions,
Y is the set of observations/outputs,
(-) : @ — Y is the observation/output map,
()o is the set of initial states.

e When there is a transition from the state ¢ €) to
¢ € Q with label a € A, we denote it by ¢ = ¢/.

¢ When () and A are finite, we called the transition
system finite.

Transition systems

e If for some g € () and a € A there can be more than

one ¢’ € @ such that ¢ — ¢, then the transition sys-
tem is nondeterministic.

Q =1{1,2,3,4}

Qo =1

fix | A= {out,print,ready, jam, fizr}
Y = {normal, error}

(1) = (2) = (3) = normal

(4) = error

Execution of transition systems

e Given a transition system S = (Q, A, —,Y, (-),Qo), a
sequence

doaoq1d1 " - " gN+1,

(Qi)1§i§N+1 € Q, (%)13@]\7 € A,

is an execution of S, if

go € Qo and ¢; =% ¢iy1,1 <4 < N.
e GGiven an execution goagqia; - - - gn41, the external tra-
jectory associated with it is given by (qo)ao(q1)a1 - - - {gn+1)-

e The collection of all external trajectories of the tran-
sition system is called the language of the system.

Automata

e An automaton 2 = (@, A, —, Qo, @), where:
() is the set of states,
A is the set of labels,
—C Q x A x () is the set of transitions,
()o C () is the set of initial states,
()., C () is the set of marked states.

¢ When the set () is finite, the automaton is a finite
state automaton.

o Marked states are states that have a special property,
typically corresponding to a proper termination of a
function.

Automata

e When there is a transition from the state ¢ € @) to
¢' € Q with label a € A, we denote itby ¢ — ¢

e If for some g € () and a € A there can be more than
one ¢ € () such that ¢ = ¢/, then the automaton is
nondeterministic.

fix

Q =1{1,2,3,4}
Qo = {1}
A = {out, print, ready, jam, fix}

Qm — {1}

Execution of automata

e Given an automaton A = (Q, A, —,Qo,Qm), a se-
quence

Gooq1a1 - * - 4N +1,
(qi)lgigNJrl = Qa (a‘@')lgigl\f < Aa

is an execution of 2, if

e Given an execution gopapgiaq - - - gn+1, the trace asso-
ciated with it is given by apaiazas - - - an.

e The collection of all traces of the automaton is called
the generated language of the automaton, L(2l).

Regular languages

e An alphabet A is a finite collection of symbols.

e A string s over the alphabet A is a sequence of sym-
bols in A. The empty string is denoted by e.

e The length of a string s is denoted by |s|. The length
of the empty string is zero.

o A language L over the alphabet A is a collection of
finite-length strings over A.

e Strings over an alphabet can be concatenated to form
a longer string. Eg: s; = aba, so = bba, then s159 =
ababba. The empty string is the identity element of
the concatenation.

Regular languages

e Other than the usual set operations, there are other
basic operations on languages.

o Let L, and L, belanguages over the alphabet A4, then
the concatenation

Lol :={s|dsq € La, s € Ly, s = 545}

o Let L be a language over the alphabet A, then the
prefix closure of L is detined as

L:={s|3s' s.t. ss’ € L}.

o Let L be a language over the alphabet A, then the
Kleene closure of L is detined as

L*:={eyULULLU---

Regular languages

e When a language L is such that L = [, it is called
pretix closed.

e The language generated by a finite state automaton
is always pretix closed.

e An execution of the automaton 2 is a marked exe-
cution if it terminates at a marked state.

e A trace corresponding to a marked execution is called
a marked trace.

e The collection of the marked trace of an automaton

2l is called the accepted language of the automaton,
L ().

Regular languages

The set of languages accepted by finite state automata
is called the regular languages.

THEOREM: Given a regular language L, there exists an
integer n such that any string s € L, with |s| > n, can be
broken into three strings s = xyz, where

D)y # e

(ii) |zy| < n,

(iii) For all integers k > 0, the string zy*z € L.

Regular expressions

o A regular expressions can be thought of as a formula
corresponding to a regular language. If pis a regular
expression, then the regular language correspond-
ing to p is denoted as L(p).

e For any symbol a € A, the regular expression a cor-
responds to the language {a}. The expression ¢ cor-
responds to the language {z}. The expression () cor-
responds to the empty language { }.

Accessibility

e Given an automaton A = (Q, A, —, Qo, @), a state
g € () is accessible if there is an execution that reaches

qg.

e Removing the states that are not accessible does not
atfect the language generated and accepted by the
automaton.

e The automaton obtained by removing the non-accessible
states of % is denoted by Ac(%A).

o If A= Ac(), then A is accessible.

