ESE601 - Hybrid Systems Hybrid System Models

George J. Pappas

Department of Electrical and Systems Engineering

University of Pennsylvania

pappasq@seas.upenn.edu

Hybrid Automata

A hybrid system $H = (V, \Re^n, X_0, F, Inv, R)$ consists of

- V
- \bullet \Re^n
- $X = V \times \Re^n$
- $X_0 \subseteq X$
- $F(l,x) \subseteq \Re^n$
- $Inv(l) \subseteq \Re^n$ $R \subseteq X \times X$

- is a finite set of states
- is the continuous state space
- is the state space of the hybrid system
- is the set of initial states
- maps a diff. inclusion to each discrete state
- maps invariant sets to each discrete state
- is a relation capturing discontinuous changes

$$\begin{aligned} \text{Define } E &= \{(l,l')| \ \exists x \in Inv(l), x' \in Inv(l') \ ((l,x),(l',x')) \in R \} \\ &Init(l) = \{x \in Inv(l) \ | \ (l,x) \in X_0 \} \\ &Guard(e) = \{x \in Inv(l)| \ \exists x' \in Inv(l') \ ((l,x),(l',x')) \in R \} \end{aligned}$$

Transitions of Hybrid Systems

Hybrid systems can be embedded into transition systems

$$H = (V, \Re^n, X_0, F, Inv, R) \longrightarrow T_H = (Q, Q_0, \Sigma, \rightarrow, O, <\cdot>)$$

Observation set and map

depend on desired properties

$$Q=V\times\Re^n$$

$$Q_0 = X_0$$

$$\Sigma = E \cup \{\tau\}$$

$$\rightarrow \subseteq Q \times \Sigma \times Q$$

Discrete transitions

$$(l_1, x_1) \xrightarrow{e} (l_2, x_2)$$
 iff $x_1 \in Guard(e), x_2 \in Reset(e, x_1)$

Continuous (time-abstract) transitions

$$(l_1, x_1) \xrightarrow{\mathcal{T}} (l_2, x_2)$$
 iff $l_1 = l_2$ and $\exists \delta \geq 0$ $x(\cdot) : [0, \delta] \to \Re^n$
 $x(0) = x_1, x(\delta) = x_2,$ and $\forall t \in [0, \delta]$
 $\dot{x} \in F(l_1, x(t))$ and $x(t) \in Inv(l_1)$

WLCIIII

Rectangular hybrid automata

Rectangular sets : $\bigwedge_i x_i \sim c_i \quad \sim \in \{<, \leq, =, \geq, >\}, c_i \in Q$

Rectangular hybrid automata are hybrid systems where

 $Init(l), Inv(l), F(l, x), Guard(e), Reset(e, x)_i$

are rectangular sets

SALCIIII

Hybrid automata are compositional

Partial synchronization (Concurrency)

Properties of trajectories

Blocking (or existence)

Determinism (or uniqueness)

Zeno (or finite escape time)

Compositional semantics (behaviors)

Compositional properties

An alternative notion of hybrid trajectory

Hybrid systems

Dynamical systems with discrete and continuous state and/or input variables

$$q \in Q = \{q_1, q_2, q_3\}$$
$$x \in \mathbb{R}^n$$

q changes discretely

$$q(t^-) \mapsto q(t^+)$$

x changes either discretely, or continuously

$$x(t^{-}) \mapsto x(t^{+})$$
$$\dot{x}(t) = f(x(t), q(t))$$

31 Zürich

19

System evolution

Example: Bouncing Ball

- Model of ball bouncing on level surface
- x_1 ball height, x_2 vertical ball velocity
- Fraction of energy lost at each impact

E | Zürlet

21

Example: Water Tank System

- Model of two leaky buckets
- Water supply dedicated either to one or the other bucket
- Water leaks at constant rate
- Supply at constant rate
- Controller switches supply to bucket that empties

ETH Zuriel

Time axis

- Evolution both in continuous time and even driven
- Need time set richer that either R or N

$$\tau = \left\{ I_i \right\}_0^N$$

- Hybrid time set:
 - Finite or infinite sequence of intervals

$$-I_i = [\tau_i, \tau'_i]$$
 if $i < N$

$$-I_N = [\tau_N, \tau_N']$$
 or $I_N = [\tau_N, \tau_N')$ if $N < \infty$

$$-\tau_i \le \tau_i' = \tau_{i+1}$$

ETH zariet

23

Example

$$\tau = \{I_i\}_0^3 = \{[\tau_0, \tau_0'], [\tau_1, \tau_1'], [\tau_2, \tau_2'], [\tau_3, \infty)\}$$

(Autonomous) Hybrid Automata

Hybrid automaton:

$$H = (Q, X, Init, f, Dom, E, G, R)$$

- Discrete state variables $Q = \{q_1, q_2, q_3, \ldots\}$
- Continuous state variables $X = \mathbb{R}^n$
- Initial conditions $Init \subseteq Q \times X$
- Continuous dynamics $f: Q \times X \to \mathbb{R}^n$
- Domain of continuous evolution $Dom: Q \rightarrow 2^X$
- Discrete transitions $E \subseteq Q \times Q$
- Guards $G: E \rightarrow 2^X$
- Transition relation $R: E \times X \rightarrow 2^X$

Zürich

27

What can it all mean?