Blocking property

e Given an automaton A = (Q), A, —, Qo, @), the au-
tomaton is blocking if

e Intrepretation: Blocking means there is an execution
that cannot be continued to reach a marked state.

Co-accessibility

e Given an automaton A = (Q, A, —, Qo, @), a state
g € () is co-accessible if there is an execution that
starts from ¢ and reach a marked state.

e The automaton obtained by removing states that are
not co-accessible in 2 is denoted by C'oAc(®l). If 2l =
C'oAc(U), we say that 2l is co-accessible.

e We have that

e An automaton is blocking if and only if it is not co-
acessible.

Co-accessibllity

e Blocking is a property of the languages, while co-
accessibility is a property of the automaton.

e Blocking means any automaton realization of the lan-
guages is not co-accessible.

e The automaton Ac(CoAc(U)) = CoAc(Ac())is called
the trimmed version of A, Trim (). If A = Trim(2),
then 2l is trim.

Composition of automata

e Given two automata 2, = (@i, 4, —i, Qo.i, Qmi), 1 =
1,2. The composed automaton

2l —= Ql1 || Ql?;
where 2 = (Q1 X Q2, A, —, Qo1 X Qo,2, @m,1 X Qm,2),

e Notice: Same set of labels.

e The set of states of the composed automaton is the
product of those of the components.

Composition of automata

e Aninitial state of the composed automaton is a prod-
uct of initial states of the components.

o A state is marked itf it is marked in both compo-
nents.

o Interpretation: Both components have to synchro-
nize on each event, while performing their tasks.

Composition of automata

e The relations between composition and the languages
of the automata:

e Non-blockingness is not preserved.

Composition of automata

Given two automata 2A; = (Q;, Ai, —i, Qo Qmi), 1 = 1,2,
where

e

The composed automaton
A=Ay || As,

where A = (Q1 X Q2, AU Ag, —, Qo1 X Qo.2, Qmi X Qm.2),
where

Composition of automata

e Thus, the automata synchronize only on the events
that they have in common.

Composition and languages

o Let L be aregular language over the alphabet A. Let
E be a subset of A. We define the projection 7z :
L — E*, such that 7g(s) returns the string created
by removing all symbols in s that are not elements
of .

e Example: A = {a,b,c}, F = {a,b},
mp(abcabeecab) = ababab,

mwp(acce) = a,

mg(cceee) = €.

Example

i Only accessible

Composition and languages

The languages of the composed automaton: For any s &
(Al U AQ)*)

Input — output automata

e So far we have seen composition of automata in the
synchronization style, i.e. there is no sense of input
or output, or which component initiates the event,
etc.

e Sometimes it is desirable to model explicitly the sense
of input and output in the composition.

e Input - output automata: the set of events is parti-
tioned into inputs in(2l), outputs out(2l), and inter-
nal events int(2l).

Input — output automata

e Every state is input enabled. For each input event,
there exists an outgoing transition with that label.

e A composition of two input-output automata 2(;, and
2o is compatible if

out(2A1) N Out(%) -

e [f that is the case then,

out(Ay || o) = out(Ay) U out(As)
Z"I’Lt(Q[l || ng) — mt(Qll) U ’mt(%)

Input — output automata

Compatibility implies some kind of feedback structure.

> Qll >
— Znt(ml) : >
< A, .

Transition Systems

A ftransition system
| T=(Q,%2,-,0,())
consists of

A set of states Q

A set of events ¥ o
0
A set of observations O .

The transition relation ¢ —q; c/
The observation map (q;) =0,
@
Initial or final states may be incorporated o

The sets Q, ¥, and O may be infinite
Language of T is all sequences of observations . @
1 3

S
‘ UNIVERSITY off PENNSYL¥ANIA

0\ q,

A painful example

The parking meter

\
(k‘ tick ‘ f/ck ‘ tick E .E tick f/c.k'

tick

States Q ={0,1,2,.., 60}
Events (tick, 5p}
Observations {exp,act}

A possible string of observations (exp,act act,act,act act exp,..

S
‘ UNIVERSITY off PENNSYL¥ANIA

A familiar example

Transition System T

TAz(Q,Z,—>,O,<->) State set Q=X =R"

Labelset Z=U=R"

Observationset O=Y =RP

Linear Observation Map (x) = Cx

A

X,., = AX, +Bu,

Y = CX,

Transition Relation — < XxUx X

u
X, > X, < X, = AX; +Bu

S
‘ UNIVERSITY off PENNSYL¥ANIA

Loose Control...