- 2^X power set (set of all subsets) of X
- State of the system $(q, x) \in Q \times X$
- Start with $(q, x) \in Init$
- Continuous motion $\dot{x} = f(q, x) \dots$
- ... provided that x = Dom(q)
- Discrete transition $q \mapsto q'$ only if
 - $(q, q') \in E$
 - $-x \in G(q, q')$
- After discrete transition $x' \in R(q, q', x)$

31 Zurio

Executions

- Solutions called executions or runs
- Defined "declaratively" (cf. "imperatively")
- Solutions defined through "acceptance conditions"
 - Select any $(q, x) \in Init$
 - Follow ODE as long as $x \in Dom(q)$
 - Discrete transition provided $x \in G(q, q')$
 - After transition select any $x' \in R(q, q', x)$
- Many solutions for some initial conditions
- No solutions for others

Zürich

29

Executions

- Executions NOT functions of real time
- They are of the form (τ, q, x) with

$$-\tau = \{I_i\}_0^N$$

$$oldsymbol{-} x = \left\{x_i(\cdot\,)
ight\}_0^N, \; x_i(\cdot\,): I_i
ightarrow X$$

$$oldsymbol{q} = \{q_i(\cdot\,)\}_0^N, \; q_i(\cdot\,): I_i
ightarrow Q$$

• Initial condition $(q_0(\tau_0), x_0(\tau_0)) \in Init$

Züriel

Executions

- Continuous evolution
 - The functions $q_i(\cdot)$ are constant
 - The functions $x_i(\cdot)$ are solutions of

$$\dot{x}_i(t) = f(q_i(t), x_i(t))$$

- Discrete transitions
 - $-(q_i(\tau_i'), q_{i+1}(\tau_{i+1})) \in E$
 - $-x_i(\tau_i') \in G(q_i(\tau_i'), q_{i+1}(\tau_{i+1}))$
 - $-x_{i+1}(\tau_{i+1}) \in R(q_i(\tau_i'), q_{i+1}(\tau_{i+1}), x_i(\tau_i'))$

ETH zürich

31

Classification

An execution (τ, q, x) with $\tau = \{I_i\}_0^N$ is called

- Finite if $N < \infty$ and $I_N = [\tau_N, au'_N]$
- Infinite if $N = \infty$ or $I_N = [\tau_N, \infty)$
- Zeno if $N=\infty$ and $\sum_{i=0}^{\infty}(\tau_i'-\tau_i)<\infty$
- Maximal if it is not a strict prefix of any other execution

31 Züriel

Example: Water tanks

$$\tau = [0, 2], [2, 3], [3, 3.5]$$

ETH

33

Basic properties

- Basic system properties
- Existence uniqueness of solutions, etc
- Define states the system can reach

$$Reach = \{(q, x) \mid \exists (\tau, q, x), \ (q_N(\tau_N), x_N(\tau_N)) = (q, x)\}$$

• Define states where continuous evolution is impossible

$$Out = \{(q, x) \mid \forall \epsilon > 0 \ \exists t \in [0, \epsilon), \ x(t) \notin Dom(q)\}$$

Züriel

Existence and uniqueness of solutions

Proposition: Infinite executions exist for all initial conditions if for all $(q, x) \in Reach \cap Out$ there exists $(q, q') \in E$ such that $x \in G(q, q')$

Proposition: Unique infinite executions exist for all initial conditions iff for all $(q, x) \in Reach$

1.
$$x \in G(q, q') \Rightarrow (q, x) \in Out$$

2.
$$x \notin G(q, q') \cap G(q, q'')$$

3.
$$x \in G(q, q') \Rightarrow |R(q, q', x)| = 1$$

Zeno executions: infinite number of discrete transitions in finite time

ETH

35

Zeno of Elea

- Result of modeling over-abstraction
- Surprisingly common (water tank, bouncing ball)
- Can be tricky to cope with with in design problems
- No satisfactory method exists for dealing with it

ETH