Transition System T4

Ts =(Q,Z,-,0,()) State set Q=X=R"

Labelset Z={1}

Observationset O=Y =RP

Linear Observation Map (x) = Cx

A

X,., = AX, + Bu,

Y = CX,

Transition Relation — < X x {1} x X

1
X, >X, < 3Ju with x, = Ax, + Bu

S
‘ UNIVERSITY off PENNSYL¥ANIA

T:=(Q.Z,-,0,())

X,., = AX, + Bu,

A
Y = CX,

8 UNIVERSITY off PENNSYL¥ANIA

Keep time....

Transition System T

State set Q=X =R"

Label set > =N,

Observationset O=Y =R°
Linear Observation Map (x) = Cx
Transition Relation — < XxN_ x X

; 3 U,,..., U, with

k-1
X, = A“x, + > A“Buy
i=0

Loose control and time...

TS =

Transition System T2

(Qx,-.0.,()) State set Q=X =R"
Labelset Z={71}

Observationset O=Y =RP

Linear Observation Map (x) = Cx

A

X,., = AX, + Bu,

Transition Relation > c Xx{T1}xX

Y, = CX, ; 3k and 3Fu,,...,u., with
X, —> X, <

S
‘ UNIVERSITY off PENNSYL¥ANIA

k-1
X, = A%, + > A“By
i=0

Finite Observations

All Transition Systems

TA — ’ ZI —, O' .
s =(Q () Finite Observations O ={o,,0,....,0,}

1 Polyhedral Map (x): X —» O
0,
0, 0
ax+b =0 ’
Os

X,., = AX, + Bu,

A
Y = CXy /o

S
‘ UNIVERSITY off PENNSYL¥ANIA

Keep continuous time....

Transition System Tg

T: =(Q,Z,-,0,()) State set Q=X=R"

Label set > =R,

Observationset O=Y =RP

Linear Observation Map (x) = Cx

x'= AxX + Bu

y = Cx

Transition Relation — < XxR, x X

t Uy With

S
‘ UNIVERSITY off PENNSYL¥ANIA

.
x, =e""x + _[e"By(s)ds
Q

Loose continuous time....

Transition System T2

Ts =(Q,Z,-,0,()) State set Q=X=R"

Labelset Z={T1}

Observationset O=Y =RP

Linear Observation Map (x) = Cx

x'= AxX + Bu

y = Cx

Transition Relation - < Xx{T1}xX
3t and Ju,,, with

T

S
‘ UNIVERSITY off PENNSYL¥ANIA

X
x, =e""x + _[e”"By(s)ds
Q

Transition Systems

A region is a subset of states P 2 Q

We define the following operators

Pre,(P)={qeQ|3peP q;P}
Pre(P)={qeQ|JoeX 3FpeP qi>p}

Post,(P)={qeQ|3peP p-q)
Post(P)={qe Q3o cZ 3peP p—q)

P
@, UNIVERSITY off PENNSYL¥ANIA

Transition Systems

We can recursively define

Pre_(P) =Pre_ (P)

Pre"(P) = Pre_(Pre™(P))

Similarly for the other operators. Also

Pre”(P) = | JPre"(P)

neN

Post™(P) = | JPost"(P)

neN

S

8 UNIVERSITY off PENNSYL¥ANIA

Basic safety problems

Given transition system T and regions P, S determine

Forward Reachability
Post*(P) N S#£

Backward Reachability
PN Pre*(S)#A)

S

8 UNIVERSITY off PENNSYL¥ANIA

Forward reachability algorithm

Forward Reachability Algorithm

initialize R:=P
while TRUE do
it RN SAD return UNSAFE ; end iTf;
if Post(R) C R return SAFE > end i1f;
R := RU Post(R)
end while

If T is finite, then algorithm terminates (decidability).
Complexity : O(nj+ m\R)

- |

F@, Bgyg initial reachable

states transitions

Backward reachability algorithm

Backward Reachability Algorithm

initialize R:=S

while TRUE do
if RN PAD return UNSAFE ; end if;
if Pre(R) € R return SAFE ; end if;
R := RU Pre(R)

end while

If Tis infinite, then there is no guarantee of termination.

Algorithmic issues

Representation issues

Enumeration for finite sets
Symbolic representation for infinite (or finite) sets

Operations on sets

Boolean operations
Pre and Post computations (closure?)

Algorithmic termination (decidability)

Guaranteed for finite transition systems
No guarantee for infinite transition systems

S
‘ UNIVERSITY off PENNSYL¥ANIA

